二元一次不等式解法 ppt课件
合集下载
【数学课件】二元一次不等式

若C≠0,则直线定界,原点定域
特殊点(0,0)
画出下列不等式表示的平面区 域:
(1) x-y+1<0 ;
(2) x+ y>0;
(3) 2x+5y-10≥0 ;
(1)x-y+1<0
y x-y+1=0
1
-1
o
取(0,0) 0-0+1>0
x
(2)x+ y>0
y
1
o
直线过(0,0)
取(0,1)
0+1>0
Y
x+y-1>0
x+y-1<10XO Nhomakorabea1
l
点集{(x,y)|x+y-1>0}表示直线x+y-1=0右上方平面区域 点集{(x,y)|x+y-1<0}表示直线x+y-1=0左下方平面区域
(1)Ax+By+C>0在平面直角坐标系中 表示直线Ax+By+C=0某一侧所有点组成的平面区域。
(2)在确定区域时,在直线的某一侧取一个特殊点
-1 D
l 右上方的点(x,y), x+y-1>0成立
l 左下方的点(x,y), x+y-1<成立
证明:如图,设M(x,y)为 l
右上方区域内任一点
P YM
过M作MP平行于x轴交 l
于点P (x0 , y0 )
则 x x0 , y y0
x y x0 y0
1
X
O1
l
x+y-1=0
问3 在平面直角坐标系下作出A(1,1),B(1,2),
特殊点(0,0)
画出下列不等式表示的平面区 域:
(1) x-y+1<0 ;
(2) x+ y>0;
(3) 2x+5y-10≥0 ;
(1)x-y+1<0
y x-y+1=0
1
-1
o
取(0,0) 0-0+1>0
x
(2)x+ y>0
y
1
o
直线过(0,0)
取(0,1)
0+1>0
Y
x+y-1>0
x+y-1<10XO Nhomakorabea1
l
点集{(x,y)|x+y-1>0}表示直线x+y-1=0右上方平面区域 点集{(x,y)|x+y-1<0}表示直线x+y-1=0左下方平面区域
(1)Ax+By+C>0在平面直角坐标系中 表示直线Ax+By+C=0某一侧所有点组成的平面区域。
(2)在确定区域时,在直线的某一侧取一个特殊点
-1 D
l 右上方的点(x,y), x+y-1>0成立
l 左下方的点(x,y), x+y-1<成立
证明:如图,设M(x,y)为 l
右上方区域内任一点
P YM
过M作MP平行于x轴交 l
于点P (x0 , y0 )
则 x x0 , y y0
x y x0 y0
1
X
O1
l
x+y-1=0
问3 在平面直角坐标系下作出A(1,1),B(1,2),
二元一次不等式

值为14万元.
3
线性规划的相关概念
例子中,利润函数z=2x+3y是关于x,y的目标函 数,其中x,y满足的平面区域的条件常称为约束条件, 由于都是由二元一次不等式组构成的,所以又称为线 性约束条件;如:
x 2y 8 4x 16 4 y 12 x 0, y 0
在线性约束条件下求线性目标函数的最大值或最小 值的问题,统称为线性规划问题.
值,使式中x、y满足下列条件:
2x 3y 24
xy
y 6
7
x 0
y 0
8y
D(0,6)
C(3,6) y=6
x-y=7
B(9,2)
O
A(7,0) 12 x
2x+3y=24
解:平面区域如图所示,可行解区域为多边形 OABCD,其中A(7,0),B(9,2),C(3,6),D(0,6).
二元一次不等式表示的平面区域
例1 画出不等式x+4y<4表示的平面区域.
解:先作出边界直线x+4y=4, 并画成虚线.
