全息照相技术综述
全息照相原理及特点浅述

全息照相原理及特点浅述
全息照相是一种利用光的干涉原理来记录物体三维形态的技术。
它的
原理是将物体的光波和参考光波在光敏材料上叠加,形成干涉条纹,
通过光学处理和显影,可以获得物体的全息图像。
全息照相的特点主要有以下几个方面:
1. 三维效果好:全息照相可以记录物体的全息图像,包括物体的形状、大小、深度等信息,因此可以呈现出非常逼真的三维效果。
2. 高分辨率:全息照相可以获得非常高的分辨率,可以记录物体的微
小细节,因此在科学研究和工程设计等领域有广泛的应用。
3. 可重复使用:全息照相的光敏材料可以重复使用,因此可以多次记
录和重现物体的全息图像。
4. 光学处理简单:全息照相的光学处理相对简单,只需要使用一些基
本的光学元件,如透镜、分束器等,就可以完成全息图像的记录和重现。
5. 应用广泛:全息照相在科学研究、工程设计、艺术创作等领域都有
广泛的应用,如在生物医学领域可以用于记录细胞和组织的三维结构,而在工程设计领域可以用于制造高精度的零部件和模具。
总之,全息照相是一种非常有用的技术,它可以记录和重现物体的三
维形态,具有高分辨率、可重复使用、光学处理简单等特点,因此在
各个领域都有广泛的应用前景。
全息照相术的原理和应用

全息照相术的原理和应用全息照相术是一种可以记录三维图像的技术,它具有非常重要的应用价值。
全息照相术的原理和应用是一个非常有趣的话题,下面我们就来深入了解一下。
1. 原理全息照相术利用的是光的干涉原理。
在进行全息照相时,首先将一个面波(参考光)和一个物体波(待照相的物体反射的光)叠加在一起,形成一个干涉图案。
然后将这个干涉图案记录在一片全息平板上。
当这片全息平板被激光照射时,可以看到一幅三维立体图像的重建。
具体来说,全息照相的过程可以分为以下几个步骤:(1)制备全息平板:将在胶体中加入硼酸等荧光物质的溶液,并用激光对其进行照射,形成具有干涉条纹图案的全息平板。
(2)记录全息图像:将待记录的物体放置在全息平板的一侧,用参考光和物体光组成干涉条纹图案,记录在全息平板上。
(3)全息图像重建:用激光对全息平板进行照射,可以看到重建出的三维全息图像。
2. 应用全息照相术的应用非常广泛,以下介绍其中比较重要的几个方面:(1)安全印刷:全息照相技术可以用于制备安全防伪印刷品,如银行钞票、身份证、票据等,通过全息图像的重建,可以有效地避免伪造。
(2)3D显示:全息照相技术可以制备出类似于真实的三维图像,在实时渲染、虚拟现实等领域有着广泛的应用。
(3)生物医学:全息照相技术可以用于制备出生物医学图像,如细胞、分子结构等的三维立体图像,有助于对这些生物结构进行更深入的研究。
(4)工程测量:全息照相技术可以实现非接触式的三维测量,例如对于机械零件、建筑物等进行精确的测量,可以提高工程测量的精度。
(5)艺术:全息照相技术可以用于制备出非常有创意的艺术品,如全息立体画、全息雕塑等,呈现出非常独特的效果。
总体来说,全息照相术的应用十分广泛,覆盖了多个领域,我们相信随着科学技术的不断发展,这项技术也会变得越来越成熟。
全息摄影技术的原理与应用

全息摄影技术的原理与应用随着科技的不断发展,各种新技术不断涌现,其中全息摄影技术便是其中的一种。
全息摄影技术又称全息术,是一种记录并再现物体三维图像的技术,它不但记录了物体的形状,还保存了物体的颜色、纹理、亮度等信息,使得再现图像更加生动、真实。
一、全息摄影技术的原理全息摄影技术的原理基于光的干涉现象,它利用激光发射出的单色光束照射到物体表面,记录并保存了物体表面反射的光的相位和幅度信息。
