高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)及解析
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,AO部分粗糙且长L=2m,动摩擦因数μ=0.3,OB部分光滑.另一小物块a.放在车的最左端,和车一起以v0=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a、b两物块视为质点质量均为m=1kg,碰撞时间极短且不粘连,碰后一起向右运动.(取g=10m/s2)求:(1)物块a与b碰后的速度大小;(2)当物块a相对小车静止时小车右端B到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)及解析

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)及解析一、高考物理精讲专题动量守恒定律1.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=)(1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能.【答案】(1)6/B v m s = (2)0.6P E J = 【解析】试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2cos 1sin 2B B B Bm gh m gh m v θμθ+⋅= ① (3分)代入已知数据解得:6/B v m s = ② (2分)(2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得:2220111()222A B P A A B Bm m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分)考点:本题考查了动能定理、动量守恒定律、能量守恒定律.2.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。
高考物理动量守恒定律解题技巧及经典题型及练习题(含答案)含解析

高考物理动量守恒定律解题技巧及经典题型及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A球与B球碰撞中损耗的机械能.当B、C速度相等时,弹簧伸长量最大,弹性势能最大,结合B、C在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图所示,光滑水平直导轨上有三个质量均为m的物块A、B、C,物块B、C静止,物块B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计);让物块A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C 碰撞过程时间极短.那么从A开始压缩弹簧直至与弹簧分离的过程中,求.(1)A、B第一次速度相同时的速度大小;(2)A、B第二次速度相同时的速度大小;(3)弹簧被压缩到最短时的弹性势能大小【答案】(1)v0(2)v0(3)【解析】试题分析:(1)对A、B接触的过程中,当第一次速度相同时,由动量守恒定律得,mv0=2mv1,解得v1=v0(2)设AB第二次速度相同时的速度大小v2,对ABC系统,根据动量守恒定律:mv0=3mv2解得v2=v0(3)B与C接触的瞬间,B、C组成的系统动量守恒,有:解得v3=v0系统损失的机械能为当A、B、C速度相同时,弹簧的弹性势能最大.此时v2=v0根据能量守恒定律得,弹簧的最大弹性势能.考点:动量守恒定律及能量守恒定律【名师点睛】本题综合考查了动量守恒定律和能量守恒定律,综合性较强,关键合理地选择研究的系统,运用动量守恒进行求解。
高考物理动量守恒定律解题技巧讲解及练习题(含答案)及解析

高考物理动量守恒定律解题技巧讲解及练习题(含答案)及解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图象如图乙所示.求:①物块C的质量?②B离开墙后的运动过程中弹簧具有的最大弹性势能E P?【答案】(1)2kg(2)9J【解析】试题分析:①由图知,C与A碰前速度为v1=9 m/s,碰后速度为v2=3 m/s,C与A碰撞过程动量守恒.m c v1=(m A+m C)v2即m c=2 kg②12 s时B离开墙壁,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大(m A +m C )v 3=(m A +m B +m C )v 4得E p =9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.3.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。
