扬州大学概率统计期末考试真题1
大学《概率统计》试题及答案

《概率论与数理统计》考试题及答案一、填空题(每小题3分,共30分)1、“事件,,A B C 中至少有一个不发生”这一事件可以表示为 .2、设()0.7,()0.3P A P AB ==,则()P A B =________________.3、袋中有6个白球,5个红球,从中任取3个,恰好抽到2个红球的概率 .4、设随机变量X 的分布律为(),(1,2,,8),8aP X k k ===则a =_________.5、设随机变量X 在(2,8)内服从均匀分布,则(24)P X -≤<= .6、设随机变量X 的分布律为,则2Y X =的分布律是 .21011811515515kXp -- 7、设随机变量X 服从参数为λ的泊松分布,且已知,X X E 1)]2)(1[(=-- 则=λ .8、设129,,,X X X 是来自正态总体(2,9)N -的样本,X 是样本均植,则X服从的分布是.二、(本题12分)甲乙两家企业生产同一种产品.甲企业生产的60件产品中有12件是次品,乙企业生产的50件产品中有10件次品.两家企业生产的产品混合在一起存放,现从中任取1件进行检验.求: (1)求取出的产品为次品的概率;(2)若取出的一件产品为次品,问这件产品是乙企业生产的概率. 三、(本题12分)设随机变量X 的概率密度为,03()2,3420,kx x x f x x ≤<⎧⎪⎪=-≤≤⎨⎪⎪⎩其它 (1)确定常数k ; (2)求X 的分布函数()F x ; (3)求712P X ⎧⎫<≤⎨⎬⎩⎭.四、(本题12分)设二维随机向量(,)X Y 的联合分布律为\01210.10.20.120.10.2Y Xa 试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独立?为什么?五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他 求()(),E X D X一、填空题(每小题3分,共30分) 1、ABC 或AB C 2、0.6 3、2156311C C C 或411或0.3636 4、1 5、13 6、2014131555kX p 7、1 8、(2,1)N - 二、解 设12,A A 分别表示取出的产品为甲企业和乙企业生产,B 表示取出的零件为次品,则由已知有 1212606505121101(),(),(|),(|)1101111011605505P A P A P B A P B A ======== .......... 2分 (1)由全概率公式得112261511()()(|)()(|)1151155P B P A P B A P A P B A =+=⨯+⨯= .............................. 7分 (2)由贝叶斯公式得22251()()5115()1()115P A P B A P A B P B ⨯=== .......................................................... 12分三、(本题12分)解 (1)由概率密度的性质知340391()21224x f x dx kxdx dx k +∞-∞⎛⎫=+-=+= ⎪⎝⎭⎰⎰⎰ 故16k =. ............................................................................................................ 3分 (2)当0x ≤时,()()0xF x f t dt -∞==⎰; 当03x <<时, 2011()()612xxF x f t dt tdt x -∞===⎰⎰; 当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞⎛⎫==+-=-+- ⎪⎝⎭⎰⎰⎰; 当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞⎛⎫==+-= ⎪⎝⎭⎰⎰⎰; 故X 的分布函数为220,01,0312()123,3441,4x x x F x x x x x ≤⎧⎪⎪<<⎪=⎨⎪-+-≤<⎪⎪≥⎩................................................................. 9分(3) 77151411(1)22161248P X F F ⎧⎫⎛⎫<≤=-=-=⎨⎬ ⎪⎩⎭⎝⎭.................................................. 12分 四、解 (1)由分布律的性质知 01.0.20.10.10.21a +++++=故0.3a = ............................................................................................................... 4分 (2)(,)X Y 分别关于X 和Y 的边缘分布律为0120.40.30.3Xp ....................................................................................... 6分120.40.6Y p ............................................................................................... 8分(3)由于{}0,10.1P X Y ===,{}{}010.40.40.16P X P Y ===⨯=,故 {}{}{}0,101P X Y P X P Y ==≠==所以X 与Y 不相互独立. ..................................................................................... 