取原点(0,0)代入x+4y4,因为 0+40-4=-4<0
所以原点(0,0)在x+4y4<0表示的平面区域内,不等 式x+4y<4表示的区域如图所示 (在直线x+4y=4的左下方)
线性规划
可行解 :满足线性约 束条件的解(x,y)叫可 行解; 如(1,2)、 (4,2)等. 可行域 :由所有可行解 组成的集合叫做可行域; 如图中阴影部分中的整数 点坐标的集合
y
x+2y=8
4 3
0
y=3
x
4
8
二元一次方程组-图课件

解二元一次方程组时,可以通过消元 法、代入法等方法得到不同的解。
二元一次方程组的拓展
多元一次方程组
除了二元外,还可以扩展 到更多未知数的多元一次 方程组。
分式方程组
将一次方程组的未知数次 数降低,可以得到分式方 程组。
高次方程组
将一次方程组的未知数次 数提高,可以得到高次方 程组。
二元一次方程组与其他数学知识的结合
二元一次方程组可以表示为平面上的两条直线, 这两条直线的交点就是解。解的几何意义是两条 直线的交点坐标,即两条直线的公共点。
02
二元一次方程组的图解法
直线交点法
总结词
通过作图找到两条直线的交点,该交点即为方程组的解 。
详细描述
首先,将二元一次方程组中的两个方程分别表示为两条 直线的方程。然后,在坐标系上画出这两条直线。最后 ,找到这两条直线的交点,该交点的坐标即为方程组的 解。
02 代数问题
在代数中,二元一次方程组是基本的问题类型之 一,需要掌握其解法。
03 概率统计问题
在概率统计中,经常需要计算两个事件同时发生 的概率或两个变量的相关性。
科学中的二元一次方程组问题
01
02
03
物理问题
在物理学中,经常需要解 决与速度、力和加速度相 关的二元一次方程组问题 。
化学问题
在化学中,二元一次方程 组可以用来描述化学反应 中两种物质的反应速率和 反应条件。
进阶习题2
解方程组$begin{cases}x + 2y = 6 2x + y = 4end{cases}$
进阶习题3
解方程组$begin{cases}5x - y = 11 x + 2y = 7end{cases}$
二元一次不等式组

15,18,27块,用数学关系式和图形表示上述要求. y 解:设需截第一种钢板x张,第二种钢板y张,得
15
规格类型
10钢板类型 A规格 B规格 C规格 8 2 1 1 第一种钢板 6 1 2 3 4 第二种钢板 2 18 0 2 4 6 8 12 27 x+2y=18
2x+y=15
2 x y 5, x 2 y 18, x 3 y 27, x 0, y 0.
在平面直角坐标系中, 不等式x-y<6表示直线x-y=6 左上方的平面区域;如图。
二元一次不等式x-y>6表示直线x-y=6 右下方的区域;如图。 直线叫做这两个区域的边界
(3)结论:
二元一次不等式Ax+By+C>0在平面直角坐标 系中表示直线Ax+By+C=0某一侧所有点组成 的平面区域.(虚线表示区域不包括边界直线) 3.二元一次不等式表示哪个平面区域的判断方法 对在直线Ax+By+C=0同一侧的所有点,把它的坐标 (x,y)代入Ax+By+C,所得的符号都相同,所以只需
在此直线的同一侧取一特殊点(x0,y0),从
Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪 一侧的平面区域.(特殊地,当C≠0时,常把原点作为
此特殊点)
例4 一个化肥厂生产甲、乙两种混合肥料,生产1车皮 甲种肥料的主要原料是磷酸盐18t,硝酸盐;生产1车皮 乙种肥料需要的主要原料是磷酸盐1t,硝酸盐15t,现库 存磷酸盐10t、硝酸盐66t,在此基础上生产两种混合 肥料。列出满足生产条件的数学关系式,并画出相应 的平面区域。 解:设x,y分别为计划生产甲乙两种混合肥料的车皮数 于是满足以下条件:
2020版人教A数学必修5 课件:3.3.1 二元一次不等式(组)与平面区域

即时训练3-1:某家具厂制造甲、乙两种型号的桌子,每张桌子需木工和 漆工两道工序完成.已知木工做一张甲、乙型号的桌子分别需要1 h和 2 h,漆工油漆一张甲、乙型号的桌子分别需要3 h和1 h.又木工、漆工 每天工作分别不得超过8 h和9 h.请列出满足生产条件的数学关系式,并 画出相应的平面区域.