高中物理动量定理常见题型及答题技巧及练习题(含答案)含解析

高中物理动量定理常见题型及答题技巧及练习题(含答案)含解析一、高考物理精讲专题动量定理1.如图所示,固定在竖直平面内的4光滑圆弧轨道AB 与粗糙水平地面BC 相切于B 点。
质量m =0.1kg 的滑块甲从最高点A 由静止释放后沿轨道AB 运动,最终停在水平地面上的C 点。
现将质量m =0.3kg 的滑块乙静置于B 点,仍将滑块甲从A 点由静止释放结果甲在B 点与乙碰撞后粘合在一起,最终停在D 点。
已知B 、C 两点间的距离x =2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s ,两滑块均视为质点。
求:(1)圆弧轨道AB 的半径R;(2)甲与乙碰撞后运动到D 点的时间t 【答案】(1) (2)【解析】 【详解】(1)甲从B 点运动到C 点的过程中做匀速直线运动,有:v B 2=2a 1x 1; 根据牛顿第二定律可得:对甲从A 点运动到B 点的过程,根据机械能守恒: 解得v B =4m/s ;R=0.8m ;(2)对甲乙碰撞过程,由动量守恒定律: ;若甲与乙碰撞后运动到D 点,由动量定理:解得t=0.4s2.在距地面20m 高处,某人以20m/s 的速度水平抛出一质量为1kg 的物体,不计空气阻力(g 取10m /s 2)。
求(1)物体从抛出到落到地面过程重力的冲量; (2)落地时物体的动量。
【答案】(1)20N ∙s ,方向竖直向下(2)202kg m/s ⋅, 与水平方向的夹角为45° 【解析】 【详解】(1)物体做平抛运动,则有:212h gt =解得:t =2s则物体从抛出到落到地面过程重力的冲量I=mgt =1×10×2=20N•s方向竖直向下。
(2)在竖直方向,根据动量定理得I=p y -0。
可得,物体落地时竖直方向的分动量p y =20kg•m/s物体落地时水平方向的分动量p x =mv 0=1×20=20kg•m/s故落地时物体的动量22202kg m/s x y p p p =+=⋅设落地时动量与水平方向的夹角为θ,则1y xp tan p θ==θ=45°3.质量0.2kg 的球,从5.0m 高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g 取10m/s 2.求小球对钢板的作用力. 【答案】78N 【解析】 【详解】自由落体过程 v 12=2gh 1,得v 1=10m/s ; v 1=gt 1 得t 1=1s小球弹起后达到最大高度过程0− v 22=−2gh 2,得v 2=9m/s 0-v 2=-gt 2 得t 2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft ′-mg t ′=mv 2-(-mv 1) 其中t ′=t -t 1-t 2=0.05s 得F =78N由牛顿第三定律得F ′=-F ,所以小球对钢板的作用力大小为78N ,方向竖直向下;4.如图所示,两个小球A 和B 质量分别是m A =2.0kg,m B =1.6kg,球A 静止在光滑水平面上的M 点,球B 在水平面上从远处沿两球的中心连线向着球A 运动,假设两球相距L ≤18m 时存在着恒定的斥力F ,L >18m 时无相互作用力.当两球相距最近时,它们间的距离为d =2m,此时球B 的速度是4m/s.求:(1)球B 的初速度大小; (2)两球之间的斥力大小;(3)两球从开始相互作用到相距最近时所经历的时间. 【答案】(1) 09B m v s= ;(2) 2.25F N =;(3) 3.56t s =【解析】试题分析:(1)当两球速度相等时,两球相距最近,根据动量守恒定律求出B 球的初速度;(2)在两球相距L >18m 时无相互作用力,B 球做匀速直线运动,两球相距L≤18m 时存在着恒定斥力F ,B 球做匀减速运动,由动能定理可得相互作用力 (3)根据动量定理得到两球从开始相互作用到相距最近时所经历的时间.(1)设两球之间的斥力大小是F ,两球从开始相互作用到两球相距最近时所经历的时间是t 。
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m 的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
一可看做质点的小物块从A 点由静止释放,滑到C 点刚好相对小车停止。
已知小物块质量m =1kg ,取g =10m/s 2。