12分 五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他求()(),E X D X .解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞⎡⎤⎡⎤==+-=+-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰ ...................... 6分122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰ ................................................ 9分 221()()[()].6D XE X E X =-= ............................................................................. 12分一、 ..........................................................填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。
2021年大学公共课概率论与数理统计期末考试卷及答案(新版)

2021年大学公共课概率论与数理统计期末考试卷及答案(新版)一、单选题1、若X ~211(,)μσ,Y ~222(,)μσ那么),(Y X 的联合分布为A ) 二维正态,且0=ρB )二维正态,且ρ不定C ) 未必是二维正态D )以上都不对【答案】C2、设随机变量X 和Y 的方差存在且不等于0,则()()()D X Y D X D Y +=+是X 和Y 的 A )不相关的充分条件,但不是必要条件;B )独立的必要条件,但不是充分条件;C )不相关的充分必要条件;D )独立的充分必要条件【答案】C3、设X ~(1,)p β 12,,,,,n X X X ⋅⋅⋅是来自X 的样本,那么下列选项中不正确的是A )当n 充分大时,近似有X ~(1),p p N p n -⎛⎫ ⎪⎝⎭B ){}(1),k k n k n P X kC p p -==-0,1,2,,k n =⋅⋅⋅C ){}(1),k k n k n k P X C p p n-==-0,1,2,,k n =⋅⋅⋅D ){}(1),1k k n k i n P X k C p p i n -==-≤≤ 【答案】B4、对于任意两个随机变量X 和Y ,若()()()E XY E X E Y =⋅,则A )()()()D XY D X D Y =⋅B )()()()D X Y D X D Y +=+C )X 和Y 独立D )X 和Y 不独立【答案】B5、设为来自正态总体的一个样本,若进行假设检验,当___ __时,一般采用统计量n X X X ,,,21 2(,)N μσX U =(A)(B) (C) (D) 【答案】D6、若X ~()t n 那么2χ~(A )(1,)F n (B )(,1)F n (C )2()n χ (D )()t n【答案】A7、总体X ~2(,)N μσ,2σ已知,n ≥ 时,才能使总体均值μ的置信水平为0.95的置信区间长不大于L(A )152σ/2L (B )15.36642σ/2L (C )162σ/2L (D )16【答案】B8、设随机变量X 和Y 的方差存在且不等于0,则()()()D X Y D X D Y +=+是X 和Y 的 A )不相关的充分条件,但不是必要条件;B )独立的必要条件,但不是充分条件;C )不相关的充分必要条件;D )独立的充分必要条件【答案】C9、设随机变量X 和Y 的方差存在且不等于0,则()()()D X Y D X D Y +=+是X 和Y 的A )不相关的充分条件,但不是必要条件;B )独立的必要条件,但不是充分条件;C )不相关的充分必要条件;D )独立的充分必要条件【答案】C10、已知n X X X ,,,21 是来自总体的样本,则下列是统计量的是( ) X X A +)( +A ∑=-n i i X n B 1211)( a X C +)( +10 131)(X a X D ++5 【答案】B二、填空题220μσσ未知,检验=220μσσ已知,检验=20σμμ未知,检验=20σμμ已知,检验=1、设总体服从正态分布,且未知,设为来自该总体的一个样本,记,则的置信水平为的置信区间公式是 ;若已知,则要使上面这个置信区间长度小于等于0.2,则样本容量n 至少要取__ __。
概率论与数理统计期末考试试卷答案

《概率论与数理统计》试卷A(考试时间:90分钟; 考试形式:闭卷)(注意:请将答案填写在答题专用纸上,并注明题号。
答案填写在试卷和草稿纸上无效)一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则AB =()A 、AB B 、A BC 、A BD 、A B2、设A ,B ,C 表示三个事件,则A B C 表示()A 、A ,B ,C 中有一个发生 B 、A ,B ,C 中恰有两个发生C 、A ,B ,C 中不多于一个发生D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P AB =,()0.2P A =,()0.4P B =,则()成立A 、()0.32P AB = B 、()0.2P A B =C 、()0.4P B A -=D 、()0.48P B A = 4、设A ,B 为任二事件,则()A 、()()()P AB P A P B -=- B 、()()()P AB P A P B =+C 、()()()P