第八章核算代谢和蛋白质的合成
生物化学第八章氨基酸代谢教材课程

二、蛋白质的消化 ▪蛋白质消化的生理意义:
(1)由大分子转变为小分子,便于吸收。 (2)消除种属特异性和抗原性,防止过敏、毒性反应。
消化道内几种蛋白酶的专一性
氨肽酶
(Phe.Tyr.Trp)
(s)
羧羧肽肽酶酶
(四)、尿素的生成 1、生成部位: 主要在肝细胞的线粒体及胞液中。
2、生成过程
尿素的生成过程由Hans Krebs 和Kurt Henseleit 提出,称为鸟氨酸循环(orinithine cycle),又称尿素 循环(urea cycle)或Krebs- Henseleit循环。
CO2 + NH3 + H2O
5
* FH4携带一碳单位的形式: 如:
N5—CH3—FH4
N5、N10=CH—FH4
(二)一碳单位的生理功能
*作为合成嘌呤和嘧啶的原料 *把氨基酸代谢和核酸代谢联系起来
本章内容结束,谢谢!
2、转氨基偶联嘌呤核苷酸循环
腺苷酸代琥
氨
α-酮戊
珀酸合成酶
基
二酸 天冬氨酸
酸
转
氨 酶
转
氨 酶
1
2
腺苷酸 代琥珀酸
谷氨酸 α-酮酸
草酰乙酸 苹果酸
延胡索酸
次黄嘌呤 核苷酸 (IMP)
NH3 腺苷酸 脱氢酶
H2O
腺嘌呤 核苷酸 (AMP)
二、氨基酸的脱羧基作用
脱羧基作用(decarboxylation)
• 依赖ATP • 降解异常蛋白和短寿命蛋白
泛素?
*76个氨基酸的小分子蛋白(8.5kD); *普遍存在于真核生物而得名; *一级结构高度保守。
简述核酸和蛋白质代谢的相互关系

简述核酸和蛋白质代谢的相互关系全文共四篇示例,供读者参考第一篇示例:核酸是细胞内的一种重要有机物质,它由核苷酸构成,是构成核酸的基本单元。
核酸分为DNA(脱氧核糖核酸)和RNA(核糖核酸)两种。
核酸在细胞内具有非常重要的功能,它们可以携带遗传信息,参与蛋白质的合成,调控细胞的生长和分化等过程。
蛋白质则是细胞内最重要的有机物质之一,是生命体内各种生物学功能和生命活动不可或缺的组成部分。
蛋白质合成是一个复杂的生物化学过程,需要核酸的介入才能完成。
在细胞内,RNA起着传递DNA信息的作用,RNA通过转录过程将DNA上的遗传信息转换成RNA信息,然后RNA将这些信息传递给细胞内的核蛋白合成机器,进而合成蛋白质。
核酸代谢和蛋白质代谢是密切相关的,两者之间存在着相互关系。
在细胞内,核酸和蛋白质代谢之间的相互关系主要体现在以下几个方面:核酸还可以调控蛋白质的合成。
在细胞内,存在着一些特殊类型的RNA,如miRNA和siRNA等,它们能够通过靶向特定基因的mRNA,抑制或促进这些基因的表达,从而影响蛋白质的合成。
这种核酸介导的蛋白质合成调控,使得核酸和蛋白质代谢之间形成了一种复杂的调控网络。
核酸代谢和蛋白质代谢还存在着其他相互关系。
核酸可以通过调节细胞内mRNA的降解速率,影响蛋白质的合成水平;而蛋白质也可以参与核酸的合成和修复过程。
这些相互关系构成了细胞内核酸和蛋白质代谢的相互调节机制,维持了细胞内生物学功能的正常运行。
第二篇示例:核酸和蛋白质是生物体内两种重要的生物大分子,它们在生物体内的代谢过程中密不可分。
核酸是生物体内的遗传物质,负责信息的传递和储存,而蛋白质则是生物体内的最重要的功能分子,承担着多种生物过程中的功能。
核酸和蛋白质之间通过一系列生物化学反应相互转化,相互影响,共同维持着生物体内的代谢平衡和生物功能的正常进行。
核酸的合成过程称为核酸代谢,蛋白质的合成过程称为蛋白质代谢。
核酸和蛋白质的代谢密切相关,二者之间的相互关系主要体现在以下几个方面:核酸和蛋白质的合成过程相互依赖。
生物化学中的代谢途径