求:(1)小物块与小车BC 部分间的动摩擦因数;(2)小物块从A 滑到C 的过程中,小车获得的最大速度。
【答案】(1)0.5(2)1m/s【解析】【详解】解:(1) 小物块滑到C 点的过程中,系统水平方向动量守恒则有:()0M m v += 所以滑到C 点时小物块与小车速度都为0由能量守恒得: mgR mgL μ=解得:0.5R Lμ== (2)小物块滑到B 位置时速度最大,设为1v ,此时小车获得的速度也最大,设为2v 由动量守恒得 :12mv Mv =由能量守恒得 :22121122mgR mv Mv =+ 联立解得: 21/ v m s =2.如图所示,在倾角30°的斜面上放置一个凹撸B,B 与斜面间的动摩擦因数3μ=;槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d =0.1m ,A 、B 的质量都为m=2kg ,B 与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A 、B 之间的摩擦,斜面足够长.现同时由静止释放A 、B,经过一段时间,A 与B 的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g 取210/m s .求:(1)释放后物块A 和凹槽B 的加速度分别是多大?(2)物块A 与凹槽B 的左侧壁第一次碰撞后瞬间A 、B 的速度大小;(3)从初始位置到物块A 与凹糟B 的左侧壁发生第三次碰撞时B 的位移大小.【答案】(1)(2)v An =(n-1)m∙s -1,v Bn ="n" m∙s -1(3)x n 总=0.2n 2m【解析】【分析】【详解】(1)设物块A 的加速度为a 1,则有m A gsin θ=ma 1,解得a 1=5m/s 2凹槽B 运动时受到的摩擦力f=μ×3mgcos θ=mg 方向沿斜面向上;凹槽B 所受重力沿斜面的分力G 1=2mgsin θ=mg 方向沿斜面向下;因为G 1=f ,则凹槽B 受力平衡,保持静止,凹槽B 的加速度为a 2=0(2)设A 与B 的左壁第一次碰撞前的速度为v A0,根据运动公式:v 2A0=2a 1d解得v A0=3m/s ;AB 发生弹性碰撞,设A 与B 第一次碰撞后瞬间A 的速度大小为v A1,B 的速度为v B1,则由动量守恒定律:0112A A B mv mv mv =+ ; 由能量关系:2220111112222A AB mv mv mv =+⨯ 解得v A1=-1m/s(负号表示方向),v B1=2m/s3.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上)【答案】25m/s【解析】试题分析:要使两车恰好不相撞,则两车速度相等.以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒:()20120M v M m M v +=++共,解得5m /s v =共以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得25m /s v =考点:考查了动量守恒定律的应用【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系统,由系统动量守恒列出等式,联立求解4.如图所示,在光滑的水平面上放置一个质量为2m的木板B,B的左端放置一个质量为m的物块A,已知A、B之间的动摩擦因数为μ,现有质量为m的小球以水平速度0υ飞来与A物块碰撞后立即粘住,在整个运动过程中物块A始终未滑离木板B,且物块A和小球均可视为质点(重力加速度g).求:①物块A相对B静止后的速度大小;②木板B至少多长.【答案】①0.25v0.②216v Lgμ=【解析】试题分析:(1)设小球和物体A碰撞后二者的速度为v1,三者相对静止后速度为v2,规定向右为正方向,根据动量守恒得,mv0=2mv1,① (2分)2mv1=4mv2② (2分)联立①②得,v2=0.25v0.(1分)(2)当A在木板B上滑动时,系统的动能转化为摩擦热,设木板B的长度为L,假设A刚好滑到B的右端时共速,则由能量守恒得,③ (2分)联立①②③得,L=考点:动量守恒,能量守恒.【名师点睛】小球与 A碰撞过程中动量守恒,三者组成的系统动量也守恒,结合动量守恒定律求出物块A相对B静止后的速度大小;对子弹和A共速后到三种共速的过程,运用能量守恒定律求出木板的至少长度.5.如图,一质量为M的物块静止在桌面边缘,桌面离水平地面的高度为h.一质量为m的子弹以水平速度v0射入物块后,以水平速度v0/2 射出.重力加速度为g.求:(1)此过程中系统损失的机械能;(2)此后物块落地点离桌面边缘的水平距离.