AB P A P B =D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是()A 、A 与B 独立 B 、A 与B 独立C 、()()()P AB P A P B =D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为其分布函数为()F x ,则(3)F =()A 、0B 、0.3C 、0.8D 、17、设离散型随机变量X 的密度函数为4,[0,1]()0,cx x f x ⎧∈=⎨⎩其它 ,则常数c =()A 、15 B 、14C 、4D 、58、设X ~)1,0(N,密度函数22()x x ϕ-=,则()x ϕ的最大值是()A 、0B 、1 C、9、设随机变量X 可取无穷多个值0,1,2,…,其概率分布为33(;3),0,1,2,!k p k e k k -==,则下式成立的是()A 、3EX DX ==B 、13EX DX == C 、13,3EX DX == D 、1,93EX DX ==10、设X 服从二项分布B(n,p),则有()A 、(21)2E X np -=B 、(21)4(1)1D X np p +=-+C 、(21)41E X np +=+D 、(21)4(1)D X np p -=-11、独立随机变量,X Y ,若X ~N(1,4),Y ~N(3,16),下式中不成立的是()A 、()4E X Y +=B 、()3E XY =C 、()12D X Y -= D 、()216E Y += 12、设随机变量X 的分布列为:则常数c=()A 、0B 、1C 、14 D 、14- 13、设X ~)1,0(N ,又常数c 满足{}{}P X c P X c ≥=<,则c 等于()A 、1B 、0C 、12D 、-1 14、已知1,3EX DX =-=,则()232E X ⎡⎤-⎣⎦=()A 、9B 、6C 、30D 、36 15、当X 服从( )分布时,EX DX =。
概率论期末试卷A及答案

学院 系 班级 学号 姓名---------------------------------------装---------------------------------------订-------------------------------------------线-----------------------------------------------扬州大学试题纸( 2009-2010学年第 一 学期 )物 理 学院 微电、电科、光科09级 课程 概率论与数理统计(A )卷题目 一 二 三 总分 得分一、填空题(共22分,2分/空)1. 设随机事件A ,B 互不相容,且3.0)(=A P ,6.0)(=B P ,则=)(A B P .2.已知连续型随机变量的分布函数为30,1()(1),111,x F x a x x x <-⎧⎪=+-≤<⎨⎪≥1⎩,则常数a = ,概率密度函数()f x = .3. 设随机变量X 在(0,4)上服从均匀分布,则=)(X E ,()D X = .4.设随机变量X 的概率密度函数为/1e ,0(),0,x x f x θθ-⎧>⎪=⎨⎪⎩其它 则()E X = ,()D X = .5.设随机变量,X Y 相互独立,且~(10,0.5)X b ,~(1,4)Y N ,记2Z X Y =-,则()E Z = ,()D Z = .6.设()E X μ=,2()(0)D X σ=>,则利用切比雪夫不等式估计()≤≥-σμ5||X P .7.设总体()~0,1X N ,()1021,,,X X X 是从X 中抽取的一个样本,则()1021,,,X X X 的联合概率密度函数()1210,,f x x x = .概率论与数理统计A 卷 第1页 共6页二、单项选择题 (共24分,3分/题)1. 设C B A ,,是3个随机事件,则C B A 表示 .A . CB A ,,都发生 B .C B A ,,都不发生 C . C B A ,,至少有一个发生D . C B A ,,不多于一个发生 2. 三人独立地猜一谜语,已知各人能猜出的概率分别为1/5, 1/3, 1/4. 则三人中至少有一人能猜出此谜语的概率是 .A . 3/5B . 2/5C . 1/60D . 59/603. 设Y X ,是相互独立的两个随机变量,它们的分布函数分别为),)(y F x F YX (、则),max(Y X Z =的分布函数为 .A . {}()max (),()Z X Y F z F z F z =B . {}()max (),()Z X Y F z F z F z =C . ()()()Z X Y F z F z F z =D . ()()()Z X Y F z F z F z =4.设随机变量()2,1~-N X ,()2,1~N Y ,令2U X Y =+,2V X Y =-,则Cov(,)U V = ..A 0 .B 2 .C 3 D .65.设总体X ~N (2,σμ),X 1,X 2,…,X 10为来自该总体的样本,X 为样本均值,则X ~ .A . 2(10)N μσ,B .2()N μσ, C. 2()10N σμ, D .2()10N σμ,6. 设总体X ~N (0, 1),X 1,X 2,…,X n 为来自该总体的样本,则统计量12ni i X =∑~ . .A ()2n χ .B ()21n χ- .C ()t n .D ()1t n -概率论与数理统计A 卷 第2页 共6页7. 设总体X 与Y 相互独立,且都服从正态分布()10,N .()91X X ,, 是从总体X 中抽取的一个样本,()91Y Y ,, 是从总体Y 中抽取的一个样本,则统计量192219X X U Y Y++=+~ ..A ()92χ .B ()82χ .C ()9t .D ()8t8. 