具体而言,它是通过在相同的位置记录两个光波,即参考光和物体光,然后在全息胶片上交叉记录这两个光波的相位和幅度。
全息胶片是实现全息摄影的重要材料之一,它是一种有机高分子材料,具有高耐光性、高灵敏度、高分辨率等优良特性。
当参考光和物体光波交叉时,胶片上就形成了干涉条纹的三维图案,这个图案就是全息图像。
当使用激光将全息胶片中的全息图像照射时,就会再现出物体的三维图像。
二、全息摄影技术的应用全息摄影技术的应用领域非常广泛,既可以应用于科技领域进行研究和测试,也可以应用于艺术创作和展览等方面。
1.科技领域在科技领域,全息摄影技术可以应用于光学成像、显微镜、电子显微镜等设备的研究和测试。
其中,全息显微镜是利用全息摄影技术对生物细胞进行成像的一种方法,它可以将细胞的全部信息保存在三维图像中,能够提供更加真实、直观的细胞结构信息。
此外,全息成像技术还可以应用于生物和医学诊断、人体解剖学研究、材料物理学和工程学等领域。
2.艺术领域在艺术领域,全息摄影技术也有广泛的应用。
全息作品以其独特的艺术效果、视觉效果和空间感,获得了艺术家的青睐。
艺术家们利用全息摄影技术制作出的作品可以进行展览、展销、博物馆馆藏等,同时也可以应用于建筑装饰、环境艺术、工艺美术、书法绘画等方面。
此外,全息摄影技术还可以应用于教育、文化、科技传播等方面。
三、全息摄影技术的展望随着科技不断的发展,全息摄影技术和其它研究领域的交叉研究越来越多,使得全息摄影技术在应用前景和发展潜力方面变得更加广阔。
全息照相原理及特点浅述

全息照相原理及特点浅述全息照相是一种通过记录和再现物体的三维信息的技术,它可以在二维介质上生成真实的三维影像。
全息照相的原理基于光的干涉、衍射和波动性。
全息照相的特点是能够还原出物体的完整三维信息,包括物体的形状、大小、纹理和光的反射特性等。
全息照相的原理是利用激光光源产生的相干光束,将被记录的物体分为两部分,一部分是被记录物体的参考光束,另一部分是与参考光束通过相干干涉的物体光束。
这两束光经过干涉后形成干涉图样,然后将干涉图样记录在光敏材料上,形成全息图。
当全息图被照射时,可以通过光的衍射效应将全息图中的信息还原出来,形成物体的三维影像。
全息照相的特点有以下几个方面:1. 真实性:全息照相能够还原出物体的真实三维影像,使观察者感觉到仿佛物体就在眼前。
这是因为全息照相记录了物体的全部信息,包括物体的几何形状、大小和纹理等,而不仅仅是物体的表面信息。
2. 信息量大:全息照相能够记录大量的信息,可以同时记录物体的多个角度和多个深度。
这使得观察者可以从不同的角度和深度观察物体,获取更加全面的信息。
3. 色彩丰富:全息照相可以记录物体的光的反射特性,包括物体表面的颜色和光泽。
因此,在观察全息图时,可以看到物体的真实色彩,使观察者感受到更加真实的体验。
4. 镜像效应:全息照相生成的全息图具有镜像效应,即观察者可以从全息图的两侧观察物体的三维影像。
这种效应增加了观察物体的灵活性和便捷性,使观察者可以选择最佳的观察角度。
5. 长时间保存:全息照相生成的全息图可以长时间保存而不失真。
这是因为全息图是通过记录光的干涉图样来生成的,而不是通过物体本身的光来生成的。
因此,全息图可以保存很长时间而不会受到光的腐蚀和退色的影响。
总的来说,全息照相是一种具有很高真实性和信息量的三维影像记录技术。
它可以记录物体的完整三维信息,并能够在观察时还原出物体的真实形状、大小、纹理和光的反射特性等。
全息照相的特点使其在许多领域有着广泛的应用,如科学研究、艺术创作、教育培训和安全防伪等。
