平面向量练习题集复习资料
(完整版)平面向量基本概念练习题

(完整版)平面向量基本概念练习题第二章平面向量§2.1 平面向量的实际背景及基本概念班级___________姓名____________学号____________得分____________一、选择题1.下列物理量中,不能称为向量的是()A .质量B .速度C .位移D .力 2.设O 是正方形ABCD 的中心,向量AO OB CO OD u u u r u u u r u u u r u u u r 、、、是()A .平行向量B .有相同终点的向量C .相等向量D .模相等的向量3.下列命题中,正确的是()A .|a | = |b |?a = bB .|a |> |b |?a > bC .a = b ?a 与b 共线D .|a | = 0?a = 04.在下列说法中,正确的是()A .两个有公共起点且共线的向量,其终点必相同;B .模为0的向量与任一非零向量平行;C .向量就是有向线段;D .若|a |=|b |,则a =b5.下列各说法中,其中错误的个数为()(1)向量AB u u u r 的长度与向量BA u u u r 的长度相等;(2)两个非零向量a 与b 平行,则a 与b 的方向相同或相反;(3)两个有公共终点的向量一定是共线向量;(4)共线向量是可以移动到同一条直线上的向量;(5)平行向量就是向量所在直线平行A .2个B .3个C .4个D .5个 *6.△ABC 中,D 、E 、F 分别为BC 、CA 、AB 的中点,在以A 、B 、C 、D 、E 、F 为端点的有向线段所表示的向量中,与EF u u u r 共线的向量有()A .2个B .3个C .6个D .7个二、填空题7.在(1)平行向量一定相等;(2)不相等的向量一定不平行;(3)共线向量一定相等;(4)相等向量一定共线;(5)长度相等的向量是相等向量;(6)平行于同一个向量的两个向量是共线向量中,说法错误的是_______________________.8.如图,O 是正方形ABCD 的对角线的交点,四边形OAED 、OCFB 是正方形,在图中所示的向量中,(1)与AO u u u r 相等的向量有_________________________;(2)与AO u u u r 共线的向量有_________________________;(3)与AO u u u r 模相等的向量有_______________________;(4)向量AO u u u r 与CO u u u r 是否相等?答:_______________.9.O 是正六边形ABCDEF 的中心,且AO =u u u r a ,OB =u u u r b ,AB =u u u r c ,在以A 、B 、C 、D 、E 、F 、O 为端点的向量中:(1)与a 相等的向量有;(2)与b 相等的向量有;(3)与c 相等的向量有.*10.下列说法中正确是_______________(写序号)(1)若a 与b 是平行向量,则a 与b 方向相同或相反;(2)若AB u u u r 与CD u u u r 共线,则点A 、B 、C 、D 共线;(3)四边形ABCD 为平行四边形,则AB u u u r =CD u u u r ;(4)若a = b ,b = c ,则a = c ;(5)四边形ABCD 中,AB DC =u u u r u u u r 且||||AB AD =u u u r u u u r ,则四边形ABCD 为正方形;(6)a 与b 方向相同且|a | = |b |与a = b 是一致的;三、解答题11.如图,以1×3方格纸中两个不同的格点为起点和终点的所有向量中,有多少种大小不同的模?有多少种不同的方向?O A B C D E F12.在如图所示的向量a 、b 、c 、d 、e 中(小正方形边长为1)是否存在共线向量?相等向量?模相等的向量?若存在,请一一举出.13.某人从A 点出发向西走了200m 达到B 点,然后改变方向向西偏北600走了450m 到达C 点,最后又改变方向向东走了200m 到达D 点(1)作出向量AB u u u r 、BC u u u r 、CD u u u r (1cm 表示200m );(2)求DA u u u r 的模.*14.如图,中国象棋的半个棋盘上有一只“马”,开始下棋时它位于A 点,这只“马”第一步有几种可能的走法?试在图中画出来;若它位于图中的P 点,则这只“马”第一步有几种可能的走法?它能否走若干步从A 点走到与它相邻的B 点处?。
平面向量总复习+习题(适合基础差的用)

平面向量小结与复习一、本章知识 1.本章知识网络结构2.本章重点及难点(1) 本章的重点有向量的概念、运算及坐标表示.(2) 本章的难点是向量的概念、运算法则的理解和利用向量解决物理问题和几何问题. (3) 对于本章内容的学习,要注意体会数形结合的数学思想方法的应用3.向量的概念(1)向量的基本要素:大小和方向(2)向量的表示:几何表示法AB ,a ;坐标表示法),(y x yj xi a =+=(3)向量的长度:即向量的大小,记作|a|(4)特殊的向量:零向量a =0 ⇔|a |=0 单位向量0a 为单位向量⇔|0a|=1(5)相等的向量:大小相等,方向相同.⇔=b a),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x .(6)平行向量(共线向量):方向相同或相反的向量,称为平行向量记作a ∥b由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量4.