设总体()20~σ,N X ,()n X X X ,,, 21是从该总体中抽取的一个简单随机样本,则下列表达式可以作为2σ的无偏估计量的是_________..A ∑=-=n i i X n 12211ˆσ .B 2211ˆn i i X n σ==∑ .C 2211ˆ1n i i X n σ==+∑ .D ()∑=+=ni iXn n 12221ˆσ三.计算题(共54分,9分/题)1.将两信息分别编码为A 和B 发送出去,接收站收到时,A 被误收作B 的概率为04.0;而B 被误收作A 的概率为07.0,信息A 与信息B 传送频繁程度为2:3.若已知接收到的信息是A ,求原发信息也是A 的概率.概率论与数理统计A 卷 第3页 共6页---------------------------------------装---------------------------------------订-------------------------------------------线-----------------------------------------------2. 盒子中有5个球,编号分别为5,1.从中随机取出3个球,引入,2,3,4随机变量X,表示取出的3个球中的最大号码.(1) 求随机变量X的分布律;(2) 求随机变量X的分布函数.3.设随机变量()1~NX,21,0=+,试求随机变量Y的概率密度函数.Y X概率论与数理统计A卷第4页共6页4.设(,)X Y 的联合概率密度函数为()2221140x y x y f x y ⎧≤≤⎪=⎨⎪⎩,其它,(1)求{}P Y X ≤;(2)求(,)X Y 的边缘概率密度函数(),()X Y f x f y ; (3)判断随机变量X 与Y 是否相互独立.5.某运输公司有500辆汽车参加保险,在一年内每辆汽车出事故的概率为0.006,每辆参加保险的汽车每年交保险费800元,若一辆车出事故保险公司最多赔偿50000元.试利用中心极限定理计算,保险公司一年赚钱不小于200000元的概率.附:标准正态分布分布函数()x Φ表:x0.56 0.57 0.58 0.59 ()x Φ0.71230.71570.71900.7224概率论与数理统计A 卷 第5页 共6页---------------------------------------装---------------------------------------订-------------------------------------------线-----------------------------------------------6.设总体X 的概率密度函数为()()⎪⎩⎪⎨⎧<<-=其它0063θθθx x xx f ,其中0>θ是未知参数,()n X X ,, 1是从该总体中抽取的一个样本.(1) 求未知参数θ的矩估计量θˆ; (2) 求()θˆD .概率论与数理统计A 卷 第6页 共6页09级概率论与数理统计(A)卷 参考答案及评分标准一、填空题(共22分,2分/空).1. 4/7 2. 1/2, 23,11(),20,x x f x ⎧-≤<⎪=⎨⎪⎩其它3. 2, 4/34.,θ 2θ 5. 3, 18.5 6. 0.04 7.()10212512ii x eπ=-∑二、单项选择题(共24分,3分/题).1.C 2.A 3.C 4.D 5.C 6.A 7.C 8.B 三、计算题(共54分,9分/题).1. 解: 设{}A A 原发信息是=,{}B B 原发信息是=. {}A A 接收信息是=',{}B B 接收信息是='. 则由题设,()53=A P ,()52=B P ,()04.0='A B P ,()07.0='B A P . (3分) (1) 根据全概率公式,()()()()()320.960.070.60455P A P A P A A P B P A B '''=+=⨯+⨯= (3分)根据Bayes 公式,得()()()()()()()9536.007.05296.05396.053=⨯+⨯⨯='+''='B A P B P A A P A P A A P A P A B P (3分) 2.解: ⑴ X 的可能取值为5,4,3.且{}1011335===C X P ,{}10343523===C C X P ,{}10653524===C C X P所以,随机变量X 的分布律为:X 3 4 5P101 103 106 ( 6分)⑵随机变量X 的分布函数为:()⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<=51541044310130x x x x x F .( 3分) 3解: 随机变量X 的概率密度函数为()2221x ex f -=π()+∞<<∞-x (2分)设随机变量Y 的分布函数为()y F Y ,则有 (){}{}{}1122-≤=≤+=≤=y XP y X P y Y P y F Y (2分)①. 如果01≤-y ,即1≤y ,则有()0=y F Y ;(1分)②. 如果1>y ,则有(){}{}1112-≤≤--=-≤=y X y P y X P y F Y⎰⎰------==12112222221y x y y x dx edx eππ即()⎪⎩⎪⎨⎧≤>=⎰--122122y y dxey F y x Y π(2分)()()1221122100y Y Y e y f y F y y y π--⎧⋅>⎪'∴==-⎨⎪≤⎩即 ()⎪⎩⎪⎨⎧≤>-=--00112121y y e y y f y Y π(2分)4. 