3.3 二元一次不等式(组)与简单的线性规划 问题
3.3.1 二元一次不等式(组)与平面区域
[目标导航]
1.知道什么是二元一次不等式及二元一次不等式组. 2.了解二元一次不等式的几何意义,并会画其表示的平面 课标要求 区域. 3.能从实际情境中抽象出二元一次不等式组,并能用平面 区域表示二元一次不等式组的解.
x y 2 1 0,
x ky k 0
(2)将图中阴影部分表示的平面区域,用不等式表示出来.
(2)解:由图(1)可知,其边界所在的直线在 x 轴和 y 轴上的截距均为 1,故边界所在的直线 方程为 x+y-1=0, 将原点(0,0)代入直线方程 x+y-1=0 的左边,得 0+0-1<0, 故所求的不等式为 x+y-1≤0;
思考1:不等式2x-3y>0是二元一次不等式吗? 答案:是,符合二元一次不等式的两个特征. 2.二元一次不等式表示的平面区域
表示直线 Ax+By+C=0
某一侧
二元一次不等式Ax+By+C>0 所有点组成的平面区域,我们把直线画 成 虚线 ,以表示区域 不包括 边界
表示直线 Ax+By+C=0
某一侧
y
1)
0,
表示的平面区
域的面积等于( )
系统复习--方程和不等式,第2课时二元一次方程组,课件

[
典型例题
3x-y=5, ① 例1、解方程组 5x+2y=23. ②
方法二:用代入消元法解方程组. 由①得 y=3x-5,③ 把③代入②得 5x+2(3x-5)=23,即 11x=33,解得 x=3.把 x=3 代入③得 y=4.所以原方程 x=3, 组的解为 y=4.
典型例题
回顾与思考
用代入法解方程组的步骤是什么?
主要步骤:
变形
代入
求解
写解
用一个未知数的代数式 表示另一个未知数 消去一个元 分别求出两个未知数的值 写出方程组的解
回顾与思考
用加减法解方程组的步骤是什么?
主要步骤: 变形 加减 求解 写解 同一个未知数的系数 相同或互为相反数 消去一个元
求出两个未知数的值
3、(2013聊城)夏季来临,天气逐渐炎热起来,某商店将某种碳 酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了 5%。已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳 酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料在调价前每 瓶各多少元?
答:A 饮料生产了 30 瓶,B 饮料生产了 70 瓶
方法总结 对于含多个未知数的实际问题,利用列方程组来解,一般要 比列一元一次方程解容易.列二元一次方程组,首先要对具体的问题进 行具体分析,从中抽取两个等量关系,再根据相应的等量关系列出方程
巩固练习
D
1 x 4 2.已知方程x-2y=8,用含x的式子表示y,则y =________ ,用含y的式子表 2
1、解二元一次方程组的思路
消元 二元一次方程组 一元一次方程 代入法或加减法
2、用二元一次方程组解决问题时, 要把问题转化为方程组来求解。 3、从这节课中我们能体会到怎样的数学思想方法? 转化思想(化归思想)
典型例题
3x-y=5, ① 例1、解方程组 5x+2y=23. ②
方法二:用代入消元法解方程组. 由①得 y=3x-5,③ 把③代入②得 5x+2(3x-5)=23,即 11x=33,解得 x=3.把 x=3 代入③得 y=4.所以原方程 x=3, 组的解为 y=4.
典型例题
回顾与思考
用代入法解方程组的步骤是什么?