向量的运算:向量的加减法,数与向量的乘积,向量的数量积(内积)及其各运算的坐标表示和性质见下表:向量的数量积实际背景向量 向量及其基本概念 线性运算基本定理坐标表示向量应用向量在物理中的应用向量在几何中的应用向量的加法 实数乘向量向量的减法零向量单位向量相等向量共线向量共线与垂直的坐标表示 加、减、数乘的坐标表示运算类型 几何方法坐标方法 运算性质向量的加法1平行四边形法则(共起点构造平行四边形)2三角(多边)形法则(向量首尾相连)),(2121y y x x b a ++=+a b b a +=+)()(c b a c b a ++=++AC BC AB =+向 量的减 法三角形法则(共起点向被减)),(2121y y x x b a --=-)(b a b a-+=-BA AB -=AB OA OB =-数 乘 向 量1aλ是一个向量,满足:2λ>0时,a λ与a同向;λ<0时, a λ与a异向;λ=0时, aλ =0),(y x a λλλ=a a)()(λμμλ=a a aμλμλ+=+)(b a b aλλλ+=+)( a ∥)0(≠=⇔b b a b λ向 量 的 数量 积b a⋅是一个实数10 =a 或0 =b 或ba ⊥时,b a ⋅=02≠a 且≠b 时,><=⋅b a b a b a ,cos ||||2121y y x x b a +=⋅a b b a ⋅=⋅)()()(b a b a b a⋅=⋅=⋅λλλ c b c a c b a ⋅+⋅=+)( 22||a a =22||y x a +=||||||b a b a ≤⋅5.重要定理、公式:(1)平面向量基本定理 21,e e是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数21,λλ,使2211e e aλλ+=.(2)两个向量平行的充要条件 a ∥b (b ≠0 )⇔存在惟一的实数λ使得a=λb ;(3)两个向量垂直的充要条件 当a ,b ≠0 时,a ⊥b ⇔a ·b=0⇔02121=+y y x x课堂练习1 判断题 (1)AB +BA =O ( ) (2)O AB =O ( ) (3)AB -AC =BC ( )2 选择题 已知a ,b 为两个单位向量,下列四个命题中正确的是( )A .a 与b 相等B .如果a 与b 平行,那么a 与b 相等C a ·b =1D .a 2=b 23.在△ABC 中,AB =c ,AC =b ,若点D 满足BD →=2DC →,则AD →=( )A.23b +13cB.53c -23bC.23b -13cD.13b +23c 4.(2010·广东中山调研)已知a 、b 是两个不共线的向量,AB →=λa +b ,AC →=a +μb (λ,μ∈R),那么A 、B 、C 三点共线的充要条件是( )A .λ+μ=2B .λ-μ=1C .λμ=-1D .λμ=15.(2009·山东)设P 是△ABC 所在平面内的一点,BC →+BA →=2BP →,则( )A .PA →+PB →=0 B .PC →+PA →=0 C .PB →+PC →=0D .PA →+PB →+PC →=06.已知平面内有一点P 及一个△ABC ,若PA →+PB →+PC →=AB →,则( )A .点P 在△ABC 外部B .点P 在线段AB 上C .点P 在线段BC 上D .点P 在线段AC 上7已知A 、B 、C 是直线l 上的顺次三点,指出向量AB 、AC 、BA 、CB 中,哪些是方向相同的向量8已知AC 为AB 与AD 的和向量,且AC =a ,BD =b ,分别用a 、b 表示AB ,AD9已知ABCDEF 为正六边形,且AB =a ,AE =b ,用a ,b 表示向量DE 、AD 、BC 、EF 、FA 、CD 、AC 、CE10.设两个非零向量a 与b 不共线,(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A 、B 、D 三点共线;(2)试确定实数k ,使ka +b 和a +kb 共线.11.(2010·安徽合肥调研)若a ,b 是两个不共线的非零向量,a 与b 起点相同,则当t 为何值时,a ,tb ,13(a +b )三向量的终点在同一条直线上?MOP OB OA ), 1 , 2 ( ), 1 , 5 ( ), 7 ,1 ( = = = 12已知平面向量是直线OP 上的一个动点,求MB MA ⋅的最小值及此时的坐标。
平面向量知识点+例题+练习+答案

五、平面向量1.向量的概念①向量 既有大小又有方向的量。
向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a |。
向量不能比较大小,但向量的模可以比较大小。
向量表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;(3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。
如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。
向量和数量的区别:向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。
如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____(答:(3,0))②零向量长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ⇔|a |=0。
由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。
(注意与0的区别)③单位向量 模为1个单位长度的向量,向量0a 为单位向量⇔|0a |=1。
(与AB 共线的单位向量是||AB AB ±);④平行向量(共线向量)方向相同或相反的非零向量。
任意一组平行向量都可以移到同一直线上,方向相同或相反的向量,称为平行向量,记作a ∥b ,规定零向量和任何向量平行。
由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线;数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的。
(word完整版)高中数学平面向量专题复习(含例题练习)

平面向量专题复习一.向量有关概念:1. 向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示,注意 不能说向量就是有向线段,为什么?(向量可以平移)。
如:2•零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的;uuuS3 .单位向量:长度为一个单位长度的向量叫做单位向量 (与AB 共线的单位向量是AB ); |AB|4 •相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 5. 平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作: a // b ,规定零向量和任何向量平行。