解:(1)()(,)xP Y X dx f x y dy ∞-∞-∞≤=⎰⎰=2112460021213()4820xx dx x ydy x x dx =-=⎰⎰⎰(3分) ⑵ 当11≤≤-x 时,()()()421218214212x x ydy x dy y x f x f x X -===⎰⎰+∞∞-, 所以,随机变量X 的边缘密度函数为()()⎪⎩⎪⎨⎧≤≤--=其它011182142x x x x f X ;(2分)当10≤≤y 时,()()250322727421y yx ydx x dx y x f x f yyyY ====⎰⎰-+∞∞-, 所以,随机变量X 的边缘密度函数为()⎪⎩⎪⎨⎧≤≤==其它102725y yy f Y (2分) ⑶()()(),X Y f x y f x f y ≠,∴X 与Y 不独立.(2分)5. 解: 设{}某辆汽车出事故=A ,则()006.0=A P .(1分)设X :运输公司一年内出事故的车数.则()~5000.006X b , .(3分)保险公司一年内共收保费400000500800=⨯,若按每辆汽车保险公司赔偿50000元计算,则保险公司一年赚钱不小于200000元,则在这一年中出事故的车辆数不能超过4辆.因此所求概率为()⎪⎪⎭⎫⎝⎛⨯⨯⨯-≤⨯⨯⨯-=≤994.0006.0500006.05004994.0006.0500006.05004X P X P⎪⎭⎫⎝⎛≤⨯⨯⨯-=58.0994.0006.0500006.0500X P ()7190.058.0=Φ≈(5分)6. 解: ⑴. ()()()26032θθθθ=-==⎰⎰+∞∞-dx x x dx x xf X E ,(3分)所以,()X E 2=θ ,将()X E 用样本均值∑==ni i X n X 11来替换,得未知参数θ的矩估计为X 2ˆ=θ(2分) ⑵. ()()()()X D nX D X D D 442ˆ===θ,(1分) 而 ()()()[]22X E X E X D -=()()20462223322θθθθθθ=--=⎪⎭⎫⎝⎛-=⎰⎰+∞∞-dx x x dx x f x (2分)所以,()()nn X D n D 52044ˆ22θθθ=⨯== . (1分)第9页---------------------------------------装---------------------------------------订-------------------------------------------线-----------------------------------------------第10页。
概率统计期末考试试题及答案

概率统计期末考试试题及答案试题一:随机变量的概率分布某工厂生产的产品合格率为0.9,不合格率为0.1。
假设每天生产的产品数量为100件,求下列事件的概率:1. 至少有80件产品是合格的。
2. 至多有5件产品是不合格的。
试题二:连续型随机变量的概率密度函数设随机变量X的概率密度函数为f(x) = 2x,0 ≤ x ≤ 1,0 其他,求:1. X的期望E(X)。
2. X的方差Var(X)。
试题三:大数定律与中心极限定理假设某银行每天的交易量服从均值为100万元,标准差为20万元的正态分布。
求:1. 该银行连续5天的总交易量超过500万元的概率。
2. 根据中心极限定理,该银行连续20天的总交易量的平均值落在90万元至110万元之间的概率。
试题四:统计推断某工厂生产的零件长度服从正态分布,样本数据如下:95, 96, 97, 98, 99, 100, 101, 102, 103, 104求:1. 零件长度的平均值和标准差。
2. 零件长度的95%置信区间。
试题五:假设检验某公司对两种不同品牌的打印机进行了效率测试,测试结果如下:品牌A:平均打印速度为每分钟60页,标准差为5页。
品牌B:平均打印速度为每分钟55页,标准差为4页。
样本量均为30台打印机。
假设两种打印机的平均打印速度没有显著差异,检验假设是否成立。
答案一:1. 至少有80件产品是合格的,即不合格的产品数少于或等于20件。
根据二项分布,P(X ≤ 20) = Σ[C(100, k) * (0.1)^k *(0.9)^(100-k)],k=0至20。
2. 至多有5件产品是不合格的,即不合格的产品数不超过5件。
根据二项分布,P(X ≤ 5) = Σ[C(100, k) * (0.1)^k * (0.9)^(100-k)],k=0至5。
答案二:1. E(X) = ∫[2x * x dx],从0到1,计算得 E(X) = 2/3。
2. Var(X) = E(X^2) - [E(X)]^2 = ∫[2x^2 * x dx] - (2/3)^2,从0到1,计算得 Var(X) = 1/18。
大学《概率论与数理统计》期末考试试卷含答案

大学《概率论与数理统计》期末考试试卷含答案一、填空题(每空 3 分,共 30分)在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加 样本容量 .设随机变量具有数学期望与方差,则有切比雪夫不等式 .设为连续型随机变量,为实常数,则概率= 0 . 设的分布律为,,若绝对收敛(为正整数),则=.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为. 设服从参数为的分布,则=. 设,则数学期望= 7 .为二维随机变量, 概率密度为, 与的协方差的积分表达式为 .设为总体中抽取的样本的均值,则= . (计算结果用标准正态分布的分布函数表X ()E X μ=2()D X σ={}2P X μσ-≥≤14X a {}P X a =X ,{}1,2,k k P X x p k ===2Y X =1n k k k x p ∞=∑n()E Y 21k k k x p ∞=∑17X λpoisson (2)E X 2λ(2,3)YN 2()E Y (,)X Y (,)f x y X Y (,)Cov X Y (())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰X N (3,4)14,,X X {}15P X ≤≤2(2)1Φ-()x Φ示)10. 