四年级行程问题
四年级数学行程问题经典练习

四年级数学行程问题经典练习经典练习一1.(1)甲、乙两人同时从两地对面走来,甲每分走70米,乙每分走80米,10分钟后两人相遇,两地相距多少米?(2)甲、乙两人同时从两地对面走来,甲每分走70米,乙每分走80米,如果两地相距1500米,他们两人要经过几分钟后才能相遇?2.(1)甲、乙两站相距980千米,两列火车由两站相对开出,经10小时可相遇。
已知快车每小时行50千米,慢车每小时行多少千米?(2)甲、乙两站相距980千米,两列火车由两站相对开出,经10小时可相遇。
已知快车比慢车每小时多行2千米,慢车每小时行多少千米?3.(1)一列火车于下午1时从甲城开出,每小时行40千米。
另一列火车同时从乙城开出,每小时行42千米,下午8时两车相遇。
甲乙两城相距多少千米?(2)甲乙两城相距574千米,一列火车于下午1时从甲开出,每小时行40千米。
另一列火车同时从乙城开出,每小时行42 千米。
问下午几时两车可相遇?4.(1)两架飞机同时从两城起飞,相对飞行,经过2小时相遇。
已知从甲城起飞的飞机每小时飞行650千米,从乙城起飞的飞机每小时飞行640千米,求甲乙两城的距离。
(2)一架飞机以每小时飞650千米的速度从甲城起飞,1小时后另一架飞机以每小时飞640千米的速度从乙城起飞,经过2小时相遇。
求甲乙两城的距离。
5.一列火车于上午8时从甲站开出,每小时行50千米,经过2小时,另一列火车以同样的速度从乙站开出,中午2时两车相遇。
甲、乙两站相距多少千米?6.有两列火车,一列长93米,每秒钟可行22米;另一列长107米,每秒钟可行18米。
现在两车在双轨道上相向而行,从车头相遇到车尾离开,需要几秒钟?7.一列车长102米,每秒钟行12米,现要通过一座长678米的桥,从车头上桥到车尾离桥需要几秒钟?8.甲、乙二人相距17000米,甲每分钟行80米,乙每分钟行70米,他们相向而行,甲先走25分钟后乙才出发,乙出发几分钟与甲相遇?9.甲乙二人相距1200米,甲每分钟行75米,乙每分钟行82米,他们同时相向而行,几分钟后二人还相距258米?10.甲、乙两车同时从A、B两地出发,相向而行,4小时相遇,相遇后甲车继续行驶3小时到达B地,乙车每小时行15千米,甲车每小时行多少千米?经典练习二1.甲乙两人同时从两地相向跑步而行,甲每小时行12千米,乙每小时行10千米,两人刚好在距中点3千米处相遇,问两地相距多少千米?2.解放军某部有500人,他们排成四路纵队,每相邻两排前后相距1米,队伍每分钟行84米。
奥数四年级行程问题

第三部分行程问题第一讲行程基础【专题知识点概述】行程问题是一类常见的重要应用题,在历次数学竞赛中经常出现。
行程问题包括:相遇问题、追及问题、火车过桥问题、流水行船问题、环形行程问题等等。
行程问题思维灵活性大,辐射面广,但根本在于距离、速度和时间三个基本量之间的关系,即:距离=速度⨯时间,时间=距离÷速度,速度=距离÷时间。
在这三个量中,已知两个量,即可求出第三个量。
掌握这三个数量关系式,是解决行程问题的关键。
在解答行程问题时,经常采取画图分析的方法,根据题意画出线段图,来帮助我们分析、理解题意,从而解决问题。
一、行程基本量我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.我们已经接触过一些简单的行程应用题,行程问题主要涉及时间(t)、速度(v)和路程(s)这三个基本量,它们之间的关系如下:(1)速度×时间=路程可简记为:s = vt(2)路程÷速度=时间可简记为:t = s÷v(3)路程÷时间=速度可简记为:v = s÷t显然,知道其中的两个量就可以求出第三个量.二、平均速度平均速度的基本关系式为:平均速度=总路程÷总时间;总时间=总路程÷平均速度;总路程=平均速度⨯总时间。