提醒:① 相等向量一定是共线向量,但共线向量不一定相等;② 两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线 ,但两条直线平行不包含两条直线重合;③ 平行向量无传递性!(因为有0);uuu uujr④ 三点A B C 共线 AB 、AC 共线;6. 相反向量:长度相等方向相反的向量叫做相反向量。
a 的相反向量是一a 。
女口例1: (1)若a b ,则a b 。
( 2)两个向量相等的充要条件是它们的起点相同,终点相同。
(3)若iuu uuLruuu uuir r r r rAB DC ,则ABCD 是平行四边形。
(4)若ABCD 是平行四边形,则 AB DC 。
( 5)若a b,b c ,则r r r r r r r ra c 。
(6)若a//b,b//c ,贝U a//c 。
其中正确的是 _____________、向量的表示 1 .几何表示法: 用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;2 .付号表示法:用一个小写的英文字母来表示,如 a , b , c 等; 3 .坐标表示法:在平面内建立直角坐标系,以与 - r r r x 轴、y 轴方向相同的两个单位向量 i , j 为基底, —1- —* —F 则平面内的任一向量 a 可表示为a xi y j x,y ,称x,y 为向量a 的坐标,a = x, y 叫做向量a 的坐标表示。
平面向量练习题及答案

平面向量练习题及答案1. 向量初步概念和运算(1) 已知向量a=3i+4j,求向量a的模长。
答案:|a| = √(3^2 + 4^2) = 5(2) 已知向量b=-2i+5j,求向量b的模长。
答案:|b| = √((-2)^2 + 5^2) = √29(3) 已知向量c=2i+3j,求向量c的模长和方向角(与x轴正方向的夹角)。
答案:|c| = √(2^2 + 3^2) = √13方向角θ = arctan(3/2)2. 向量的线性运算(1) 已知向量a=3i+4j,向量b=-2i+5j,求向量a+b。
答案:a+b = (3-2)i + (4+5)j = i + 9j(2) 已知向量a=3i+4j,向量b=2i-7j,求向量a-b。
答案:a-b = (3-2)i + (4-(-7))j = i + 11j(3) 已知向量a=3i+4j,求向量-2a的模长。
答案:|-2a| = |-2(3i+4j)| = |-6i-8j| = √((-6)^2 + (-8)^2) = 103. 向量的数量积与投影(1) 已知向量a=3i+4j,向量b=-2i+5j,求向量a·b的值。
答案:a·b = (3*-2) + (4*5) = -6 + 20 = 14(2) 已知向量a=3i+4j,向量b=-2i+5j,求向量a在b方向上的投影。
答案:a在b方向上的投影= (a·b)/|b| = 14/√294. 向量的夹角和垂直判定(1) 判断向量a=3i+4j和向量b=-2i+5j是否相互垂直。
答案:两个向量相互垂直的条件是a·b = 0。
计算得到a·b = 14,因此向量a和向量b不相互垂直。
(2) 已知向量a=3i+4j,向量b=-8i+6j,求向量a和向量b的夹角。
答案:向量a和向量b的夹角θ = arccos((a·b)/(∣a∣*∣b∣)) = arccos((-66)/(√25*√100))5. 向量共线和平面向量的应用(1) 已知向量a=3i+4j,向量b=-6i-8j,判断向量a和向量b是否共线。
(完整版)平面向量知识点及练习题有答案,推荐文档

(4)特殊的向量:零向量 a=O |a|=O.单位向量 aO 为单位向量 |aO|=1.
(5)相等的向量:大小相等,方向相同:(x1,y1)=(x2,y2)
x1
y1
x2 y2
(6) 相反向量:a=-b b=-a a+b=0
(7)平行(共线)向量:方向相同或相反的向量,称为平行向量.记作 a∥b.
∴航向为北偏西 30 . 8.过点 O 作向量 OA 、 OB 、 OC ,使之分别与力 F1 , F2 , F3 相等,由于 F1 , F2 ,
F3 的合力为 0 ,则以 OC 、 OB 为邻边的平行四边形的对角线 OD 与 OA 的长度相等,又
由于力 F1 , F2 , F3 的大小相等,∴ OA OB OC ,则三角形 OCD 和三角形
6
6
(7)北偏西 300
(8) 1200
(9)略
m 6 m 3
(10) n 3
或
n
3 2
略解或提示:
1.由单位向量的定义即得 a b 1 ,故选(D).
2.由于 AC AB AD ,∴ AC AB AD ,即 BC AD ,∴线段 BC 与线段 AD 平行且
相等,∴ ABCD 为平行四边形,选(A).
④S△=1/2sinC·ab=1/2ac·sinB=1/2cb·sinA ⑤S△= PP aP bP c [海伦公式]
⑥S△=1/2(b+c-a)ra[如下图]=1/2(b+a-c)rc=1/2(a+c-b)rb
[注]:到三角形三边的距离相等的点有 4 个,一个是内心,其余 3 个是旁心. 如图:
向量 MN 用 a 、 b 表示为
平面向量专题(优秀经典专题梳理练习及答案详解)

n=-1.
7、设向量 a=(4cos α,sin α),b=(sin β,4cos β),c=(cos β,-4sin β). (1)若 a 与 b-2c 垂直,求 tan(α+β)的值; (2)求|b+c|的最大值; (3)若 tan αtan β=16,求证:a∥b.
7、解析:(1)因为 a 与 b-2c 垂直,所以 a·(b-2c)=0,即 4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β=0,4sin (α+β)-8cos(α+β)=0,
643 2
5、解析:由 a·(b-a)=a·b-|a|2=2=6cos θ-1,
∴cos θ=1, 2
∴θ=π. 答案:C 3
→
→
→
→
→
6、已知 A(-2,4),B(3,-1),C(-3,-4).设AB=a,BC=b,CA=c,且CM=3c,CN
=-2b.