全息照相学

全息照相学1. 引言全息照相学是一门研究全息照相技术的科学,它利用激光、光学元件和全息记录材料,通过记录光波的幅度和相位信息,再现物体的三维图像。
全息照相技术具有很高的信息密度,可以存储大量的数据,因此在信息存储、信息安全、军事、医疗等领域有着广泛的应用。
2. 全息照相原理全息照相技术是基于光的波动性质的。
光波是一种电磁波,它在传播过程中会表现出波动现象,如干涉、衍射和偏振等。
全息照相就是利用这些波动现象,记录下物体的三维图像。
全息照相的基本原理是干涉原理。
当物体发出的光线经过一个光学系统(如透镜、反射镜等)后,会形成物体的像。
同时,另一束参考光也会经过同样的光学系统,形成参考光束的像。
这两束光线在空间中相遇,会发生干涉现象,形成干涉条纹。
这些干涉条纹就是全息图像。
3. 全息照相系统全息照相系统由光源、光学系统、全息记录材料和再现装置组成。
3.1 光源全息照相常用的光源是激光。
激光具有单色性好、相干性好和方向性好的特点,可以产生稳定的干涉条纹。
3.2 光学系统光学系统主要包括透镜、反射镜、分束器、合束器等元件。
它们的作用是控制光线的传播方向和相位,形成干涉条纹。
3.3 全息记录材料全息记录材料是全息照相的关键,它可以直接记录下干涉条纹。
常用的全息记录材料有胶片、晶体和光敏材料等。
3.4 再现装置再现装置主要用于再现全息图像。
它由光源、光学系统和全息图像显示装置组成。
当再现光源照射到全息记录材料上时,全息图像会被重建出来。
4. 全息照相技术全息照相技术包括全息图的拍摄、处理和再现等过程。
4.1 全息图的拍摄全息图的拍摄主要包括以下步骤:1.准备物体和光源;2.用光学系统将物体发出的光线和参考光束聚焦在全息记录材料上;3.调整光学系统,使物体和参考光束的干涉条纹清晰地记录在全息记录材料上;4.关闭光源,取出全息记录材料,结束拍摄。
4.2 全息图的处理全息图的处理主要包括去噪、增强和重构等操作。
处理方法有数字处理和光学处理两种。
全息照相技术原理及应用研究

全息照相技术原理及应用研究全息照相技术是一种利用相干光的全部信息进行记录和再现的方法,它可以记录下光的相位、振幅和干涉信息,并能够在透明介质中实现全息照片的三维再现。
全息照相技术的原理是利用激光的高度相干性、波前的干涉和波长的特殊性质,在感光材料上记录下光干涉图案的全息图,然后再用激光束恢复出全息图上所记录的被摄物体的三维影像。
全息照相技术的应用非常广泛,在工业、科研、医学、艺术等领域都有重要的应用价值。
首先,光的相干性是全息照相技术能够实现的关键,相干光具有强度和相位两个特性。
这是因为相干光所包含的信息非常丰富,包括被摄物体的形状、表面纹理等。
如果使用非相干光照射,则无法获得这些信息。
其次,光的干涉是全息照相技术的基础。
当两束或多束相干光相遇时,会在空间中形成干涉图案。
这种干涉图案是两束光波之间相互作用的结果,其中包括光的频率与振幅的变化。
通过记录下这种干涉图案,就可以获得被摄物体的三维信息。
最后,全息照相是将干涉图案记录到感光材料上的过程。
感光材料通常是一种多层复合结构,其中包含了记录和再现的功能层。
记录功能层是一种具有感光性质的材料,它能够在光波的照射下记录下光的干涉图案。
再现功能层是一种具有衍射特性的材料,它可以将记录下的干涉图案在透明介质中重现出来,从而实现三维影像的再现。
全息照相技术的应用具有很大的潜力。
在工业领域中,全息照相技术可以应用于三维形貌测量、缺陷检测和机械零件的精度检测等方面。