主要步骤:
变形
代入
求解
写解
用一个未知数的代数式 表示另一个未知数 消去一个元 分别求出两个未知数的值 写出方程组的解
回顾与思考
用加减法解方程组的步骤是什么?
主要步骤: 变形 加减 求解 写解 同一个未知数的系数 相同或互为相反数 消去一个元
求出两个未知数的值
3、(2013聊城)夏季来临,天气逐渐炎热起来,某商店将某种碳 酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了 5%。已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳 酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料在调价前每 瓶各多少元?
答:A 饮料生产了 30 瓶,B 饮料生产了 70 瓶
方法总结 对于含多个未知数的实际问题,利用列方程组来解,一般要 比列一元一次方程解容易.列二元一次方程组,首先要对具体的问题进 行具体分析,从中抽取两个等量关系,再根据相应的等量关系列出方程
巩固练习
D
1 x 4 2.已知方程x-2y=8,用含x的式子表示y,则y =________ ,用含y的式子表 2
1、解二元一次方程组的思路
消元 二元一次方程组 一元一次方程 代入法或加减法
2、用二元一次方程组解决问题时, 要把问题转化为方程组来求解。 3、从这节课中我们能体会到怎样的数学思想方法? 转化思想(化归思想)
二元一次不等式(组)的解法与平面区域

y
x–y=6 x
O
横坐标 x
–3
–2 -8
–1 -7
0 -6
1 -5
2 -4
3 -3
点 P 的纵坐标 y1 - 9
点 A 的纵坐标 y2 - 8
-6
-5
-3
6
4
0
横坐标 x 点 P 的纵坐标 y1 点 A 的纵坐标 y2
–3 -9 -8
–2
–1
0
1
y
2
x3 –y=6
-8
-6
-7
-5
-6
-3
-56-4x-2 y+2=0
x y 0 x 2 y 4 0 y 2 0
课堂小结:
⑴ 二元一次不等式表示平面区域:
直线某一侧所有点组成的平面区域。
⑵ 判定方法: 直线定界,特殊点定域。 ⑶ 二元一次不等式组表示平面区域: 各个不等式所表示平面区域的公共部分。
(4)口诀:上大下小斜截式 上正下负一般式 (B>0)
强调:若B<0时则恰好结论相反;若B=0则最易判断。
例题2:根据下列各图中的平面区域用不等式 表示出来(图1包含y轴)
6x+5y=22
3 y=x
1
1
-4
练习:
(1)画出不等式 4x―3y≤12 表示的平面区域
y
4x―3y-12=0 x x
(2)画出不等式x≥1 表示的平面区域
y
x=1
例题
例2、用平面区域表示不等式组 y < -3x+12 的解集。 x<2y
直线把平面内所有点分成三类:
a)在直线x – y = 6上的点
b)在直线x – y = 6左上方区域内的点 c)在直线x – y = 6右下方区域内
3.3.1二元一次不等式(组)与平面区域(2)

所以AD=3,AB=2,BC=5 故所求区域的面积为 1 S= 3 5 2 8 2
y
5
C x-y+5=0
D
2A -5
B
2
y=2
o
x
x=2
x-y+5≥0
变式1 若二元一次不等式组 y≥a
0≤x≤2
所表示的平面区域是一个三角形, 求a的取值范围
变式训练 x-y+5≥0
变式: 若二元一次不等式组 y≥a
解:设x , y分别为计划生产甲、乙两种混合肥料的车皮 数,于是满足以下条件
4x+y≤10
18x+15y ≤66 x≥0,X∈N y ≥0,y∈N
y
10
5
4x+y=10
0
1
2 3 4 18x+15y =66
x
x-y+5≥0
例4、 求二元一次不等式组 y≥2
0≤x≤2
所表示的平面区域的面积
解析: 如图,平面区域为直角梯形,易得 A(0,2),B(2,2),C(2,7),D(0,5)
3.3.1 二元一次不等式 (组)与平面区域(2)
y
o
x