【重点难点解析】1.行程三要素之间的关系2.平均速度的概念3.注意观察运动过程中的不变量【竞赛考点挖掘】1.注意观察运动过程中的不变量【习题精讲】【例1】(难度等级※)邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?法一:先求出去的时间,再求出返回的时间,最后转化为时刻。
①邮递员到达对面山里需时间:12÷4+8÷5=4.6(小时);②邮递员返回到邮局共用时间:8÷4+12÷5+1+4.6 =2+2.4+1+4.6 = l0(小时)③邮递员回到邮局时的时刻是:7+10-12=5(时).邮递员是下午5时回到邮局的。
小学四年级奥数第29讲 行程问题(一)(含答案分析)

第29讲行程问题(一)一、专题简析:我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。
行程问题主要包括相遇问题、相背问题和追及问题。
这一周我们来学习一些常用的、基本的行程问题。
解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。
二、精讲精练:例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?练习一1、甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。
两地间的水路长多少千米?2、一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。
8小时后两车相距多少千米?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。
如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。
这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?练习二1、甲乙两队学生从相隔18千米的两地同时出发相向而行。
一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。
甲队每小时行5千米,乙队每小时行4千米。
两队相遇时,骑自行车的同学共行多少千米?2、A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。
一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去。
这样一直飞下去,燕子飞了多少千米,两车才能相遇?例3:甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?练习三1、甲车每小时行6千米,乙车每小时行5千米,两车于相隔10千米的两地同时相背而行,几小时后两人相隔65千米?2、甲每小时行9千米,乙每小时行7千米,甲从南庄向南行,同时乙从北庄向北行。
四年级奥数行程问题及答案【三篇】

【导语】海阔凭你跃,天⾼任你飞。
愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣第⼏篇。
学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。
以下是为⼤家整理的《四年级奥数⾏程问题及答案【三篇】》供您查阅。
【第⼀篇】甲、⼄两个港⼝之间的⽔路长300千⽶,⼀只船从甲港到⼄港,顺⽔5⼩时到达,从⼄港返回甲港,逆⽔6⼩时到达。
求船在静⽔中的速度和⽔流速度? 解答:由题意可知,船在顺⽔中的速度是300÷5=60千⽶/⼩时,在逆⽔中的速度是300÷6=50千⽶/⼩时,所以静⽔速度是(60+50)÷2=55千⽶/⼩时,⽔流速度是(60-50)÷2=5千⽶/⼩时。