在科研领域中,全息照相技术可以用于光学实验室、天文学观测和分子结构研究等方面。
在医学领域中,全息照相技术可应用于内窥镜、X光片、CT扫描等成像技术的改进。
在艺术领域中,全息照相技术可以应用于艺术品的纪念和展示等方面。
总之,全息照相技术是一种具有重要应用价值的光学技术。
它能够利用光的相干性、干涉性和特殊的波动特性,实现对三维物体影像的记录和再现。
全息照相技术具有广泛的应用领域,在工业、科研、医学和艺术等方面都有着重要的应用前景。
全息照相技术原理及其应用

全息照相技术原理及其应用随着科技的不断发展,全息照相技术的应用也越来越广泛。
那么,什么是全息照相技术?它的原理是什么?又有哪些应用呢?一、全息照相技术概述全息照相技术是一种用来记录三维物体形态和光学特性的高分辨率成像技术。
全息照相技术的发展历史可追溯到20世纪60年代,主要是由美国物理学家德尼斯·高斯于1962年发明的。
全息照相技术的原理是:在一个光排列下,将物体的两个光波(物体波和参考波)汇合成一个干涉图案;而这个干涉图案则是包含了该物体三维形状和瞬时光学特性的复杂图样。
这个图案可以通过激光束照明下的光敏材料记录下来,形成一种全息照片。
这种全息照片不同于传统的二维照片,它具有更多的信息和更丰富的颜色。
因此,人们可以通过它来更精确地观察物体的形态和特性,也可以用于各种领域的三维成像。
二、全息照相技术的应用目前,全息照相技术已经发展出了许多应用。
下面,我们来看看其中的几个应用领域。
1. 三维成像全息照相技术是三维成像的理想选择。
可以通过使用立体全息照片来记录物体形状和位置等信息,可以让人们更加真实地感受到三维场景。
因此,它在工程、艺术等领域中都有重要的应用,如全息电影、全息展示、虚拟现实等。
2. 安全防伪全息照相技术在安全防伪领域中也有广泛的应用。
它可以用于制作信用卡、票据、证件等高安全性需要的物品。
通过制作具备全息特性的商标、防伪标识等,可以有效地预防假冒伪劣和欺诈活动。
3. 医疗影像全息照相技术也可以用于医疗影像。
医生可以通过全息照片来更加准确地看到人体结构及其病变,以便对相关病症进行更为科学的治疗。
此外,还可以通过全息照片来制作透明人体模型,帮助医学生更好地了解人体内部器官的位置和功能。
4. 全息留声全息留声是一种新的音乐制作技术。
它将传统的录音和全息照片技术相结合,制作出具备全息特性的音频记录。
这种全息留声可以在电影、电视等领域中广泛使用,为人们带来更加逼真的听觉体验。
总之,全息照相技术是一种十分实用的成像技术。
全息照相的基本原理

光缝透过的光形成的衍射条纹会使人眼
感到原来的O点处有一发光点O’。所有
发光点的对应的衍射条纹会使人眼看到
一个处于原来位置的完整的立体虚像。
全息 照相 的特
点
1.全息照片衍射形成 的立体虚像是一个真 正立体的,当人眼换一 个位置时,便可以看到 物体的侧面像,即物体 上原来被挡住的部分 也可以看到。
2.即使是全息照片的 一块残片,也可以看到 整个物体的立体象.因 为拍摄照片时,物体上 的点发出的物光在整 个底片上处处与参考 光发生干涉,也就是说, 在底片上处处都有某 一点的记录。
全息 照相 的拍 摄原
理
设a、b为相邻的两暗纹,由干涉知:a 、 b两处的物光与参考光必须都反相.因 为a b两处的参考光相同,所以其物光 的波程差为λ.由几何关系知:
sind x.
d / sin x
由此可知: 当θ不同时,物光与参考 光形成的干涉条纹的间距也不 同,而θ 的大小又可以反映出物光光波的相位.; 再根据条纹的方向即可确定出物体的 前后,上下,左右的位置.