复习
⑴ 二元一次不等式表示平面区域: 直线某一侧所有点组成的平面区域。画图时
应非常准确,否则将得不到正确结果。
⑵ 判定方法: 直线定界,特殊点定域。
------若不等式中不含有等号时,则边界应画成虚线,
⑶ 二元一次不等式组表示平面区域: 各个不等式所表示平面区域的公共部分。
例2、要将两种大小不同的钢板截成A.B.C三种规格,每张钢板 可同时截得三种规格的小钢板的块数如下表所示:
第一种钢板 第二种钢板
y
5
C x-y+5=0
D
2A -5
B
2
y=2
o
x
x=2
x-y+5≥0
变式1 若二元一次不等式组 y≥a
0≤x≤2
所表示的平面区域是一个三角形, 求a的取值范围
变式训练 x-y+5≥0
变式: 若二元一次不等式组 y≥a
解:设x , y分别为计划生产甲、乙两种混合肥料的车皮 数,于是满足以下条件
4x+y≤10
18x+15y ≤66 x≥0,X∈N y ≥0,y∈N
y
10
5
4x+y=10
0
1
2 3 4 18x+15y =66
x
x-y+5≥0
例4、 求二元一次不等式组 y≥2
0≤x≤2
所表示的平面区域的面积
解析: 如图,平面区域为直角梯形,易得 A(0,2),B(2,2),C(2,7),D(0,5)
3.3.1 二元一次不等式 (组)与平面区域(2)
y
o
x
复习
⑴ 二元一次不等式表示平面区域: 直线某一侧所有点组成的平面区域。画图时
应非常准确,否则将得不到正确结果。
⑵ 判定方法: 直线定界,特殊点定域。
------若不等式中不含有等号时,则边界应画成虚线,
⑶ 二元一次不等式组表示平面区域: 各个不等式所表示平面区域的公共部分。
例2、要将两种大小不同的钢板截成A.B.C三种规格,每张钢板 可同时截得三种规格的小钢板的块数如下表所示:
第一种钢板 第二种钢板
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注:如果熟练了可简化成序轴标根法,直接快速写出解集
解一元二次不等式或分式不等式的方 法步骤是:
方法2 序轴标根法
步骤:(1)化成因式相乘或相除的形式, 且每个因式中x的最高次数为1,系数 必须是正数
(2)求出对应方程的根并在序轴上表 示出来,用穿针引线标出各部分正负
(3)根据序轴写出解集
作业:
1.解不等式 (1)4x2-4x+1>0
一元二次不等式的解法(1)
复习提问:
(1)如何解一元二次方程?
ax2+bx+c=0(a0)
(2)二次函数 y=ax2+bx+c(a0)的图象是 什么曲线?
(3)一元二次方程 ax2+bx+c=0(a0)
的解与二次函数 y=ax2+bx+c(a0) 的图象 有什么联系?
一元二次方程a2xb xc0(a0)的解实
5 x
{x│ x ≤-3 或x ≥5}。
设y=ax2+bx+c (a>0),且设方程y=0在 △>0时的两个根分别是x1、x2,且x1< x2。
下面我们一起来看下表:
△=b2-4ac
△>0
△=0
△<0
二次函数
y
y
y
y ax2 bx c
(a 0 )的 图 像
x O x1 x2
O
xO
x=-b/2a
(3)2x2-3x-2>0
(2)-x2+2x-3>0 (4)-5x2+6x>1
2. 试解下列不等式: ⑴ x 1 3x 2 ⑵ (x 3)(x 2)(x 1) 0
⑶ (3x 2)(3 x) ≤ 0 x2
二、二次不等式的简单应用
例3: 解不等式 x2-2│xx│--151≥50≥0
分析1:不同于x2-2x-15≥0的根本点在于不 等式中含│x│,由于│x│ 2 = x2 ,则可以通过换 元令│x│ =t,将不等式转化为t 2-2 t -15≥0求解。
解不等式: 3x2 7x 10 ≤0
(可用同解变形法)
解:∵ 3x2 7x 10 ≤0 (3x 10)(x 1) ≤ 0
3x 10 x 1
≤0 ≥0
(Ⅰ)
或
3x 10≥0 x 1 ≤0
(Ⅱ)
由(Ⅰ)解得
1≤
x
≤
10 3
;由(Ⅱ)解得
x
不存在.