生物化学中的代谢途径代谢是生物体内发生的一系列化学反应,其中包括分解分子以释放能量的代谢途径和合成分子的代谢途径。
生物体内的代谢途径种类繁多,涉及到蛋白质、碳水化合物、脂类等多种物质。
本文将重点介绍生物化学中几种重要的代谢途径。
1. 糖代谢糖代谢是生物体内最基本和最常见的代谢途径之一。
在糖代谢过程中,葡萄糖作为生物体内主要的能量来源,经过一系列的代谢反应,被分解为能够为细胞提供能量的分子。
糖代谢包括糖异生途径和糖酵解途径两个方面。
其中,在糖异生途径中,生物体可以将不同种类的物质转化为葡萄糖,并进一步合成葡萄糖物质。
2. 蛋白质代谢蛋白质代谢是指生物体内蛋白质的合成和降解过程。
蛋白质是生物体内重要的结构和功能分子,蛋白质代谢是维持细胞结构和功能的关键。
在蛋白质合成过程中,氨基酸是蛋白质的基本组成单位。
细胞通过翻译和转录过程合成蛋白质,同时通过蛋白质降解过程清除受损或不需要的蛋白质。
3. 脂类代谢脂类代谢是生物体内脂肪分子的合成和分解过程。
脂类是细胞膜的重要组成部分,同时也是能量的重要来源。
在脂类代谢过程中,脂肪被分解成甘油和脂肪酸,并通过β氧化途径转化为ATP,为细胞提供能量。
4. 核酸代谢核酸是DNA和RNA的组成单位,核酸代谢是细胞内DNA和RNA 的合成和降解过程。
在核酸合成过程中,嘌呤和嘧啶是核酸的基本单位,通过脱氧路径合成DNA,而RNA则通过核糖途径合成。
核酸代谢是细胞遗传信息传递和表达的重要环节。
通过以上的介绍,我们可以看到生物化学中的代谢途径是生命活动中不可或缺的重要部分。
不同的代谢途径相互联系,共同维持着生命体内正常的代谢平衡。
在进一步的研究中,我们可以更深入地了解代谢途径在生物体内的作用,并探索代谢异常导致的疾病发生机制,为生命科学领域的发展做出贡献。
生物化学重点

第一章蛋白质的结构和功能第八章核苷酸代谢第二章核酸的结构与功能第九章物质代谢的联系第三章酶第十章 DNA的生物合成第四章糖代谢第十一章 RNA的生物合成第五章脂类代谢第十二章蛋白质的生物合成第六章生物氧化维生素第十三章基因表达的调控第七章氨基酸代谢第十七章肝的生物化学蛋白质的结构与功能1.蛋白质的含氮量很接近,平均为16%。
2.酸性氨基酸:天冬氨酸、谷氨酸。
碱性氨基酸:赖氨酸、精氨酸、组氨酸。
3. 氨基酸的理化性质:(1)氨基酸的两性解离性质;(2)分子中含有共轭双键的氨基酸具有紫外吸收性质。
吸收峰280nm;(3)氨基酸与茚三酮水合物共加热,生成的蓝紫色化合物4. 在某一pH环境溶液中,氨基酸解离生成的阳郭子及阴离子的趋势相同,成为兼性离子。
此时环境的pH值称为该氨基酸的等电点(pI)5.肽的相关概念(1)寡肽:10个以内氨基酸组成的肽链。
(2)多肽:大于10分子氨基酸组成的肽链。
(3)蛋白质:大于50分子氨基酸组成的肽链。
(4)氨基酸残基:肽链中因脱水缩合而基团不全的氨基酸分子。
6.肽单元:参与肽键的6个原子Cα1、C、O、N、H、Cα2位于同一平面,组成肽单元。
7. 蛋白质分子四级结构的比较。
一级结构二级结构三级结构四级结构定义从N-端至C-端的氨基酸的排列顺序蛋白质主链的局部空间结构、不涉及氨基酸残基侧链构象整条肽链中所有原子在三维空间的排布位置各亚基间的空间排布表现形式-α-螺旋、β-折叠(片层)、β-转角、无规卷曲结构域、模体(超二级结构)亚基聚合维系键肽键(主要)二硫键(次要) 氢键非共价键(疏水键、盐键、氢键、范德华力)亚基间的非共价键。
8. 蛋白质一级结构与空间结构的关系:一级结构是空间构象的基础,具有相似一级结构的多肽或蛋白质,其空间构象及功能也相似。