(1)求 3a+b-3c;(2)求满足 a=mb+nc 的实数 m,n;
②若
Ax1
,
y1
,
Bx2
,
y
2
,则
uuur AB
x2
x1,
y2
y1
;
③若 ar =(x,y),则 ar =( x, y);
④若
ar
x1,
y1
,
r b
x2 ,
y2
,则
ar
//
r b
x1 y2
x2
y1
0
。
3、平面向量的相关计算
rr ①向量的模与平方的关系: a a
ar 2
|
ar
|2
。
②乘法公式成立
含解析高中数学《平面向量》专题训练30题(精)

含解析高中数学《平面向量》专题训练30题(精)含解析高中数学《平面向量》专题训练30题(精)1.已知向量.(1)若,求x的值;(2)记,求函数y=f(x)的最大值和最小值及对应的x的值.【答案】(1)(2)时,取到最大值3;时,取到最小值.【解析】【分析】(1)根据,利用向量平行的充要条件建立等式,即可求x的值.(2)根据求解求函数y=f(x)解析式,化简,结合三角函数的性质即可求解最大值和最小值及对应的x的值.【详解】解:(1)∵向量.由,可得:,即,∵x∈[0,π]∴.(2)由∵x∈[0,π],∴∴当时,即x=0时f(x)max=3;当,即时.【点睛】本题主要考查向量的坐标运用以及三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.2.已知中,点在线段上,且,延长到,使.设.(1)用表示向量;(2)若向量与共线,求的值.【答案】(1),;(2)【解析】【分析】(1)由向量的线性运算,即可得出结果;(2)先由(1)得,再由与共线,设,列出方程组求解即可.【详解】解:(1)为BC的中点,,可得,而(2)由(1)得,与共线,设即,根据平面向量基本定理,得解之得,.【点睛】本题主要考查向量的线性运算,以及平面向量的基本定理,熟记定理即可,属于常考题型.3.(1)已知平面向量、,其中,若,且,求向量的坐标表示;(2)已知平面向量、满足,,与的夹角为,且(+)(),求的值.【答案】(1)或;(2)【解析】【分析】(1)设,根据题意可得出关于实数、的方程组,可求得这两个未知数的值,由此可得出平面向量的坐标;(2)利用向量数量积为零表示向量垂直,化简并代入求值,可解得的值.【详解】(1)设,由,可得,由题意可得,解得或.因此,或;(2),化简得,即,解得4.已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.【答案】(1)(2)【解析】【详解】试题分析:(1)根据向量坐标运算公式计算;(2)求出的坐标,根据向量共线与坐标的关系列方程解出k;试题解析:(1)(2),∵与共线,∴∴5.已知向量与的夹角,且,.(1)求,;(2)求与的夹角的余弦值.【答案】(1),;(2).【解析】【分析】(1)利用平面向量数量积的定义可计算得出的值,利用平面向量数量积的运算性质计算得出的值;(2)计算出的值,利用平面向量夹角的余弦公式可求得与的夹角的余弦值.【详解】(1)由已知,得,;(2)设与的夹角为,则,因此,与的夹角的余弦值为.6.设向量,,记(1)求函数的单调递减区间;(2)求函数在上的值域.【答案】(1);(2).【解析】【详解】分析:(1)利用向量的数量积的坐标运算式,求得函数解析式,利用整体角的思维求得对应的函数的单调减区间;(2)结合题中所给的自变量的取值范围,求得整体角的取值范围,结合三角函数的性质求得结果.详解:(1)依题意,得.由,解得故函数的单调递减区间是.(2)由(1)知,当时,得,所以,所以,所以在上的值域为.点睛:该题考查的是有关向量的数量积的坐标运算式,三角函数的单调区间,三角函数在给定区间上的值域问题,在解题的过程中一是需要正确使用公式,二是用到整体角思维.7.在中,内角,,的对边分别是,,,已知,点是的中点.(Ⅰ)求的值;(Ⅱ)若,求中线的最大值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(1)由正弦定理,已知条件等式化边为角,结合两角和的正弦公式,可求解;(2)根据余弦定理求出边的不等量关系,再用余弦定理把用表示,即可求解;或用向量关系把用表示,转化为求的最值.【详解】(Ⅰ)由已知及正弦定理得.又,且,∴,即.(Ⅱ)方法一:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴在和中,由余弦定理得,,①.②由①②,得,当且仅当时,取最大值.方法二:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴,两边平方得,∴,当且仅当时,取最大值.【点睛】本题考查正弦定理、余弦定理在三角形中应用,考查基本不等式和向量的模长公式的灵活运用,是一道综合题.8.已知平面向量,.(1)若,求的值;(2)若,与共线,求实数m的值.【答案】(1);(2)4.【解析】(1)求出,即可由坐标计算出模;(2)求出,再由共线列出式子即可计算.【详解】(1),所以;(2),因为与共线,所以,解得m=4.9.已知向量.(Ⅰ)若,求的值;(Ⅱ)若,求向量与夹角的大小.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)首先求出的坐标,再根据,可得,即可求出,再根据向量模的坐标表示计算可得;(Ⅱ)首先求出的坐标,再根据计算可得;【详解】解:(Ⅰ)因为,所以,由,可得,即,解得,即,所以;(Ⅱ)依题意,可得,即,所以,因为,所以与的夹角大小是.10.如图,在中,,,,,.(1)求的长;(2)求的值.【答案】(1);(2).【解析】(1)将用和表示,利用平面向量数量积的运算律和定义计算出的值,即可得出的长;(2)将利用和表示,然后利用平面向量数量积的运算律和定义计算出的值.【详解】(1),,,,,,.;(2),,,.【点睛】本题考查平面向量模与数量积的计算,解题的关键就是选择合适的基底将题中所涉及的向量表示出来,考查计算能力,属于中等题.11.如图所示,在中,,,,分别为线段,上一点,且,,和相交于点.(1)用向量,表示;(2)假设,用向量,表示并求出的值.【答案】(1);(2),.【解析】【分析】(1)把放在中,利用向量加法的三角形法则即可;(2)把,作为基底,表示出,利用求出.