【第⼆篇】某船在静⽔中的速度是每⼩时15千⽶,它从上游甲地开往下游⼄地共花去了8⼩时,⽔速每⼩时3千⽶,问从⼄地返回甲地需要多少时间? 【分析】顺⽔速度是15+3=18千⽶/⼩时,从甲地到⼄地的路程是18×8=144千⽶,从⼄地返回甲地时是逆⽔,逆⽔速度是15-3=12千⽶/⼩时,⾏驶时间为144÷12=12⼩时。
【第三篇】A、B两港相距360千⽶,甲轮船往返两港需35⼩时,逆流航⾏⽐顺流航⾏多花了5⼩时。
⼄轮船在静⽔中的速度是每⼩时12千⽶,⼄轮船往返两港要多少⼩时? 解答:⾸先要求出⽔流速度,由题意可知,甲轮船逆流航⾏需要(35+5)÷2=20⼩时,顺流航⾏需要 20-5=15⼩时,由此可以求出⽔流速度为每⼩时[360÷15-360÷20]÷2=3千⽶,从⽽进⼀步可以求出⼄船的顺流速度是每⼩时 12+3=15千⽶,逆⽔速度为每⼩时12-3=9千⽶,最后求出⼄轮船往返两港需要的时间是360÷15+360÷9=64⼩时。
四年级上册基础行程问题

四年级上册基础行程问题基础行程问题在数学中,行程问题是一个基本的概念。
下面是一些例子和练题,帮助你理解和掌握行程问题。
公式导入:例1:XXX从家到学校共用30分钟,他每分钟走50米,他家与学校之间相距多少米?由此题得出行程公式:路程=时间×速度,即路程=30/60×50=25米。
例2:甲、乙两地之间的行程为200千米,一辆大卡车从甲地出发,每小时行50千米,几小时可到达乙地?由此题得出行程公式:时间=路程÷速度,即时间=200÷50=4小时。
例3:一辆小轿车从A地出发,开往相距240千米的B地,共用4小时,小轿车的速度是多少?由此得出行程公式:速度=路程÷时间,即速度=240÷4=60千米/小时。
一、填空题1、路程、速度、时间三者之间的乘法数量关系是:路程=速度×时间。
三者之间的乘法数量关系是:路程=速度×时间。
2、一辆汽车5小时行了375千米,这是一道求速度的题目。
计算方法是:速度=路程÷时间,即速度=375÷5=75千米/小时。
3、一辆汽车每小时行48千米,它的速度可记作:48千米/小时。
二、解决问题。
1、一辆汽车从甲地到乙地,每小时行驶30千米,6小时到达。
如果想5小时到达,每小时需要行驶多少千米?答案是:速度=路程÷时间,路程=速度×时间,所以路程=30×6=180千米。
如果想在5小时到达,那么每小时需要行驶36千米,因为路程=速度×时间,路程=36×5=180千米。
练:骑自行车每小时行驶14千米,骑自行车行驶9个小时的路程汽车只要3个小时。
汽车每小时行驶多少千米?答案是:设汽车的速度为x千米/小时,那么自行车行驶的路程为14×9=126千米,汽车行驶的路程为x×3=126千米,解方程得到x=42千米/小时。
练:XXX上山采药,上山时他每分钟走50米,18分钟到达山顶,下山时他沿原路返回,12分钟到达山下,XXX下山平均每分钟走多少米?答案是:小王上山的路程为18×50=900米,下山的路程也为900米,所以总路程为1800米。
四年级奥数讲解:行程问题

⾏程问题(⼀) 专题简析: 我们把研究路程、速度、时间这三者之间关系的问题称为⾏程问题。
⾏程问题主要包括相遇问题、相背问题和追及问题。
这⼀周我们来学习⼀些常⽤的、基本的⾏程问题。
解答⾏程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。
例1:甲⼄两⼈分别从相距20千⽶的两地同时出发相向⽽⾏,甲每⼩时⾛6千⽶,⼄每⼩时⾛4千⽶。
两⼈⼏⼩时后相遇? 分析与解答:这是⼀道相遇问题。
所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。
根据题意,出发时甲⼄两⼈相距20千⽶,以后两⼈的距离每⼩时缩短6+4=10千⽶,这也是两⼈的速度和。
所以,求两⼈⼏⼩时相遇,就是求20千⽶⾥⾯有⼏个10千⽶。