【答案】(1)20138m E mv M ⎛⎫∆=- ⎪⎝⎭ (2)02mv h s M g= 【解析】【分析】【详解】 试题分析:(1)设子弹穿过物块后物块的速度为V ,由动量守恒得mv 0=m+MV ①解得②系统的机械能损失为ΔE =③ 由②③式得ΔE =④ (2)设物块下落到地面所需时间为t ,落地点距桌面边缘的水平距离为s ,则⑤s=Vt ⑥由②⑤⑥得S =⑦考点:动量守恒定律;机械能守恒定律.点评:本题采用程序法按时间顺序进行分析处理,是动量守恒定律与平抛运动简单的综合,比较容易.6.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m 、厚度为2d 的钢板静止在水平光滑桌面上.质量为m 的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d 、质量均为m 的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv20-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13(26v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV 2=mv 1(1分)损失的动能为:ΔE′=12mv 21-12×2mV 22(2分) 联立解得:ΔE′=13(1)2+×mv 20 因为ΔE′=f·x (1分), 可解得射入第二钢板的深度x 为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解7.如图所示,一质量m 1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m 2=0.4 kg 的小物体,小物体可视为质点.现有一质量m 0=0.05 kg 的子弹以水平速度v 0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最终小物体以5 m/s 的速度离开小车.g 取10 m/s 2.求:(1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小.(2)小车的长度.【答案】(1)4.5N s ⋅ (2)5.5m【解析】①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有:0011()o m v m m v =+,可解得110/v m s =;对子弹由动量定理有:10I mv mv -=-, 4.5I N s =⋅ (或kgm/s);②三物体组成的系统动量守恒,由动量守恒定律有:0110122()()m m v m m v m v +=++;设小车长为L ,由能量守恒有:22220110122111()()222m gL m m v m m v m v μ=+-+- 联立并代入数值得L =5.5m ;点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车的速度,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度.8.在日常生活中,我们经常看到物体与物体间发生反复的多次碰撞.如图所示,一块表面水平的木板静止放在光滑的水平地面上,它的右端与墙之间的距离L =0.08 m .现有一小物块以初速度v 0=2 m/s 从左端滑上木板,已知木板和小物块的质量均为1 kg ,小物块与木板之间的动摩擦因数μ=0.1,木板足够长使得在以后的运动过程中小物块始终不与墙接触,木板与墙碰后木板以原速率反弹,碰撞时间极短可忽略,取重力加速度g =10 m/s 2.求:(1)木板第一次与墙碰撞时的速度大小;(2)从小物块滑上木板到二者达到共同速度时,木板与墙碰撞的总次数和所用的总时间;(3)小物块和木板达到共同速度时,木板右端与墙之间的距离.【答案】(1)0.4 s 0.4 m/s (2)1.8 s. (3)0.06 m【解析】试题分析:(1)物块滑上木板后,在摩擦力作用下,木板从静止开始做匀加速运动,设木板加速度为a ,经历时间T 后与墙第一次碰撞,碰撞时的速度为1v则mg ma μ=,解得21/a g m s μ==①212L at =②,1v at =③ 联立①②③解得0.4t s =,10.4/v m s =④(2)在物块与木板两者达到共同速度前,在每两次碰撞之间,木板受到物块对它的摩擦力作用而做加速度恒定的匀减速直线运动,因而木板与墙相碰后将返回至初态,所用时间也为T .设在物块与木板两者达到共同速度v 前木板共经历n 次碰撞,则有:()02v v nT t a a t =-+∆=∆⑤式中△t 是碰撞n 次后木板从起始位置至达到共同速度时所需要的时间.