【详解】解:由题意得,,所以,(1)因为,,所以.(2)由(1)知,而而因为与不共线,由平面向量基本定理得解得所以,即为所求.【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则;(2)树立“基底”意识,利用基向量进行线性运算.12.已知向量与的夹角为,且,.(1)若与共线,求k;(2)求,;(3)求与的夹角的余弦值【答案】(1);(2),;(3).【解析】【分析】(1)利用向量共线定理即可求解.(2)利用向量数量积的定义:可得数量积,再将平方可求模.(3)利用向量数量积即可夹角余弦值.【详解】(1)若与共线,则存在,使得即,又因为向量与不共线,所以,解得,所以.(2),,(3).13.已知.(1)当为何值时,与共线(2)当为何值时,与垂直?(3)当为何值时,与的夹角为锐角?【答案】(1);(2);(3)且.【解析】【分析】(1)利用向量共线的坐标表示:即可求解.(2)利用向量垂直的坐标表示:即可求解.(3)利用向量数量积的坐标表示,只需且不共线即可求解.【详解】解:(1).与平行,,解得.(2)与垂直,,即,(3)由题意可得且不共线,解得且.14.如图,在菱形ABCD中,,.(1)若,求的值;(2)若,,求.(3)若菱形ABCD的边长为6,求的取值范围.【答案】(1);(2);(3).【解析】【分析】(1)由向量线性运算即可求得值;(2)先化,再结合(1)中关系即可求解;(3)由于,,即可得,根据余弦值范围即可求得结果.【详解】解:(1)因为,,所以,所以,,故.(2)∵,∴∵ABCD为菱形∴∴,即.(3)因为,所以∴的取值范围:.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算;(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.15.已知,,与夹角是.(1)求的值及的值;(2)当为何值时,?【答案】(1);(2)【解析】【分析】(1)利用数量积定义及其向量的运算性质,即可求解;(2)由于,可得,利用向量的数量积的运算公式,即可求解.【详解】(1)由向量的数量积的运算公式,可得,.(2)因为,所以,整理得,解得.即当值时,.【点睛】本题主要考查了数量积定义及其运算性质、向量垂直与数量积的关系,其中解答中熟记向量的数量积的运算公式,以及向量垂直的坐标运算是解答的关键,着重考查了推理能力与计算能力,属于中档题.16.设向量(I)若(II)设函数【答案】(I)(II)【解析】【详解】(1)由=(sinx)2+(sinx)2=4sin2x,=(cosx)2+(sinx)2=1,及,得4sin2x=1.又x∈,从而sinx=,所以x=.(2)sinx·cosx+sin2x=sin2x-cos2x+=sin+,当x∈时,-≤2x-≤π,∴当2x-=时,即x=时,sin取最大值 1.所以f(x)的最大值为.17.化简.(1).(2).【答案】(1);(2).【解析】(1)利用平面向量加法的三角形法则化简可得所求代数式的结果;(2)利用平面向量加法的三角形法则化简可得所求代数式的结果.【详解】(1);(2).18.已知点,,,是原点.(1)若点三点共线,求与满足的关系式;(2)若的面积等于3,且,求向量.【答案】(1)(2)或【解析】【分析】(1)由题意结合三点共线的充分必要条件确定m,n满足的关系式即可;(2)由题意首先求得n的值,然后求解m的值即可确定向量的坐标.【详解】(1),,由点A,B,C三点共线,知∥,所以,即;(2)由△AOC的面积是3,得,,由,得,所以,即,当时,,?解得或,当时,,方程没有实数根,所以或.【点睛】本题主要考查三点共线的充分必要条件,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.19.如图,在直角梯形中,为上靠近B的三等分点,交于为线段上的一个动点.(1)用和表示;(2)求;(3)设,求的取值范围.【答案】(1);(2)3;(3).【解析】【分析】(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,将由这一组基向量的唯一表示出而得解;(3)由动点P设出,结合平面向量基本定理,建立为x的函数求解.【详解】(1)依题意,,,;(2)因交于D,由(1)知,由共起点的三向量终点共线的充要条件知,,则,,;(3)由已知,因P是线段BC上动点,则令,,又不共线,则有,,在上递增,所以,故的取值范围是.【点睛】由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.20.设向量满足,且.(1)求与的夹角;(2)求的大小.【答案】(1);(2)【解析】【分析】(1)由已知得,展开求得,结合夹角公式即可求解;(2)由化简即可求解.【详解】(1)设与的夹角为θ由已知得,即,因此,得,于是,故θ=,即与的夹角为;(2)由.21.已知,,(t∈R),O是坐标原点.(1)若点A,B,M三点共线,求t的值;(2)当t取何值时,取到最小值?并求出最小值.【答案】(1)t;(2)当t时,?的最小值为.【解析】【分析】(1)求出向量的坐标,由三点共线知与共线,即可求解t的值.(2)运用坐标求数量积,转化为函数求最值.【详解】(1),,∵A,B,M三点共线,∴与共线,即,∴,解得:t.(2),,,∴当t时,?取得最小值.【点睛】关键点点睛:(1)由三点共线,则由它们中任意两点构成的向量都共线,求参数值.(2)利用向量的数量积的坐标公式得到关于参数的函数,即可求最值及对应参数值.22.设向量,,.(1)求;(2)若,,求的值;(3)若,,,求证:A,,三点共线.【答案】(1) 1(2)2(3)证明见解析【解析】【分析】(1)先求,进而求;(2)列出方程组,求出,进而求出;(3)求出,从而得到,得到结果.(1),;(2),所以,解得:,所以;(3)因为,所以,所以A,,三点共线.23.在平面直角坐标系中,已知,.(Ⅰ)若,求实数的值;(Ⅱ)若,求实数的值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求出向量和的坐标,然后利用共线向量的坐标表示得出关于的方程,解出即可;(Ⅱ)由得出,利用向量数量积的坐标运算可得出关于实数的方程,解出即可.