因此,两⼈20÷(6+4)=2 ⼩时后相遇。
练习⼀ 1,甲⼄两艘轮船分别从A、B两港同时出发相向⽽⾏,甲船每⼩时⾏驶18千⽶,⼄船每⼩时⾏驶15千⽶,经过6⼩时两船在途中相遇。
两地间的⽔路长多少千⽶? 2,⼀辆汽车和⼀辆摩托车同时分别从相距900千⽶的甲、⼄两地出发,汽车每⼩时⾏40千⽶,摩托车每⼩时⾏50千⽶。
8⼩时后两车相距多少千⽶? 3,甲⼄两车分别从相距480千⽶的A、B两城同时出发,相向⽽⾏,已知甲车从A城到B城需6⼩时,⼄车从B城到A城需12⼩时。
两车出发后多少⼩时相遇? 例2:王欣和陆亮两⼈同时从相距2000⽶的两地相向⽽⾏,王欣每分钟⾏110⽶,陆亮每分钟⾏90⽶。
如果⼀只狗与王欣同时同向⽽⾏,每分钟⾏500 ⽶,遇到陆亮后,⽴即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。
这样不断来回,直到王欣和陆亮相遇为⽌,狗共⾏了多少⽶? 分析与解答:要求狗共⾏了多少⽶,⼀般要知道狗的速度和狗所⾏的时间。
根据题意可知,狗的速度是每分钟⾏500⽶,关键是要求出狗所⾏的时间,根据题意可知:狗与主⼈是同时⾏⾛的,狗不断来回所⾏的时间就是王欣和陆亮同时出发到两⼈相遇的时间,即2000÷(110+90)=10分钟。
小学四年级数学行程问题(相遇、追及、相离)易错题

小学四年级数学行程问题(相遇、追及、相离)易错题1、在行车、行船、行走时,按照速度、时间和距离之间的相依关系,已知其中的两个量,要求第三个量,这类应用题,叫做行程应用题。
也叫行程问题。
2、行程应用题的解题关键是掌握速度、时间、距离之间的数量关系:距离=速度×时间速度=距离÷时间时间=距离÷速度3、按运动方向,行程问题可以分成三类:(1)相向运动问题(相遇问题)(2)同向运动问题(追及问题)(3)背向运动问题(相离问题)1、相向运动问题(1)相向运动问题(相遇问题),是指地点不同、方向相对所形成的一种行程问题。
两个运动物体由于相向运动而相遇。
(2)解答相遇问题的关键,是求出两个运动物体的速度之和。
基本公式有:两地距离=速度和×相遇时间相遇时间=两地距离÷速度和速度和=两地距离÷相遇时间例1、两列火车同时从相距540千米的甲乙两地相向而行,经过3.6小时相遇。
已知客车每小时行80千米,货车每小时行多少千米?例2、两城市相距138千米,甲乙两人骑自行车分别从两城出发,相向而行。
甲每小时行13千米,乙每小时行12千米,乙在行进中因修车候车耽误1小时,然后继续行进,与甲相遇。
求从出发到相遇经过几小时?2、同向运动问题(追及问题)(1)两个运动物体同向而行,一快一慢,慢在前快在后,经过一定时间快的追上慢的,称为追及。
解答追及问题的关键,是求出两个运动物体的速度之差。
(2)基本公式有:追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间例1、甲乙两人在相距12千米的AB两地同时出发,同向而行。
甲步行每小时行4千米,乙骑车在后面,每小时速度是甲的3倍。
几小时后乙能追上甲?例2、一个通讯员骑摩托车追赶前面部队乘的汽车。
汽车每小时行48千米,摩托车每小时行60千米。
通讯员出发后2小时追上汽车。
通讯员出发的时候和部队乘的汽车相距多少千米?注意:要求距离差,需要知道速度差和追及时间。
四年级下册数学教案-5.1 解决问题的策略——行程问题丨苏教版

四年级下册数学教案-5.1 解决问题的策略——行程问题一、教学目标1. 让学生理解速度、时间、路程之间的关系,能够运用速度×时间=路程,路程÷时间=速度,路程÷速度=时间进行问题的解决。
2. 培养学生运用所学的知识解决实际问题的能力,提高学生解决问题的策略意识。
3. 培养学生合作交流的能力,提高学生的数学素养。
二、教学重点理解和掌握速度、时间、路程三者之间的关系,能够运用行程问题的数量关系解决实际问题。