由于最终两个物体一起以相同的速度匀速前进,故⑤式可改写为022v v nTa =-⑥ 由于木板的速率只能处于0到1v 之间,故有()01022v nTa v ≤-≤⑦求解上式得1.5 2.5n ≤≤由于n 是整数,故有n=2⑧由①⑤⑧得:0.2t s ∆=⑨;0.2/v m s =⑩从开始到物块与木板两者达到共同速度所用的时间为:4 1.8t T t s =+∆=(11) 即从物块滑上木板到两者达到共同速度时,木板与墙共发生三次碰撞,所用的时间为1.8s .(3)物块与木板达到共同速度时,木板与墙之间的距离为212s L a t =-∆(12) 联立①与(12)式,并代入数据得0.06s m =即达到共同速度时木板右端与墙之间的距离为0.06m .考点:考查了牛顿第二定律,运动学公式【名师点睛】本题中开始小木块受到向后的摩擦力,做匀减速运动,长木板受到向前的摩擦力做匀加速运动;当长木板反弹后,小木块继续匀减速前进,长木板匀减速向左运动,一直回到原来位置才静止;之后长木板再次向右加速运动,小木块还是匀减速运动;长木板运动具有重复性,由于木板长度可保证物块在运动过程中不与墙接触,故直到两者速度相同,一起与墙壁碰撞后反弹;之后长木板向左减速,小木块向右减速,两者速度一起减为零.9.如图所示,木块m 2静止在高h=0.45 m 的水平桌面的最右端,木块m 1静止在距m 2 左侧s 0=6.25 m 处.现木块m 1在水平拉力F 作用下由静止开始沿水平桌面向右运动,与 m 2碰前瞬间撤去F ,m 1和m 2发生弹性正碰.碰后m 2落在水平地面上,落点距桌面右端水平 距离s=l .2 m .已知m 1=0.2 kg ,m 2 =0.3 kg ,m 1与桌面的动摩擦因素为0.2.(两个木块都可以视为质点,g=10 m /s 2)求:(1)碰后瞬间m 2的速度是多少?(2)m 1碰撞前后的速度分别是多少?(3)水平拉力F 的大小?【答案】(1)4m/s (2)5m/s ;-1m/s (3)0.8N【解析】试题分析:(1)m 2做平抛运动,则:h=12gt 2; s=v 2t ;解得v 2=4m/s(2)碰撞过程动量和能量守恒:m 1v=m 1v 1+m 2v 2 12m 1v 2=12m 1v 12+12m 2v 22 代入数据解得:v=5m/s v 1=-1m/s(3)m 1碰前:v 2=2as 11F m g m a μ-=代入数据解得:F=0.8N考点:动量守恒定律;能量守恒定律;牛顿第二定律的应用【名师点睛】此题关键是搞清两个物体的运动特征,分清物理过程;用动量守恒定律和能量守恒定律结合牛顿定律列出方程求解.10.如图所示,质量均为M =4 kg 的小车A 、B ,B 车上用轻绳挂有质量为m =2 kg 的小球C ,与B 车静止在水平地面上,A 车以v 0=2 m/s 的速度在光滑水平面上向B 车运动,相碰后粘在一起(碰撞时间很短).求:(1)碰撞过程中系统损失的机械能;(2)碰后小球C 第一次回到最低点时的速度大小.【答案】(1) 4 J (2) 1.6 m/s【解析】【详解】解:(1)设A 、B 车碰后共同速度为1v ,由动量守恒得:012Mv Mv = 系统损失的能量为:220112 4 212E Mv Mv J -⨯==损 (2)设小球C 再次回到最低点时A 、B 车速为2v ,小球C 速度为3v ,对A 、B 、C 系统由水平方向动量守恒得:12322Mv Mv mv =+ 由能量守恒得:22212311122222Mv Mv mv ⨯=⨯+ 解得:3 1.6 /v m s =11.图中两根足够长的平行光滑导轨,相距1m 水平放置,磁感应强度B =0.4T 的匀强磁场竖直向上穿过整个导轨所在的空间.金属棒ab 、cd 质量分别为0.1kg 和0.2kg ,电阻分别为0.4Ω和0.2Ω,并排垂直横跨在导轨上.若两棒以相同的初速度3m /s 向相反方向分开,不计导轨电阻,求:(1)金属棒运动达到稳定后的ab 棒的速度大小;(2)金属棒运动达到稳定的过程中,回路上释放出的焦耳热;(3)金属棒运动达到稳定后,两棒间距离增加多少?【答案】(1)1m/s(2)1.2J(3)1.5m【解析】【详解】解:(1)ab 、cd 棒组成的系统动量守恒,最终具有共同速度v ,以水平向右为正方向,则解得稳定后的ab 棒的速度大小:(2)根据能量转化与守恒定律,产生的焦耳热为:(3)对cd 棒根据动量定理有:即:又 两棒间距离增加:12.如图所示,一质量为M 的平板车B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M,A 、B 间粗糙,现给A 和B 以大小相等、方向相反的初速度v0,使A 开始向左运动,B 开始向右运动,最后A 不会滑离B ,求:(1)A 、B 最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车的速度大小和方向.【答案】(1)0M m v M m-+(2)2022M m v Mg μ- 【解析】试题分析:(1)由A 、B 系统动量守恒定律得:Mv0—mv0=(M +m )v ①所以v=v0 方向向右(2)A 向左运动速度减为零时,到达最远处,设此时速度为v′,则由动量守恒定律得:Mv0—mv0="Mv′"00Mv mv v M-'=方向向右 考点:动量守恒定律; 点评:本题主要考查了动量守恒定律得直接应用,难度适中.。