随机变量,为总体的一个样本,,则常数=.A 卷第1页共4页 概率论试题(45分) 1、(8分)题略解:用,分别表示三人译出该份密码,所求概率为 (2分)由概率公式 (4分)(2分) 2、(8分) 设随机变量,求数学期望与方差.解:(1) = (3分) (2) (3分) (2分)(8分) 某种电器元件的寿命服从均值为的指数分布,现随机地取16只,它们的寿命相互独立,记,用中心极限定理计算的近似值(计算结果用标准正态分布的分布函数表示).2(0,)XN σn X X X ,,,21 X221()(1)ni i Y k X χ==∑k 21n σA B C 、、P A B C ()P A B C P ABC P A P B P C ()=1-()=1-()()()1-1-1-p q r =1-()()()()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====()E X Y +(23)D X Y -()E X Y +E X E Y ()+()=1+3=4(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-8361244XYρ=+-=-100h i T 161ii T T ==∑{1920}P T ≥()x Φ解: (3分) (5分)(4分)(10分)设随机变量具有概率密度,.(1)求的概率密度; (2) 求概率.解: (1) (1分)A 卷第2页共4页(2分)(2分)概率密度函数 (2分)(2) . (3分) (11分) 设随机变量具有概率分布如下,且.i i ET D T E T D T 2()=100,()=100,()=1600,()=160000{1920}0.8}1P T P ≥=≥≈-Φ(0.8)X 11()0x x f x ⎧-≤≤=⎨⎩,,其它21Y X =+Y ()Y f y 312P Y ⎧⎫-<<⎨⎬⎩⎭12Y Y y F y y F y≤>时()=0,时()=1212,{}{1}()d Y y F yP Y y P X y f x x <≤≤=+≤=()=02d 1x y ==-2()=Y Y y f y F y≤⎧'⎨⎩1,1<()=0,其它3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222(,)X Y {}110P X Y X +===(1)求常数; (2)求与的协方差,并问与是否独立?解: (1) (2分)由(2分) 可得 (1分)(2), , (3分) (2分) 由可知与不独立 (1分) 三、数理统计试题(25分)1、(8分) 题略. A 卷第3页共4页 证明:,相互独立(4分) ,(4分),p q X Y (,)Cov X Y X Y 1111134123p q p q ++++=+=,即{}{}{}{}{}101011010033P X Y X P Y X p P X Y X P X P X p +====+========+,,1p q ==EX 1()=2E Y 1()=-3E XY 1()=-6,-CovX Y E XY E X E Y ()=()()()=0..ij i j P P P ≠X Y 222(1)(0,1),(1)X n S N n χσ--22(1)X n S σ-2(1)X t n -(1)X t n -(10分) 题略解:似然函数 (4分)由 可得为的最大似然估计 (2分)由可知为的无偏估计量,为的有偏估计量 (4分) 、(7分) 题略 解: (2分)检验统计量,拒绝域 (2分)而 (1分)因而拒绝域,即不认为总体的均值仍为4.55 (2分)A 卷第4页共4页2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑2,μσ221ˆˆ(),()n nE E μμσσ-==11ˆn i i x n μ==∑μ2211ˆ()ni i x n σμ==-∑2σ01: 4.55: 4.55H H μμ=≠x z =0.025 1.96z z ≥=0.185 1.960.036z ==>0H。
2020-2021大学《概率论与数理统计》期末课程考试试卷A1(含答案)

12020-2021大学《概率论与数理统计》期末课程考试试卷A1适用专业: 考试日期试卷所需时间:2小时 闭卷 试卷总分 100分考试所需数据: 0.05(19)1,7291t = 0.05(20)1,7247t = 一、填空题:(8小题,每小题2分,共16分)1、设事件A 与B 为随机事件互不相容,()0.2P B =,则()P AB = _ __.2、袋中有10个球,其中6只红球,4只白球,今有2人依次随机地从袋中各取一球,取后放回。
则第2人取得白球的概率为 。
3、若1,2,3,4号学生随机的排成一排,则1号学生站在最后的概率为 .4、 设随机变量X 与Y 互相独立,且~(1,4),~(0,1),X N Y N 则为()=XY E .5、设随机变量2~(0,1),~()X N Y n χ,且X ,Y相互独立,则随机变量t =服从 分布. 6、设12,,,n X X X 是来自总体的样本2~(,)X N μσ,X 分别是样本均值,则有统计量nX /σμ-服从 分布. 7、统计推断的基本问题分为 和 两类问题. 8、已知总体2~(,)X N μσ,12,,,n X X X 是来自总体的样本,(1)2σ为已知,μ的置信水平为1α-的双侧置信区间为 . (2)2σ为未知,μ的置信水平为1α-的双侧置信区间为 .