观察全息照片的光路 图如下:
全息 照相 的观 察原
理
全息 照相 的观 察原
理
全息照片不同于普通照片,其底片不显示 物体的形象,而是干涉条纹叠加后的图像。
冲洗时只是改变了不同部分的透光性。
观察时,需利用与拍照时同频率的光的衍 射原理。仍考虑相邻的两条纹a和b,此时 二者为两透光缝。由惠更斯-菲涅耳原理 知:处于同一波阵面上的a、 b可以当成 子波波源,其强度皆为激光光源的强度。 沿原来从物体上O点发来的物光的方向 的两束衍射光,由几何知识知其光程差恰 为λ。由发光点O在底片上各处造成的透
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全息照相的基本原理作者:张新成学号:20114052021单位:吉首大学物理与机电工程学院2011级应用物理班内容摘要:全息摄影亦称:“全息照相”,一种利用波的干涉记录被摄物体反射(或透射)光波中信息(振幅、相位)的照相技术。
全息摄影是通过一束参考光和被摄物体上反射的光叠加在感光片上产生干涉条纹而成。
全息摄影不仅记录被摄物体反射光波的振幅(强度),而且还记录反射光波的相对相位。
全息图并不直接显示物体的图象。
用一束激光或单色光在接近参考光的方向入射,可以在适当的角度上观察到原物的像。
这是因为激光束在全息图的干涉条纹上衍射而重现原物的光波。
再现的像具有三维立体感。
本文试论全息照相的基本原理,来叙述学习本章节后的收获和感想。
关键词:全息照相,波的干涉,全息照片,全息摄影引言:“全息”来自希腊字“holos”,意即完全的信息------不仅包括光的振幅信息,还包括位相信息。
利用干涉原理,将物光波前以干涉条纹的形式记录下来。
由于物光波前的振幅和位相及全部信息都存储在记录介质中,顾晨伟“全息图”。
光波照明全息图,由于衍射效应能再现出原始物光波,该光波将产生包含物体I全部信息的三维像。
这个波前记录和再现的过程就是全息术。
1947年匈牙利出生的英国物理学家D.伽柏(D.Gabor)提出全息术的设想,意图提高电子显微镜的分辨本领。
方法是完全撇开电子显微物镜,用胶片纪录经物体衍射的末聚焦的电子波,得到全息图。
一相干的可见光照明全息图,衍射波将产生原物体放大的光学像。
为了检验他的理论,1948年他利用水银灯发出的可见光代替电子波,获得了第一张全息图及其再现像。
由于全息图的发明,D.伽柏1971年获得诺贝尔物理奖。
20世纪50年代GL诺杰斯(G.L.Rogers)等科学家进一步丰富了波前再现理论。
光波的位相信息是通过与参考光波相干涉,在记录介质上形成干涉图而记录下来,所以要求两束光高度相干。
早期由于没有更好的相干光源,在两侧同轴方向产生不可分离的“孪生像”。
观察者对虚像聚焦时,会看到由实像引起的离焦像;対实像聚焦时,伴随有离焦的虚像。
从而像质大大降低。
由于光源相干性的限制以及”孪生像“的问题,全息术研究的进展极大受阻。
1960年,激光的出现为全息术的迅速发展开辟了道路。
激光是一种单色性很强的光,是制作全息图最理想的光源。
1962年美国密执安大学雷达实验室的 E.N利思(E.N.Leith)和J.乌帕特尼克斯(J.upatnieks)借鉴雷达中载频技术,提出”斜参考光法“。
这种方法不像伽柏全息图那样以物体直接透射光作为参考光,而是单独引入分离的倾斜照射的参考光波。
依据这种方法采用氦氖激光器拍摄成功第一张三维物体的激光透射全息图。
激光照明全息图,可看到清楚的三维像。
产生孪生像的衍射波在方向上分离,不再相互干扰。
1962年苏前联科学家U.丹尼苏克(Denisyuk)提出了反射全息图的方法,第一次用普通的白织灯照明全息图观察到全息像。