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析

会随气体进入肺脏,氡衰变时放出 射线,这种射线像小“炸弹”一样轰击肺细胞,使肺细
胞受损,从而引发肺癌、白血病等.若有一静止的氡核
222 86
Rn
发生
衰变,放出一个速度
为 v0 、质量为
m
的
粒子和一个质量为
M
的反冲核钋
218 84
Po
此过程动量守恒,若氡核发
生衰变时,释放的能量全部转化为 粒子和钋核的动能。
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析
一、高考物理精讲专题动量守恒定律
1.(16 分)如图,水平桌面固定着光滑斜槽,光滑斜槽的末端和一水平木板平滑连接,设物 块通过衔接处时速率没有改变。质量 m1=0.40kg 的物块 A 从斜槽上端距水平木板高度 h=0. 80m 处下滑,并与放在水平木板左端的质量 m2=0.20kg 的物块 B 相碰,相碰后物块 B 滑行 x=4.0m 到木板的 C 点停止运动,物块 A 滑到木板的 D 点停止运动。已知物块 B 与木板间 的动摩擦因数 =0.20,重力加速度 g=10m/s2,求:
(1) 物块 A 沿斜槽滑下与物块 B 碰撞前瞬间的速度大小;
(2) 滑动摩擦力对物块 B 做的功;
(3) 物块 A 与物块 B 碰撞过程中损失的机械能。
【答案】(1)v0=4.0m/s(2)W=-1.6J(3)E=0.80J
【解析】试题分析: ①设物块 A 滑到斜面底端与物块 B 碰撞前时的速度大小为 v0,根据机
(i)求斜面体的质量; (ii)通过计算判断,冰块与斜面体分离后能否追上小孩? 【答案】(i)20 kg (ii)不能 【解析】 试题分析:①设斜面质量为 M,冰块和斜面的系统,水平方向动量守恒:
高考物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析

(1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小.
(2)小车的长度.
【答案】(1) 4.5N s (2) 5.5m
【解析】
①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有:
确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.
4.如图,一质量为 M 的物块静止在桌面边缘,桌面离水平地面的高度为 h.一质量为 m 的 子弹以水平速度 v0 射入物块后,以水平速度 v0/2 射出.重力加速度为 g.求: (1)此过程中系统损失的机械能;
(2)此后物块落地点离桌面边缘的水平距离.
(2)P2 向右滑动时,假设 P1 保持不动,对 P2 有:f2=μ2mg=2m(向左) 设 P1、M 的加速度为 a2;对 P1、M 有:f=(m+M)a2
a2
f m M
2m 5m
0.4m/s2
此时对 P1 有:f1=ma2=0.4m<fm=1.0m,所以假设成立.
故滑块的加速度为 0.4m/s2;
(3)求出这一衰变过程中的质量亏损。 ( 计算结果用题中字母表示 )
【答案】(1)
222 86
Rn
218 84
Po
4 2
He ;(2) v
mv0 M
,负号表示方向与 α 离子速度方向
相反;(3)
m
M
m mv02
2Mc2
【解析】
【分析】
【详解】
(1)由质量数和核电荷数守恒定律可知,核反应方程式为
222 86
qB2 则 Q 在磁场中运动的最长时间: t T 127 • 2 m2 127 s
360 360 qB2 360 此时对应的 角:1 90 和 2 143
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22
2
2
联立①③④解得:R= v02 64g
点睛:该题考查动量守恒定律的应用,要求同学们能正确分析物体的运动情况,列出动量
守恒以及能量转化的方程;注意使用动量守恒定律解题时要规定正方向.