9. 蛋白质空间结构与功能的关系:蛋白质空间结构由一级结构决定,其空间结构与功能密切相关。
10. 变构效应:蛋白质分子的亚基与配体结合后,引起蛋白质的构象发生变化的现象11. 蛋白质重要的理化性质及相关概念①.蛋白质的等电点:当蛋白质在某一pH溶液中时,蛋白质解离成正、负离子的趋势相等,成为兼性离子,带有的净电荷为零,此时溶液的pH值称为蛋白质的等电点。
第八章 核苷酸代谢

第八章核苷酸代谢Nucleic metabolism一、授课章节及主要内容: 第八章核苷酸代谢二、授课对象: 临床医学、预防、法医(五年制)、临床医学(七年制)三、授课学时本章总学时数:2课时(每个课时为45分钟)。
讲授安排如下:第一学时:概述及第一节。
第二学时:第一节内容。
第二节内容。
四、教学目的与要求学习嘌呤和嘧啶核苷酸合成与分解代谢的途径及调节。
五、重点与难点重点:核苷酸的生物学功能;嘌呤核苷酸从头合成的定义、细胞定位及嘌呤碱合成的元素来源;嘌呤核苷酸补救合成的定义及生理意义;脱氧核糖核苷酸的生成;6-巯基嘌呤的作用;嘌呤核苷酸分解代谢的产物。
嘧啶核苷酸从头合成的定义、细胞定位及嘧啶碱合成的元素来源;UMP、CTP、TMP的合成途径;嘧啶核苷酸分解代谢的产物。
难点:IMP、AMP、GMP的合成及调节;嘧啶核苷酸的合成及调节。
六、教学方法及授课的大致安排面授为主,讲授肝在物质代谢中的作用时以提问形式穿插部分相关内容的复习,每次课预留5分钟小结本次课掌握内容及预留复习题,全章结束后小结本章内容。
七、外语教授安排及主要外文专业词汇de novo sythesis (从头合成途径)salvage pathway (补救合成途径)adenine phosphoribosyl transferase, APRT,(腺嘌呤磷酸核糖转移酶)hypoxanthine-guanine phosphoribosyl transferase,HGPRT)(次黄嘌呤-鸟嘌呤磷酸核糖转移酶)(adenosine kinase)(腺苷激酶)6-meraptopurine,6-MP(6-巯基嘌呤)Aminopterin(氨蝶呤)methotrexate,MTX(甲氨蝶呤)八、思考题(一)名词解释:1.嘌呤核苷酸从头合成途径 2.嘧啶核苷酸补救合成途径3.核苷酸的抗代谢物4.痛风症(二)简答题:1.核苷酸的生理功用2.嘌呤核苷酸补救合成的生理意义(三)论述题:试比较嘌呤核苷酸和嘧啶核苷酸从头合成途经的异同点以6-巯基嘌呤为例说明抗代谢物的作用机制九、教材与教具:人民卫生出版社《生物化学》第六版十、授课提纲(或基本内容)概述Introduction概述:核苷酸的来源、分布及功能一、核苷酸的消化与吸收(见六版教材图8-1)分解产物:少量中间产物核苷酸可被细胞吸收;戊糖被吸收参加戊糖代谢;嘌呤和嘧啶碱被分解而排出体外,不能被机体所利用。
生物化学代谢化学背诵口诀

生物化学代谢化学背诵口诀生物化学代谢化学是生物学中一个重要的分支,它研究的是生物体内的化学反应,以及这些反应如何影响生物体的生长和发育。
生物化学代谢化学的口诀是:“氧化还原,糖酵解,氨基酸合成,脂质代谢,核酸合成,蛋白质合成,维生素代谢,矿物质代谢,激素代谢,毒素代谢。
”氧化还原是生物体内最基本的化学反应,它涉及到氧化物和还原物的交换,是生物体内能量的重要来源。
糖酵解是指糖分解成糖原和乙醇,这是生物体内最重要的代谢过程之一,也是能量的重要来源。
氨基酸合成是指氨基酸的合成,它是生物体内蛋白质的重要组成部分,也是生物体内重要的代谢物。
脂质代谢是指脂肪的代谢,它是生物体内能量的重要来源,也是生物体内重要的组成部分。