二、单项选择题:(8小题,每题2分,共16分)1、同时抛掷4枚匀称的硬币,则恰好有三枚正面向上的概率( ).A 0.5B 0.25C 0.125D 0.3752、任何一个连续型的随机变量的概率密度()x ϕ一定满足 ( ). A 0()1x ϕ≤≤ B 在定义域内单调不减 C ()1x dx ϕ+∞-∞=⎰ D ()0x ϕ>3、 若X ()2,1~U 则X Y 2=的密度函数()y f 为( )A 、()⎪⎩⎪⎨⎧<<=其他,041,2y y y fB 、()⎪⎩⎪⎨⎧<<=其他,021,2y y y fC 、()⎪⎩⎪⎨⎧<<=其他,041,21y y fD 、()⎪⎩⎪⎨⎧<<=其他,021,21y y f4、若x 的数学期望Ex 存在,则E[E(Ex)]= ( ) A 、Ex B 、x C 、0 D 、()3x E5、下列函数是某随机变量的分布函数的是( )A 、()211x x F += B 、()x x F sin = C 、()⎪⎩⎪⎨⎧>≤+=0,00,112x x x x F D 、()⎪⎩⎪⎨⎧>≤+=0,10,112x x x x F 6、设二维随机变量()Y X ,的概率密度函数为()⎩⎨⎧<<-<<-=其他,011,11,,y x c y x f ,则常数C( )A 、0.25B 、0.5C 、2D 、47、随机变量X 与Y 满足()()D X Y D X Y +=-, 则必有( ) .A X 与Y 独立B X 与Y 不相关C DX=0D DX DY 0⋅=8、在假设检验问题中,检验水平α的意义是 ( ). A 原假设0H 成立,经检验被拒绝的概率 B 原假设0H 成立,经检验不能被拒绝的概率C 原假设0H 不成立,经检验被拒绝的概率院系: 专业班级: 姓名: 学号:装 订 线2D 原假设0H 不成立,经检验不能拒绝的概率.三、(12分)设随机变量的分布列为:已知()1.0=X E ,()9.02=X E 试求(1)1p ,2p ,3p (2)()12+-X D (3) X 的分布函数()X F四、(12分)x 的分布函数为()⎪⎩⎪⎨⎧≥<≤>=e x e x x x X F ,11,ln 1,0求x 的概率密度()x f 及P (x<2),P(0<x≤3).五、(12分)()ηξ,的密度函数为()⎩⎨⎧<<<<=其他,010,6,2x y x y x f 求 ()()y f x f y x ,六、(12分)设()Y X ,联合概率密度函数为()()⎩⎨⎧>>=+-其他,00,0,2,2y x e y x f y x ,求YX Z 2+=的分布函数()z F Z 及密度函数()z f Z七、(10分)设总体X 具有分布律其中(01)θθ<<为未知参数,已知取得样本值1231,2,1x x x ===,试求θ的矩估计值和最大似然估计值.八、(10分)下面列出的是某工厂随便选取的20只部件的装配时间(min ):9.8 10.4 10.6 9.6 9.7 9.9 10.9 11.1 9.6 10.2 10.3 9.6 9.9 11.2 10.6 9.8 10.5 10.1 10.5 9.7设装配时间的总体服从正态分布2(,)N μσ,2,μσ均未知,是否可以认为装配时间的均值显著大于10(取0.05α=)?0.5099s =32020-2021大学《概率论与数理统计》期末课程考试试卷A1答案一、填空题1、0.2;2、0.4;3、0.25;4、0;5、()t n ;6、()0,1N ;7、参数估计、假设检验;8、((/2/2/2/2,11X z X z X t n X t n αααα⎛⎛-+--+- ⎝⎝.二、单项选择题1、B;2、C;3、C;4、A;5、C;6、A;7、B;8、C. 三 解、(1)由()1.0=X E ,()9.02=X E 知123311310.10.9p p p p p p p ++=⎧⎪-=⎨⎪+=⎩,所以120.4,0.1p p ==,30.5p =……4分; (2)()()214 3.56D X D X -+==……8分;(3)()0,10.4,100.5,011,1x x F X x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩……12分.四 解、(1)()1,10.x ef x x else ⎧≤<⎪=⎨⎪⎩……4分;(2)P (x<2)=()2ln 2F =……8分; (3)P(0<x ≤3)= ()31F =……12分.五 解、()()()()()()22,66(),016,),0112;xx x y yf x f x y dy dy x x x f y f x y dx dx y y +∞-∞+∞-∞===-<<===<<⎰⎰⎰分;分六 解、由()()()2Z F z P Z z P X Y z =≤=+≤得()()()()()1220211,0zz x x y z Z F z dx e dy z e z --+-==-+≥⎰⎰……8分;,0z Z f zze z ……12分.七 解、22122131322E X分;所以()332分,E X θ-=又()^453分;E X X ==所以的矩估计为566=分θ.由521L,则ln 5ln ln 2ln 17L分;令ln 0d L d,得596分θ=,所以的最大似然估计为5106=分θ八 解、由题可得0010:10;:102H H 分;0.05,20,119,10.24n n x 分;;原假设的拒绝域为16/t n n分;1.7541/0.5099/20xn 0.05(19)1,7291t =,所以在显著性水平为0.05的情况下拒绝原假设10分.。
概率统计期末考试试题讲解

概率统计期末考试试题讲解# 概率统计期末考试试题讲解概率统计作为数学的一个重要分支,不仅在理论层面具有深刻的意义,而且在实际应用中也极为广泛。
期末考试是对一学期学习成果的检验,下面我们将对一些典型的概率统计试题进行讲解。
### 一、基本概念题例题1:某随机事件A的概率为0.3,求事件A不发生的条件概率。
解答:根据条件概率的定义,事件A不发生的概率P(A')等于1减去事件A发生的概率,即P(A') = 1 - P(A) = 1 - 0.3 = 0.7。