三、教学难点行程问题的数量关系的灵活运用。
四、教学过程1. 导入通过生活中的实例,引出行程问题,激发学生的学习兴趣。
2. 新课导入(1)让学生举例说明生活中遇到的行程问题。
(2)引导学生观察、发现速度、时间、路程三者之间的关系。
(3)教师讲解速度、时间、路程的概念,并板书相应的公式。
3. 案例分析(1)教师呈现行程问题的实例,引导学生运用所学的知识进行分析。
(2)学生分小组讨论,尝试解决问题。
(3)小组代表汇报解决问题的过程和结果。
(4)教师点评,总结解决问题的方法。
4. 实践操作(1)学生独立完成行程问题的练习题。
(2)教师巡回指导,解答学生的疑问。
(3)学生分享解决问题的过程和心得。
5. 总结提升(1)教师引导学生总结行程问题的解决策略。
(2)学生总结自己在解决问题过程中的收获。
(3)教师强调行程问题在实际生活中的应用,提高学生的应用意识。
6. 作业布置(1)完成课后练习题。
(2)观察生活中遇到的行程问题,尝试运用所学的知识解决。
五、教学反思通过本节课的教学,学生能够理解和掌握速度、时间、路程三者之间的关系,并能运用行程问题的数量关系解决实际问题。
在教学过程中,要注意引导学生观察、发现、总结行程问题的解决策略,提高学生解决问题的能力。
同时,要加强与实际生活的联系,让学生在实际生活中感受数学的价值,提高学生的数学素养。
六、板书设计略注:本教案为苏教版四年级下册数学第5章第1节“解决问题的策略——行程问题”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四年级举一反三行程问题
1.小王、小李从相距50千米的两地相向而行,小王下午2时出发步行,每小时行4.5千米。
小李下午3时半骑自行车出发,经过2.5小时两人相遇。
小李骑自行车每小时行多少千米?
2.一辆公共汽车和一辆面包车同时从相距255千米的两地相向而行,公共汽车每小时行33
千米,面包车每小时行35千米。
行了几小时后两车相距51千米?再行几小时两车又相距51千米?
3.甲、乙两人同时从A、B两地相对而行,甲骑车每小时行16千米,乙骑摩托车每小时行65千米。
甲离出发点62.4千米处与乙相遇。
A、B两地相距多少千米?
4.小张的小王同时分别从甲、乙两村出发,相向而行。
步行1小时15分后,小张走了两村间路程的一半还多0.75千米,此时恰好与小王相遇。
小王的速度是每小时3.7千米,小张每小时行多少千米?
5.东、西两镇相距240千米,一辆客车上午8时从东镇开往西镇,一辆货车上午9时从西镇开往东镇,到中午12时,两车恰好在两镇间的中点相遇。
如果两车都从上午8时由两地相向开出,速度不变,到上午10时,两车还相距多少千米?
6、A、B两地相距259千米,甲车从A地开往B地,每小时行38千米;半小时后,乙车从B 地开往A地,每小时行42千米。
乙车开出几小时后和甲车相遇?
7.甲,乙两站相距336千米,一列慢车从甲站开出,每小时行72千米,一列快车从乙站开出,每小时行96千米。
问:①若两车同时相向而行,几小时相遇?
②若两车同时反向而行,几小时后相距672千米?
8.甲、乙两个车队分别从相距330千米两地同时出发相向而行,甲队每小时行60千米,乙队每小时行50千米,一个人骑摩托车以每小时80千米的速度在两车队之间往返联络,问两车队相遇时。
摩托车行了多少千米?
9.甲、乙两车同时从A、B两地相对开出,6小时后相遇,甲车从A地到B地需要9小时,乙车从B地到A地需要几小时?
10.甲、乙两人骑车同时从东、西两地相向而行,8小时后相遇,如果甲每小时少行1千米,乙每小时多行3千米,这样经过7小时就可以相遇。
东西两地相距多少千米?
11.小明和小红分别从甲、乙两地同时出发,相向而行。
4小时后相遇,如果两人都比原定速度每小时多行1千米,则3小时相遇,甲、乙两地相距多少千米?。