8.如图,两块相同平板 P1、P2 置于光滑水平面上,质量均为 m=0.1kg.P2 的右端固定一 轻质弹簧,物体 P 置于 P1 的最右端,质量为 M=0.2kg 且可看作质点.P1 与 P 以共同速度 v0=4m/s 向右运动,与静止的 P2 发生碰撞,碰撞时间极短,碰撞后 P1 与 P2 粘连在一起,P 压缩弹簧后被弹回(弹簧始终在弹性限度内).平板 P1 的长度 L=1m ,P 与 P1 之间的动摩擦 因数为 μ=0.2,P2 上表面光滑.求:
(1)P1、P2 刚碰完时的共同速度 v1; (2)此过程中弹簧的最大弹性势能 Ep. (3)通过计算判断最终 P 能否从 P1 上滑下,并求出 P 的最终速度 v2. 【答案】(1)v1=2m/s (2)EP=0.2J (3)v2=3m/s 【解析】
【分析】
【详解】
(1)P1、P2 碰撞过程,由动量守恒定律 mv0 2mv1
由动量守恒得:2mV2=mv1(1 分)
损失的动能为:ΔE′=
1 2
mv
2 1
-
1 2
×2mV
2 2
(2
分)
联立解得:ΔE′= 1 (1 3 ) × 22
mv
2 0
因为 ΔE′=f·x(1 分),
可解得射入第二钢板的深度 x 为:
(2 分)
子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以 系统为研究对象由能量守恒列式求解
高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)及解析
一、高考物理精讲专题动量守恒定律
1.如图所示,质量为 M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端 刚好与水平面相切于水平面上的 B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为 m=0.5kg 的小物块放在水平而上的 A 点,现给小物块一个向右的水平初速度 v0=4m/s,小物 块刚好能滑到圆弧面上最高点 C 点,已知圆弧所对的圆心角为 53°,A、B 两点间的距离为 L=1m,小物块与水平面间的动摩擦因数为 μ=0.2,重力加速度为 g=10m/s2.求: (1)圆弧所对圆的半径 R; (2)若 AB 间水平面光滑,将大滑块固定,小物块仍以 v0=4m/s 的初速度向右运动,则小物 块从 C 点抛出后,经多长时间落地?
1 4
mv0
(1 4
m
3 4 8 v0
7.如图所示,在光滑水平面上有一个长为 L 的木板 B,上表面粗糙,在其左端有一个光滑
的 1 圆弧槽 C 与长木板接触但不连接,圆弧槽的下端与木板的上表面相平,B、C 静止在水 4
平面上,现有滑块 A 以初速度 v0 从右端滑上 B 并以 v0 滑离 B,恰好能到达 C 的最高点.A、 2
出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球
向右抛出 n 次后,人和车速度刚好变为 0.已知人和车的总质量为 M,求小球的质量 m.
【答案】 m Mv0 2nv
【解析】
试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定
向右为正方向,由动量守恒定律:Mv0-mv=Mv1+mv
关数学知识辅助分析、求解。
5.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对 一下简化模型的计算可以粗略说明其原因.质量为 2m、厚度为 2d 的钢板静止在水平光滑 桌面上.质量为 m 的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成 厚度均为 d、质量均为 m 的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同 的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深 度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影
⑵根据机械能守恒定律可知,物块 A 与物块 B 碰撞前瞬间的速度为 v0,设碰后 A、B 瞬间 一起运动的速度为 v0′,根据动量守恒定律有:mv0=2mv0′
解得:v0′= =3m/s 设物块 A 与物块 B 整体在粗糙段上滑行的总路程为 s,根据动能定理有:-2μmgs=0-
解得:s= =4.5m
解:(1)设小物块在
B
点时的速度大小为
v1
,根据动能定理得:
mgL
1 2
mv02
1 2
mv12
设小物块在 B 点时的速度大小为 v2 ,物块从 B 点滑到圆弧面上最高点 C 点的过程,小物块
与大滑块组成的系统水平方向动量守恒,根据动量守恒则有: mv1 (m M )v2
根据系统机械能守恒有:
1 2
【答案】①0.7m/s, -0.2m/s ②0.27J 【解析】 试题分析:①根据已知,由动量守恒定律得 联立得 ②由能量守恒得
代入数据得 考点:考查了动量守恒,能量守恒定律的应用 【名师点睛】关键是对过程分析清楚,搞清楚过程中初始量与末时量,然后根据动量守恒 定律与能量守恒定律分析解题
3.人站在小车上和小车一起以速度 v0 沿光滑水平面向右运动.地面上的人将一小球以速 度 v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度 v 水平向右抛
8 5
2m / s
这时离体面的高度为: h R Rcos53 0.4m
h
vyt
1 2
gt
2
解得: t 4 2 82 s 25
2.如图,质量分别为 m1=1.0kg 和 m2=2.0kg 的弹性小球 a、b,用轻绳紧紧的把它们捆在一 起,使它们发生微小的形变.该系统以速度 v0=0.10m/s 沿光滑水平面向右做直线运动.某 时刻轻绳突然自动断开,断开后两球仍沿原直线运动.经过时间 t=5.0s 后,测得两球相距 s=4.5m,则刚分离时,a 球、b 球的速度大小分别为_____________、______________;两 球分开过程中释放的弹性势能为_____________.