### 二、离散型随机变量例题2:某工厂生产的产品中,有10%是次品。
求生产5件产品中恰好有2件次品的概率。
解答:这是一个典型的二项分布问题。
设X为5件产品中次品的数量,X服从参数为n=5,p=0.1的二项分布。
根据二项分布的概率公式,P(X=k) = C(n, k) * p^k * (1-p)^(n-k),其中C(n, k)是组合数。
代入k=2,计算得P(X=2) = C(5, 2) * 0.1^2 * 0.9^3。
### 三、连续型随机变量例题3:某零件的长度服从正态分布N(50, 25),求长度在45到55之间的零件所占的比例。
解答:正态分布具有对称性,我们可以通过标准正态分布表来求解。
首先将问题转化为标准正态分布问题,即求Z值。
Z = (X - μ) / σ,其中X是随机变量,μ是均值,σ是标准差。
代入数值,计算Z值对应的两个边界点,然后查表得到相应的概率。
### 四、大数定律与中心极限定理例题4:根据中心极限定理,说明为什么样本均值的分布随着样本容量的增大而趋近于正态分布。
解答:中心极限定理指出,即使原始总体分布不是正态的,只要样本容量足够大,样本均值的分布将趋近于正态分布。
这是因为样本均值的分布是由所有样本点的分布叠加而成的,随着样本量的增加,这种叠加效应使得分布趋于稳定,最终接近正态分布。
### 五、统计推断例题5:某公司员工的月工资服从正态分布N(μ, σ^2),已知样本均值为4500元,样本标准差为500元,样本容量为100。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
------------------------------------------------装---------------------------------------订-------------------------------------------线-----------------------------------------------
x 1 f ( x) 0
0 x 1 其它
其中θ>0 是未知参数,试分别用矩法估计法求θ的估计量。
㈧(10 分)若事件 A, B 满足 0 P A 1, P B 0, P B A P B A
,证明 A 与 B 独立。
⒉随机变量 X 的概率密度为
f ( x)
1 2
n
e
( x 1) 2 4
,则 E ( X )
。
1 P ( X k ) a (k 0,1,2, ), 2 ⒊设 X 的概率分布为 ,则 a 。 ⒋ 设 ( X , Y ) 在 D ( x, y ) : 0 x 2, 0 y 1 上 均 匀 分 布 , 则 P ( X Y 1) 。
学院___________ 系____________ 班级_____________ 学号____________ 姓名_____________
扬州大学试题纸
(2008 -2009 学年第 2 学期) 信息,环境,水利学院计科 0801-02,农水 0701 水工 0701-02,建环 0701,热动 0701 班(年)级课程概率论与数理统计 (A)卷
㈣(10 分)设 X 的概率密度为
a cos x, x f ( x) 2 2 0, 其它 1.求 a 的值;
2.若对 X 独立地重复观察 4 次,求至少有一次观察值大于 0 的概率。.
第2 页
裁剪框
㈤ (10 分)设 ( X , Y ) 在圆 D {( x, y ) : x y R } 内服从均匀分布,求 1.X,Y 的边缘密度, 2. COV X ,Y .
题目 得分
㈠单项选择题(4 分×5) ⒈设 A, B 为任意两个随机事件,则下列式子一定成立的是 ( P ( A B ) P ( B ) P ( AB ) P ( B ) (A) (B) P ( A B ) P ( A ) P ( B ) (C) (D) P B A P B P AB ⒉已知 )
⒌ 关 于 两 个 随 机 变 量 的 X 与 Y 满 足 D X Y D X Y , 则 ( (A) D(X)=0 (C)X 与 Y 独立 ㈡填充题(4 分×5) (B)D(Y)=0 (D)Cov(X,Y)=0 )
P( A B) ⒈设事件 A 与 B 相互独立,且 P ( A) 0.7 , P ( B ) 0.6 ,则
1 ( D) 2
( (D)1—2 F( b )
(
)
)
⒋设随机变量 X∽ N , (A) p1 p2
2
, Y ∽ N , ,记 p
P ( X 6), p2 (Y 8), 则有
(D) p1 p2 ( )
(B) p1 p2
(C) p1 p2
一
二
三
四
五
六
七
八
九
十
总分
P ( A)
⒊设 R.V.X 的分布函数为 F( x ) ,则 P a X b = (A)0 (B)F( b )—F( a ) (C)F( a )
2
1
1 (A) 6
1 1 P ( B A) 2, 3 ,则 P ( A B ) 1 1 (B) 4 (C) 3
⒌设 X 1 , X 2 , , X 5 是取自于总体 X∽N[μ,σ2]的样本,则统计量 X 。
1 5 X i 的分布为 5 i 1
第 1页
裁剪框
㈢、 (10 分)某厂有甲、乙、丙三个车间,其产量分别占总产量的,25%,35%,40%,各车 间产品中的次品率分别是 5%,4%,2%,现从全部产品中任取一个,发现是次品,问它是乙 车间生产的概率。
2
2
2
㈥(10 分)设随机变量 X,Y 是相互独立的,并且概率密度分别为:
1 0 x 1 f X x = 其它 0 ⒈求 Z=X+Y 的概率密度 f Z z 。 X Y ⒉ 求数学期望 E [ ]。 4
fY0
第 3页
㈦(10 分)设 X1,X2,……,Xn 是取自于总体 X 的样本,总体 X 的概率密度为