核酸合成是指核酸的合成,它是生物体内遗传物质的重要组成部分,也是生物体内重要的代谢物。
蛋白质合成是指蛋白质的合成,它是生物体内重要的组成部分,也是生物体内重要的代谢物。
维生素代谢是指维生素的代谢,它是生物体内重要的组成部分,也是生物体内重要的代谢物。
矿物质代谢是指矿物质的代谢,它是生物体内重要的组成部分,也是生物体内重要的代谢物。
激素代谢是指激素的代谢,它是生物体内重要的组成部分,也是生物体内重要的代谢物。
毒素代谢是指毒素的代谢,它是生物体内重要的组成部分,也是生物体内重要的代谢物。
生物化学代谢化学是一门重要的学科,它研究的是生物体内的化学反应,以及这些反应如何影响生物体的生长和发育。
它的口诀涵盖了生物体内的各种代谢过程,如氧化还原、糖酵解、氨基酸合成、脂质代谢、核酸合成、蛋白质合成、维生素代谢、矿物质代谢、激素代谢和毒素代谢等。
这些代谢过程不仅是生物体内能量的重要来源,而且也是生物体内重要的组成部分,对生物体的生长和发育起着重要的作用。
生物化学第八章 核苷酸代谢

嘌呤碱从头合成的元素来源
Gly
CO2
Asp N 1
6
5
N 7
一碳单位 2
甲酰-FH4
3 N
4
9 N
8
一碳单位 甲炔-FH4
Gln
• 从头合成途径 (1)IMP(次黄嘌呤核苷酸)的合成 (2)AMP(腺苷酸)和GMP(鸟苷酸)的生成
(1)、IMP的生成
PRPP
AMP ATP
(5’-磷酸核糖-1’-焦磷酸)PRPP合成酶
小结
1、嘌呤核苷酸补救合成定义、发生组织。 2、补救合成的生理意义。 3、脱氧核苷酸是在核苷二磷酸水平上进行的。 4、嘌呤代谢的终产物是尿酸、痛风病的致病 原因、治疗机制。
第三节 嘧啶核苷酸的代谢
嘧啶核苷酸的结构
一、嘧啶核苷酸的从头合成 (一)嘧啶核苷酸的从头合成
• 定义
嘧啶核苷酸的从头合成是指利用磷酸核 糖、氨基酸、一碳单位及二氧化碳等简单物 质为原料,经过一系列酶促反应,合成嘧啶 核苷酸的途径。
很少能活至20岁,
补救合成的生理意义
补救合成节省从头合成时的能量和一些氨基 酸的消耗。
体内某些组织器官,如脑、骨髓等只能进行 补救合成。
HGPRT完全缺失的患儿,表现为自毁容貌综 合征。
(四)脱氧核苷酸的合成代谢
在核苷二磷酸水平上进行
(N代表A、G、U、C等碱基)
脱氧核苷酸的生成
核糖核苷酸还原酶,Mg2+
第八章
核苷酸代谢
Metabolism of Nucleotides
第一节、核苷酸的功能及消化与吸收 一、核苷酸的功能
是核酸的基本组成单位,合成核酸的原料 能量的利用形式,ATP是重要能量货币; 参与代谢和生理调节,cAMP是第二信使; 参与生物活性物质组成,NAD、 FAD、 CoA等; 其衍生物是许多生化反应的中间供体 ,如UDPG 、
中国药科大学生物化学精品课程习题核酸的代谢和蛋白质合成

中国药科大学生物化学精品课程习题核酸的代谢和蛋白质合成第一节核苷酸的代谢一、填空题1(人类对嘌呤代谢的终产物是。
2(痛风是因为体内产生过多造成的,使用作为黄嘌呤氧化酶的自杀性底物可以治疗痛风。
3(核苷酸的合成包括和两条途径。
4(脱氧核苷酸是由还原而来。
5(从IMP合成GMP需要消耗,而从IMP合成AMP需要消耗作为能源物质。
6(不能使用5-溴尿嘧啶核苷酸代替5-溴尿嘧啶治疗癌症是因为。
7(细菌嘧啶核苷酸从头合成途径中的第一个酶是。
该酶可被终产物抑制。
二、是非题1(黄嘌呤氧化酶既可以使用黄嘌呤又可以使用次黄嘌呤作为底物。
2(嘌呤核苷酸的从头合成是先闭环,再在形成N糖苷键。
3(IMP是嘌呤核苷酸从头合成途径中的中间产物。
4(真核细胞内参与嘧啶核苷酸从头合成的酶都位于细胞质。