由于脉冲红宝石激光器可辐射持续时间很短(短到几个纳秒)的强脉冲激光,研究人员开始用脉冲激光全息图记录运动的物体,如飞行的子弹,喷射微粒,飞虫等,该方法后来开创了脉冲激光全息人物肖像的特殊应用领域。
1965年,R.L.鲍威尔,K.A.斯泰特森提出全息干涉术。
物体在施加应力前后经过两次全息曝光,再现的全息像上的等高线显示物体变形的状况。
全息干涉术可用材料无损检测.流场分析等。
1968年,S.A.本顿发明彩虹全息术,由于可用白光观察全息图,看到记录物体的彩虹像,成为显示全息术的重要进展。
它使后来通过模压技术批量生产全息图成为现实。
从此全息术才真正的走出实验室,在生产实践和科学研究领域中成为了重要角色,以全息电影和全息电视,全息储存、全息显示及全息防伪商标等各种形式存在,除光学全息外,还发展了红外、微波和超声全息技术,这些全息技术在军事侦察和监视上有重要意义,如今全系极速已经进入了社会的各个领域一.全息照相原理全息照相分为两步。
第一步利用干涉法拍摄全息图(全息照片),如图1(a)所示。
从激光器发出的相干光束,被分束镜分成两束光,一束光照明到被摄物体,从物体上反射或散射的物光射到感光胶片上。
另一部分光束投射到反射镜,被反射的光波直接照射到感光胶片上,这束光称为参考光。
物光与参考光在胶片上迭加干涉,产生的干涉图样即记录了物体振幅和位相的全部信息。
这张具有干涉图样的胶片经过适当曝光与冲洗处理后,就是一张全息图(全息照片)。
这一拍摄过程就是一个记录或储存信息(或波前)的过程。
第二步是利用衍射原理进行物体的再现(重现)。
由于全息照片记录的是两相干光相互干涉的结果,因此,与原来的被摄物体毫无相似之处。
然而,当把全息图放回原处,用相干参考光(此时称为再现光束)照明全息图时,如图1(b)所示,这张具有干涉图样的全息图宛如一块复杂的光栅将发生衍射,在这些衍射光波中包含着原来的物光波,观察者迎着再现光波方向即可观察到一个逼真的、立体感很强的物体再现像。
这是一个物光波前再现亦即成像的过程。
不过,如果再现光束和原来的参考光束同向,得到的物像是虚像。
如果用原相干光反向照射全息图,则得到的物像是实像。
如果不用激光而用白光去照射,由于白光是由多种波长的光混合而成的,全息照片上的干涉条纹,就要同时对各种波长的光发生衍射。
因而,全息照片上会出现很多重叠错位的像,使人无法看清楚。
当然,如果我们在全息图的拍摄过程中采用诸如彩虹全息和反射式傅立叶变换全息等记录技术,则可以获得白光照明再现原物像的白光全息。
图1 全息记录与再现原理(a )全息图的记录光路 (b )全息图的再现光路与像根据记录光路的不同,全息照相又分为透射式全息和反射式全息。
现在我来就投射式全息照相重点讨论。
投射式全息照相投射式全息照相是指重现时所观察的全息图透射光的成像。
下面对平面全息图的情况作具体的数学描述。
1.设来自物体的单设光波在全息干板平面上的复振幅分布O(x,y)=(,)]o(,)exp[o x y x y i A ψ (1)称为物光波。
同一波长的参考光波在于平板平面上的复振幅分布为: R(x,y)=(,)exp[(,)]R R A x y i x y ψ (2) 称为参考光波。
平板上的总复振幅分布为:U(x,y)=O(x,y)+R(x,y) (3) 干板上的光强分布为:I(x,y)U(x,y)U*(x,y) (4) 将(1),(2),(3)式代入(4)式中,得出:I(x,y)=2200000(,)exp[()]exp[()]RR R R R A A A A x y i A A i ψψψψ++-+- (5) 适当控制曝光量和冲洗条件,可以是全息图的振幅透过率t(x,y)与曝光量E (与光强I 成正比)成线性αβ关系,即t(x,y)(,)I x y ∝设t(x,y)=(,)x y αβ+ (6) α,β为常数。