【详解】(Ⅰ),,,,,,解得;(Ⅱ),,,解得.【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.24.在中,,,,点,在边上且,.(1)若,求的长;(2)若,求的值.【答案】(1);(2).【解析】【分析】(1)先设,,根据题意,求出,,再由向量模的计算公式,即可得出结果;(2)先由题意,得到,,再由向量数量积的运算法则,以及题中条件,得到,即可求出结果.【详解】(1)设,,则,,因此,所以,,(2)因为,所以,同理可得,,所以,∴,即,同除以可得,.【点睛】本题主要考查用向量的方法求线段长,考查由向量数量积求参数,熟记平面向量基本定理,以及向量数量积的运算法则即可,属于常考题型.25.已知向量,,,且.(1)求,;(2)求与的夹角及与的夹角.【答案】(1),;(2),.【解析】【分析】(1)由、,结合平面向量数量积的运算即可得解;(2)记与的夹角为,与的夹角为,由平面向量数量积的定义可得、,即可得解.【详解】(1)因为向量,,,且,所以,所以,又,所以;(2)记与的夹角为,与的夹角为,则,所以.,所以.【点睛】本题考查了平面向量数量积的运算与应用,考查了运算求解能力,属于基础题.26.平面内给定三个向量,,.(1)求满足的实数,;(2)若,求实数的值.【答案】(1),;(2).【解析】【分析】(1)依题意求出的坐标,再根据向量相等得到方程组,解得即可;(2)首先求出与的坐标,再根据向量共线的坐标表示计算可得;【详解】解:(1)因为,,,且,,,,.,解得,.(2),,,.,,,.,解得.27.如图,已知中,为的中点,,交于点,设,.(1)用分别表示向量,;(2)若,求实数t的值.【答案】(1),;(2).【解析】(1)根据向量线性运算,结合线段关系,即可用分别表示向量,;(2)用分别表示向量,,由平面向量共线基本定理,即可求得t的值.【详解】(1)由题意,为的中点,,可得,,.∵,∴,∴(2)∵,∴∵,,共线,由平面向量共线基本定理可知满足,解得.【点睛】本题考查了平面向量的线性运算,平面向量共线基本定理的应用,属于基础题.28.已知,向量,.(1)若向量与平行,求k的值;(2)若向量与的夹角为钝角,求k的取值范围【答案】(1)或;(2).【解析】(1)利用向量平行的坐标表示列式计算即得结果;(2)利用,且不共线,列式计算即得结果.【详解】解:(1)依题意,,,又,得,即解得或;(2)与的夹角为钝角,则,即,即,解得或.由(1)知,当时,与平行,舍去,所以.【点睛】思路点睛:两向量夹角为锐角(或钝角)的等价条件:(1)两向量夹角为锐角,等价于,且不共线;(2)两向量夹角为钝角,等价于,且不共线.29.已知.(1)若,求的值;(2)若,求向量在向量方向上的投影.【答案】(1)(2)【解析】【分析】(1)先得到,根据可得,即可求出m;(2)根据求出m=2,再根据求在向量方向上的投影.【详解】;;;;;;;在向量方向上的投影为.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题.30.平面内给定三个向量.(1)求;(2)求满足的实数m和n;(3)若,求实数k.【答案】(1)6;(2);(3).【解析】(1)利用向量加法的坐标运算得到,再求模长即可;(2)先写的坐标,再根据使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可.【详解】解:(1)由,得,;(2),,,,故,解得;(3),,,,,,即,解得.【点睛】结论点睛:若,则等价于;等价于.试卷第1页,共3页试卷第1页,共3页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量练习题集答案典例精析题型一向量的有关概念【例1】下列命题:①向量AB的长度与BA的长度相等;②向量a与向量b平行,则a与b的方向相同或相反;③两个有共同起点的单位向量,其终点必相同;④向量AB与向量CD是共线向量,则A、B、C、D必在同一直线上.其中真命题的序号是.【解析】①对;零向量与任一向量是平行向量,但零向量的方向任意,故②错;③显然错;AB与CD 是共线向量,则A、B、C、D可在同一直线上,也可共面但不在同一直线上,故④错.故是真命题的只有①.【点拨】正确理解向量的有关概念是解决本题的关键,注意到特殊情况,否定某个命题只要举出一个反例即可.【变式训练1】下列各式:a•;①|a|=a②(a•b) •c=a•(b•c);③OA-OB=BA;④在任意四边形ABCD中,M为AD的中点,N为BC的中点,则AB+DC=2MN;⑤a=(cos α,sin α),b=(cos β,sin β),且a与b不共线,则(a+b)⊥(a-b).其中正确的个数为()A.1B.2C.3D.4a•正确;(a•b) •c≠a•(b•c);OA-OB=BA正确;如下图所示,【解析】选D.| a|=aMN=MD+DC+CN且MN=MA+AB+BN,两式相加可得2MN=AB+DC,即命题④正确;因为a,b不共线,且|a|=|b|=1,所以a+b,a-b为菱形的两条对角线,即得(a+b)⊥(a-b).所以命题①③④⑤正确.题型二 与向量线性运算有关的问题【例2】如图,ABCD 是平行四边形,AC 、BD 交于点O ,点M 在线段DO 上,且DM =DO 31,点N 在线段OC 上,且ON =OC 31,设AB =a , AD =b ,试用a 、b 表示AM ,AN ,MN .【解析】在▱ABCD 中,AC ,BD 交于点O , 所以DO =12DB =12(AB -AD )=12(a -b ),AO =OC =12AC =12(AB +AD )=12(a +b ).又DM =13DO , ON =13OC ,所以AM =AD +DM =b +13DO=b +13×12(a -b )=16a +56b ,AN =AO +ON =OC +13OC=43OC =43×12(a +b )=23(a +b ). 所以MN =AN -AM =23(a +b )-(16a +56b )=12a -16b . 【点拨】向量的线性运算的一个重要作用就是可以将平面内任一向量由平面内两个不共线的向量表示,即平面向量基本定理的应用,在运用向量解决问题时,经常需要进行这样的变形.