5(嘧啶合成所需要的氨甲酰磷酸合成酶与尿素循环所需要的氨甲酰磷酸合成酶是同一个酶。
三、选择题(下列各题均有五个备选答案,其中只有一个正确答案) 1(嘌呤环1号位N原子来源于( )(A)Gln的酰胺N (B)Gln的α氨基N (C)Asn的酰胺N (D)Asp的α氨基N (E)Gly的α氨基N2(dTMP的直接前体是( )(A)Dcmp (B)dAMP (C)dUMP (D)dGMP (E)dIMP 3.人类嘧啶核苷酸从头合成的哪一步反应是限速反应,( )(A)氨甲酰磷酸的形成 (B)氨甲酰天冬氨酸的形成(C)乳清酸的形成 (D)UMP的形成(E)CMP的形成4(下面哪一种物质的生物合成不需要PRPP,( )+ (A)啶核苷酸 (B)嘌呤核苷酸 (C)His (D)NAD(P)(E)FAD 5(下列哪对物质是合成嘌呤环和嘧啶环都是必需的,( )(A)Gln/Asp (B)Gln/Gly (C)Gln/Pro (D)Asp/Arg (E)Gly/Asp四、问答题1(你如何解释以下现象:细菌调节嘧啶核苷酸合成的酶是天冬氨酸-氨甲酰转移酶,而人类调节嘧啶核苷酸合成的酶主要是氨甲酰磷酸合成酶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3‘
5‘
5‘
3‘
OH P
在一条链上失去一个磷酸二酯键称为切口 (nick)。失去一段单链称为缺口(gap)。
DNA连接酶催化的条件: ① 需一段DNA片段具有3′-OH,而另一段DNA
片段具有5′-Pi基团; ② 未封闭的缺口位于双链DNA中,即其中有
一条链是完整的; ③ 需要消耗能量,在原核生物中由NAD+供能,
T T A C A C 起点 T
RNA聚合酶催化起点处通过碱基互补合成 引物RNA链
3`OH
U 5`PiPiPi RNA聚合酶 小段RNA引物
磷酸核糖
作用——确定起始部位,引导复制开始。
二、DNA链的延伸
在DNA聚合酶Ш的催 化下,以四种脱氧核 糖核苷三磷酸为底物, 在RNA引物的3’端以 磷酸二酯键连接上脱 氧核糖核苷酸并释放 出焦磷酸。
代DNA。 引物:一小段RNA(或DNA)为引物,在大
肠杆菌中,DNA的合成需要一段RNA链作为引 物。
与DNA合成有关的酶系:
1、引物酶
本质上是一种依赖DNA的RNA聚合酶,该酶以 DNA为模板,按照碱基配对原则,聚合一段RNA短 链引物(primer),以提供自由的 3’-OH,使子代 DNA链能够开始聚合。
2、DNA聚合酶:以DNA为模板的DNA合成酶,其催化 反应的特点:
(1)以四种脱氧核苷酸三磷酸为底物;
(2)反应需要有模板的指导;
(3)反应需要有3-OH存在; (4)DNA链的合成方向为5’ 3’
3 .DNA连接酶(1967年发现):若双链DNA中
一条链有切口,一端是3’-OH,另一端是 5‘-磷酸基,连接酶可催化这两端形成磷酸 二酯键,而使切口连接。
15N-DNA的密度大于14N-DNA的密 度
(二)有一定的复制起始点
在原核生物中,复制起始点通常为一个, 而在真核生物中则为多个。
复制子:基因组中能单独进行复制的单位, 每个起始点到终止点的区域为一个复制子。
(三)双向复制
DNA复制时,以复制起始点为中心,向两 个方向进行复制。但在低等生物中,也可 进行单向复制。
DNA的生物合成—复制
DNA是遗传的物质基础 DNA分子贮存着生物体的遗传信息 基因是遗传信息的功能单位
中心法则
重点
复
转录
制
DNA
逆转录
复制
翻译 RNA
蛋白质
第一节 DNA的复制
一、与DNA复制有关的酶和蛋白质 原料:四种脱氧核苷三磷酸(dATP、