这就是全息图的记录过程。
由上面的描述可知,底片上干涉条纹的反衬度为:β=max min max minI I I I -+ 其实m ax I =|A 0+20min 2||,|R R A A I A -= 干涉条纹的间距则决定于(ψ)0ϕ-R 随位子变化的缓慢。
对一定的ψR ,A R 来说,干涉条纹的明暗对比反映了物光波的振幅大小,及强度因子,干涉条纹的形状间隔反映了物光波的相位分布。
因此底片记录了干涉条纹,也就记录了物光波前的全部信息--振幅和相位。
2.波前重视用于参考光完全相同的光束照射全息图,透过光的复振幅分布 是: U t (x,y)=R(x,y)t(x,y) (7)将(2),(3)式代入上式,整理得出:2222000000(,)[()exp()exp()exp[(2(8))]t R R R R R U x y A A A i A A i A A i αβψψψψ=++++(8)式中的第一项,具有再现光的特性,是衰减了的再现光,这是0级衍射。
(8)式的第二项,是原来的物光波乘—系数,它具有原来物光波的特性。
如果用眼睛接收到这个光波,就会看到原来的“物”。
这个再现像就是虚像,称为原始像。
(8)中的第三项,具有与原物光波共轭的相位:exp (-i 0ψ),说明它代表一束会聚光,应形成一个实像。
因为有一位相因子exp(2i 0ψ)存在,这个实像不在原来的方向上。
这个像叫共轭像。
通常把形成原始像的衍射光称为+1级衍射,把形成共轭像的衍射光称为级衍射。
在参考为球面波的情况下,重现光的点光源和原记录时参考光的点光源必须需在相同位置(相对于底片),才能得到无畸变虚像。
否则,重现像的位置不同于原来“物”的位置,重现像的放大倍数也不等于1.照明点光源愈远,像愈大,反之像缩小。
要得到无畸变实像,应以参考光的共轭光——一束会聚在原参考光电光源的会聚光——照明底片。
3.体全息图以上推导中假设乳胶层无限薄,全息图具有平面结构,但这仅在参考光与物光夹角很小(10度左右)时是成立的。
当物光和参考光夹角较大时,相近条纹的间距(为乳胶层厚度),这样的全息图具有立体结构,就是所谓的“体积全息图”,其重现是三维衍射过程,衍射极大值应满足布拉格条件,重现时照明光必须以特定的角度入射,才能看到较亮的重现像。
同时级衍射不会同时出现,因而不能同时看到虚像和实像。
结束语:由上面所论述的可得到全息照相理解:物体上的每个物点发射一个球面波,当这个球面波到达全息图时,它將和物体的强背景射出平面波相干涉(注意,前面已提到了可能的物体集有着很强的背景),球面波和平面波的干涉得到了干涉图样。
在再现时,每个干涉图样的作用好似透镜一样(但光是由衍射而不是由折射引起偏折的),把一部分入射光聚焦成一个点,这个点就是产生特定的干涉图样的那个物点的像。
“全息照相”就是一种利用波的干涉记录被摄物体反射(或透射)光波中信息(振幅、相位)的照相技术。
全息摄影是通过一束参考光和被摄物体上反射的光叠加在感光片上产生干涉条纹而成。
全息摄影不仅记录被摄物体反射光波的振幅(强度),而且还记录反射光波的相对相位。
参考文献:1.吕乃光编著《傅里叶光学》北京机械工业出版社出版2006年3月(2012年6月重印)第二版2.苏显渝李继陶编著《信息光学》北京科学出版社出版1999年9月第一版3.A.W. 罗曼著虞祖良金国藩译《光学信息处理》清华大学出版社1987.74.李俊昌熊秉衡等编著《信息光学理论与计算》北京科学出版社2009。