【变式训练2】O 是平面α上一点,A 、B 、C 是平面α上不共线的三点,平面α内的动点P 满足OP =OA +λ(AB +AC ),若λ=12时,则PA •(PB +PC )的值为 .【解析】由已知得OP -OA =λ(AB +AC ),即AP =λ(AB +AC ),当λ=12时,得AP =12(AB +AC ),所以2AP =AB +AC ,即AP -AB =AC -AP , 所以BP =PC ,所以PB +PC =PB +BP =0,所以PA • (PB +PC )=PA •0=0,故填0. 题型三 向量共线问题【例3】 设两个非零向量a 与b 不共线.(1)若AB =a +b , BC =2a +8b , CD =3(a -b ), 求证:A ,B ,D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 共线.【解析】(1)证明:因为AB =a +b , BC =2a +8b , CD =3(a -b ), 所以BD =BC +CD =2a +8b +3(a -b )=5(a +b )=5AB , 所以AB , BD 共线.又因为它们有公共点B , 所以A ,B ,D 三点共线. (2)因为k a +b 和a +k b 共线, 所以存在实数λ,使k a +b =λ(a +k b ), 所以(k -λ)a =(λk -1)b .因为a 与b 是不共线的两个非零向量,所以k -λ=λk -1=0,所以k 2-1=0,所以k =±1.【点拨】(1)向量共线的充要条件中,要注意当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,要注意待定系数法的运用和方程思想.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.【变式训练3】已知O 是正三角形BAC 内部一点,OA +2OB +3OC =0,则△OAC 的面积与△OAB 的面积之比是() A.32 B.23C.2D.13【解析】如图,在三角形ABC 中, OA +2OB +3OC =0,整理可得OA +OC +2(OB +OC )=0.令三角形ABC 中AC 边的中点为E ,BC 边的中点为F ,则点O 在点F 与点E 连线的13处,即OE =2OF .设三角形ABC 中AB 边上的高为h ,则S △OAC =S △OAE +S △OEC =12•OE • (h 2+h 2)=12OE ·h ,S △OAB =12AB •12h =14AB ·h ,由于AB =2EF ,OE =23EF ,所以AB =3OE ,所以S △OACS △OAB =hh AB OE ••4121=23.故选B.总结提高1.向量共线也称向量平行,它与直线平行有区别,直线平行不包括共线(即重合)的情形,而向量平行则包括共线(即重合)的情形.2.判断两非零向量是否平行,实际上就是找出一个实数,使这个实数能够和其中一个向量把另外一个向量表示出来.3.当向量a 与b 共线同向时,|a +b |=|a |+|b |; 当向量a 与b 共线反向时,|a +b |=||a |-|b ||; 当向量a 与b 不共线时,|a +b |<|a|+|b |.典例精析题型一 平面向量基本定理的应用【例1】如图▱ABCD 中,M ,N 分别是DC ,BC 中点.已知AM =a ,AN =b ,试用a ,b 表示AB ,AD 与AC 【解析】易知AM =AD +DM =AD +12AB ,AN =AB +BN =AB +12AD ,即⎪⎪⎩⎪⎪⎨⎧=+=+.21,21b a AD AB AB AD 所以AB =23(2b -a ), AD =23(2a -b ).所以AC =AB +AD =23(a +b ).【点拨】运用平面向量基本定理及线性运算,平面内任何向量都可以用基底来表示.此处方程思想的运用值得仔细领悟.【变式训练1】已知D 为△ABC 的边BC 上的中点,△ABC 所在平面内有一点P ,满足PA +BP +CP =0,则||||AD PD 等于( )A.13B.12C.1D.2【解析】由于D 为BC 边上的中点,因此由向量加法的平行四边形法则,易知PB +PC =2PD ,因此结合PA +BP +CP =0即得PA =2PD ,因此易得P ,A ,D 三点共线且D 是P A 的中点,所以||AD PD =1,即选C.题型二 向量的坐标运算【例2】 已知a =(1,1),b =(x ,1),u =a +2b ,v =2a -b . (1)若u =3v ,求x ;(2)若u ∥v ,求x . 【解析】因为a =(1,1),b =(x ,1),所以u =(1,1)+2(x ,1)=(1,1)+(2x ,2)=(2x +1,3), v =2(1,1)-(x ,1)=(2-x ,1). (1)u =3v ⇔(2x +1,3)=3(2-x ,1) ⇔(2x +1,3)=(6-3x ,3), 所以2x +1=6-3x ,解得x =1. (2)u ∥v ⇔(2x +1,3)=λ(2-x ,1)⇔⎩⎨⎧=-=+λλ3),2(12x x⇔(2x +1)-3(2-x )=0⇔x =1.【点拨】对用坐标表示的向量来说,向量相等即坐标相等,这一点在解题中很重要,应引起重视. 【变式训练2】已知向量a n =(cos n π7,sin n π7)(n ∈N *),|b|=1.则函数y =|a 1+b|2+|a 2+b|2+|a 3+b|2+…+|a 141+b|2的最大值为 .【解析】设b =(cos θ,sin θ),所以y =|a 1+b|2+|a 2+b|2+|a 3+b|2+…+|a 141+b|2=(a 1)2+b 2+2(cos π7,sin π7)(cos θ,sin θ)+…+(a 141)2+b 2+2(cos 141π7,sin 141π7)(cos θ,sin θ)=282+2cos(π7-θ),所以y 的最大值为284.题型三 平行(共线)向量的坐标运算【例3】已知△ABC 的角A ,B ,C 所对的边分别是a ,b ,c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.【解析】(1)证明:因为m ∥n ,所以a sin A =b sin B . 由正弦定理,得a 2=b 2,即a =b .