dGTP、dCTP、dTTP) 模板:以DNA的两条链为模板链,合成子
(四)半不连续复制 由于DNA聚合酶只能以5′→3′方向聚合子
代 DNA 链 , 即 模 板 DNA 链 的 方 向 必 须 为 3′→5′。因此,分别以两条亲代DNA链作为 模板聚合子代DNA链时的方式是不同的。
以3′→5′方向的亲代DNA链作模板的子代 链在复制时基本上是连续进行的,其子代 链的聚合方向为5′→3′,与复制叉移动
在真核生物中由ATP供能。
DNA连接酶在DNA复制、损伤修复、重组等过 程中起重要作用。
4、拓扑异构酶(topoisomerase)或旋转酶:
拓扑异构酶Ⅰ可使DNA双链中的一条链切 断,松开双螺旋后再将DNA链连接起来,从 而避免出现链的缠绕。
拓扑异构酶Ⅱ可同时切断DNA双链,再将 其连接起来,以消除复制叉前进时DNA过度 的扭曲。
(五)DNA复制的保真性: 为了保证遗传的稳定,DNA的复制必须具
有高保真性。DNA复制时的保真性主要与下 列因素有关: 1.遵守严格的碱基配对原则; 2.DNA聚合酶在复制时对碱基的正确选择; 3.对复制过程中出现的错误及时进行校正。
DNA的生物合成
双链的解开 RNA引物的合成
起始
DNA链的延伸
的方向相同,这一条链被称为领头链
(leading strand)或前导链。
以5′→3′方向的亲代DNA链为模板的子代 链在复制时则是不连续的,其链的聚合方 向 也 是 5′→3′ , 与 复 制 叉 移 动 的 方 向 相
反,这条链被称为随从链(lagging strand)
或滞后链。
由于亲代DNA双链在复制时是逐步解开的, 因此,滞后链是由许多5′→3′合成的片 段组成的。DNA在复制时,由滞后链所形成 的一些子代DNA短链称为冈崎片段(Okazaki fr)DNA的半保留复制 定义:由亲代DNA生成子代DNA
时,每个新形成的子代DNA中, 一条链来自亲代DNA,而另一条 链则是新合成的,这种复制方 式叫半保留复制。 半保留复制的实验证据:1958年 Meselson和Stahl用同位素15N 标记大肠杆菌DNA,首先证明了 DNA的半保留复制。
延伸
切除RNA引物,填补缺口,连接相邻的DNA 片段 终止
一、DNA复制的起始
① 识别起始位点:互相缠绕的双链母本DNA, 复制从特定的位置开始,该位置常是富含A、 T区段。
②DNA解链:首先DNA解螺旋酶打开局部双链, SSB与每条单链结合,稳定单链并防止DNA复 性;然后在DNA旋转酶的作用下,使螺旋DNA 局部变成松弛态。
复制起始处的 DNA片段
起点
解螺旋酶——解开双链
复制叉
DNA结合蛋白 起点
解A 螺 旋 酶G
T
C
DNA结合蛋白与单 链结合并向前移 动
③引物酶、DNA聚合酶等随后结合,复制开 始。
2、RNA引物的合成
在引物酶的催化下,以DNA为模板,按A-U, G-C的原则合成一段具有3’端自由-OH的RNA 引物分子。
DNA链的延伸同时进 行领头链和随后链的 合成。
三、切除RNA引物,填补缺口,连接相邻 的DNA片段(复制终止)
5、解螺旋酶(解链酶):通过水解ATP将DNA 两条链打开。E.coli中的rep蛋白就是解螺 旋酶,还有解螺旋酶I、II、III。每解开 一对碱基需要水解2个ATP分子。
rep蛋白沿3’5’移动,而解螺旋酶I、 II、III沿5’3’移动。
单链结合蛋白(SSB)[DNA结合蛋白]
这是一些能够与单链DNA结合的蛋白质因子。 其作用为: ① 使解开双螺旋后的DNA单链能够稳定存在,即稳 定单链DNA,便于以其为模板复制子代DNA; ② 保护单链DNA,避免核酸酶的降解。