(1)求 A 滑过 Q 点时的速度大小 v 和受到的弹力大小 F; (2)若碰后 AB 最终停止在第 k 个粗糙段上,求 k 的数值; (3)求碰后 AB 滑至第 n 个(n<k)光滑段上的速度 vn 与 n 的关系式.
【答案】(1) v 5m/s , F=22 N (2) k=45 (3) vn 9 0.2n m/s (n<k)
得:
v1
v0
2mv M
车上的人第二次将小球抛出,由动量守恒:
Mv1-mv=Mv2+mv
得:
v2
v0
2
2mv M
同理,车上的人第
n
次将小球抛出后,有 vn
v0
n
2mv M
由题意 vn=0,
得: m Mv0 2nv
考点:动量守恒定律
4.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道 相切,半径 R=0.5m,物块 A 以 v0=6m/s 的速度滑入圆轨道,滑过最高点 Q,再沿圆轨道 滑出后,与直轨道上 P 处静止的物块 B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右 侧轨道呈粗糙段、光滑段交替排列,每段长度都为 L=0.1m,物块与各粗糙段间的动摩擦 因数都为 μ=0.1,A、B 的质量均为 m=1kg(重力加速度 g 取 10m/s2;A、B 视为质点,碰 撞时间极短).
B、C 的质量均为 m,试求:
(1)滑块与木板 B 上表面间的动摩擦因数 μ;
(2) 1 圆弧槽 C 的半径 R 4
【答案】(1) = 5v02 ;(2) R= v02
16gL
64g
【解析】
由于水平面光滑,A 与 B、C 组成的系统动量守恒和能量守恒,有:
mv0=m( 1 v0)+2mv1 ① 2
μmgL= 1 mv02- 1 m( 1 v0) 2- 1 ×2mv12 ②
解得:vn=
=
m/s(其中 n=1、2、3、…、44)
【考点定位】动能定理(机械能守恒定律)、牛顿第二定律、匀变速直线运动速度-位移式 关系、向心力公式、动量守恒定律的应用,以及运用数学知识分析物理问题的能力。 【规律总结】牛顿定律、动能定理、功能关系、动量守恒定律等往往是求解综合大题的必 备知识,因此遇到此类问题,要能习惯性地从以上几个方面进行思考,并正确结合运用相
响.
【答案】
【解析】
设子弹初速度为 v0,射入厚度为 2d 的钢板后, 由动量守恒得:mv0=(2m+m)V(2 分)
此过程中动能损失为:ΔE
损=f·2d=
1 2
mv
2 0
-
1 2
×3mV2(2
分)
解得
ΔE=
1 3
mv
2 0
分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为 v1 和 V1:mv1+mV1=mv0
【答案】(1)
v1
1 4
v0
;
(2)
v
1 8
v0
【解析】
【分析】
【详解】
(1)设子弹射入 A 后,A 与子弹的共同速度为 v1,由动量守恒定律可得
1
13
4
mv0
( 4
m
4
m)v1
解得
v1
1 4
v0
(2)当 AB 速度相等时,弹簧的压缩量最大,设此时 A、B 的共同速度为 v,取向右为正方
向,对子弹、A、B 组成的系统,由动量守恒定律可得
【解析】 ⑴物块 A 从开始运动到运动至 Q 点的过程中,受重力和轨道的弹力作用,但弹力始终不做
功,只有重力做功,根据动能定理有:-2mgR= -