所以△ABC 为等腰三角形. (2)因为m ⊥p ,所以m ·p =0,即 a (b -2)+b (a -2)=0,所以a +b =ab .由余弦定理,得4=a 2+b 2-ab =(a +b )2-3ab , 所以(ab )2-3ab -4=0. 所以ab =4或ab =-1(舍去). 所以S △ABC =12ab sin C =12×4×32= 3.【点拨】设m =(x 1,y 1),n =(x 2,y 2),则 ①m ∥n ⇔x 1y 2=x 2y 1;②m ⊥n ⇔x 1x 2+y 1y 2=0.【变式训练3】已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,向量m =(2cos C -1,-2),n =(cos C ,cos C +1).若m ⊥n ,且a +b =10,则△ABC 周长的最小值为( )A.10-5 3B.10+5 3C.10-2 3D.10+2 3【解析】由m ⊥n 得2cos 2C -3cos C -2=0,解得cos C =-12或cos C =2(舍去),所以c 2=a 2+b 2-2ab cosC =a 2+b 2+ab =(a +b )2-ab =100-ab ,由10=a +b ≥2ab ⇒ab ≤25,所以c 2≥75,即c ≥53,所以a +b +c ≥10+53,当且仅当a =b =5时,等号成立.故选B.典例精析题型一 利用平面向量数量积解决模、夹角问题 【例1】 已知a ,b 夹角为120°,且|a |=4,|b |=2,求: (1)|a +b |;(2)(a +2b ) ·(a +b ); (3)a 与(a +b )的夹角θ.【解析】(1)(a +b )2=a 2+b 2+2a ·b =16+4-2×4×2×12=12,所以|a +b |=2 3.(2)(a +2b ) ·(a +b )=a 2+3a ·b +2b 2 =16-3×4×2×12+2×4=12.(3)a ·(a +b )=a 2+a ·b =16-4×2×12=12.所以cos θ=||||)(b a a b a a ++•=124×23=32,所以θ=π6.【点拨】利用向量数量积的定义、性质、运算律可以解决向量的模、夹角等问题.【变式训练1】已知向量a ,b ,c 满足:|a|=1,|b|=2,c =a +b ,且c ⊥a ,则a 与b 的夹角大小是 . 【解析】由c ⊥a ⇒c ·a =0⇒a 2+a ·b =0, 所以cos θ=-12,所以θ=120°.题型二 利用数量积来解决垂直与平行的问题【例2】 在△ABC 中,AB =(2,3), AC =(1,k ),且△ABC 的一个内角为直角,求k 的值. 【解析】①当∠A =90°时,有·=0, 所以2×1+3·k =0,所以k =-23;②当∠B =90°时,有AB ·BC =0,又BC =AC -AB =(1-2,k -3)=(-1,k -3), 所以2×(-1)+3×(k -3)=0⇒k =113;③当∠C =90°时,有AC ·BC =0, 所以-1+k ·(k -3)=0, 所以k 2-3k -1=0⇒k =3±132.所以k 的取值为-23,113或3±132.【点拨】因为哪个角是直角尚未确定,故必须分类讨论.在三角形中计算两向量的数量积,应注意方向及两向量的夹角.【变式训练2】△ABC 中,AB =4,BC =5,AC =6, 求·+·+·.【解析】因为2·BC +2BC ·CA +2CA ·=(AB ·BC +CA ·AB )+(CA ·AB +BC ·CA )+(BC ·CA +BC ·AB ) =AB ·(BC +CA )+CA ·(AB +BC )+BC ·(CA +AB ) =AB ·BA +CA ·AC +BC ·CB =-42-62-52=-77.所以AB ·BC +BC ·CA +CA ·AB =-772.题型三 平面向量的数量积的综合问题【例3】数轴Ox ,Oy 交于点O ,且∠xOy =π3,构成一个平面斜坐标系,e 1,e 2分别是与Ox ,Oy 同向的单位向量,设P 为坐标平面内一点,且OP =x e 1+y e 2,则点P 的坐标为(x ,y ),已知Q (-1,2).(1)求|OQ |的值及OQ 与Ox 的夹角;(2)过点Q 的直线l ⊥OQ ,求l 的直线方程(在斜坐标系中). 【解析】(1)依题意知,e 1·e 2=12,且OQ =-e 1+2e 2,所以OQ 2=(-e 1+2e 2)2=1+4-4e 1·e 2=3. 所以|OQ |= 3.又OQ ·e 1=(-e 1+2e 2) ·e 1=-e 21+2e 1•e 2=0.所以OQ ⊥e 1,即OQ 与Ox 成90°角. (2)设l 上动点P (x ,y ),即OP =x e 1+y e 2, 又OQ ⊥l ,故OQ ⊥QP ,即[(x +1)e 1+(y -2)e 2] ·(-e 1+2e 2)=0.所以-(x +1)+(x +1)-(y -2) ·12+2(y -2)=0,所以y =2,即为所求直线l 的方程.【点拨】综合利用向量线性运算与数量积的运算,并且与不等式、函数、方程、三角函数、数列、解析几何等相交汇,体现以能力立意的命题原则是近年来高考的命题趋势.【变式训练3】在平面直角坐标系xOy 中,点A (5,0).对于某个正实数k ,存在函数f (x )=ax 2(a >0),使得OP =λ• (||OA OA +||OQ OQ)(λ为常数),其中点P ,Q 的坐标分别为(1,f (1)),(k ,f (k )),则k 的取值范围为( )A.(2,+∞)B.(3,+∞)C.(4,+∞)D.(8,+∞)【解析】||OA OA OM ||OQ =ON ,OM +ON =OG ,则OP =λOG .因为P (1,a ),Q (k ,ak 2),OM =(1,0),ON =(k k 2+a 2k 4,ak 2k 2+a 2k 4),OG =(k k 2+a 2k 4+1,ak 2k 2+a 2k 4),则直线OG 的方程为y =ak 2k +k 2+a 2k 4x ,又OP =λOG ,所以P (1,a )在直线OG 上,所以a =ak 2k +k 2+a 2k 4,所以a 2=1-2k.因为|OP |=1+a 2>1,所以1-2k>0,所以k >2. 故选A.。