∴原不等式的解集为
x
1≤
x
其实质是符号规律,见下表:
解法2:当x>0时, 原不等式可化为x2 -2x-15≥0
则不等式的解为x≥5或 x≤-3 ∵x>0 ∴ 不等式的解集为{x│x≥5 }
当x ≤0时, 原不等式可化为x2 +2x-15≥0 则不等式的解为x≥3或x ≤-5 ∵x≤0 ∴ 不等式的解集为{x│x≤-5 } 由以上可知原不等式的解为{x│x≥5或x≤-5 }。
x
y>0的解集
xxx2或 xx1
xR x
b 2a
R
y<0的解集 xx1xx2
y ≥0的解 集
xxx2或 xx1
R
R
y ≤0的解-4x+1>0
解: ∵ △=0,方程4x2-4x+1=0的
解是x1= x2=1/2
∴不等式的解是 x≠1/2
1/2
X
练习2.解不等式-x2+2x-3>0
∴a = -12 b = -2
∴不等式2x2 + bx + a<0
即2x2 -2x -12 <0其解集为{x | -2<x<3}。
4a-2b+6=0
9a+3b+6=0 a=-1
解方程组得: b=1
则a-b=-2
练习:已知不等式ax2 + bx + 2>0
的解为 1 x 1 求2x2 + bx + a<0的解. 23
由题1意 ,1是方a程 2xbx20的两 , 根 23
则a0
1 2 1 2
1 3 1 3
b a
b a
∵ 6 /a = -2× 3= -6 ∴ a=-1 ∵ b /a = -2+3=1 ∴ b=1 则a-b=-2
例4 . 已知一元二次不等式a x2 +bx+6>0 的解集为{x │- 2 <x<3}, 求a-b的值.
另解:由条件可知 : 方程 a x2 +bx+6=0的根-2、3 ,
代入方程可得:
≤ 10 3
.
代数式
x 1 3x 10 (3x 10)(x 1)
x 1
1 x 10 3
x 10 3
零点分段 判断符号 情况
例 2,解分式不等式: x 3 0 x7
解:分析符号规律:零点 3,-7 把数轴分成三段
代数式 x 7 7 x 3 x 3
x7
x3
x3
x7
∴由上面分析可知原不等式的解集为 x x 7 或 x 3
解:整理得x2-2x+3<0
X
∵ △<0,方程x2-2x+3=0 无实解,
∴原不等式无实解。
练习3.解不等式2x2-3x-2>0
解:∵ △>0,方程2x2-3x-2=0的
解是 x1=-1/2 , x2=2
∴不等式的解集是
-1/2
{x|x<-1/2,或x>2}
2X
练习4.解不等式-5x2+6x>1
解:整理得,5x2-6x+1<0
1/5
1 X ∵ △>0,方程5x2-6x+1=0
的解是x1=1/5 , x2=1
∴原不等式的解集是{x|1/5<x<1}
解一元二次不等式的方法步骤是: 方法1:数形结合 步骤:(1)化成标准形式 (a>0):
ax2+bx+c>0 或 ax2+bx+c<0
(2)求 ,解方程,画图象;
(3)根据图象写出解集
际上就是二次函数 ya2xb xc(a0)
与x轴交点的横坐标。
下面我们来研究如何应用二次函数的图象 来解一元二次不等式。
例1:解不等式: x2-2x-15≥0
解:∵ ⊿=b2-4ac= 22 +4× 15 > 0
方程x2-2x-15=0
y
的两根为:
x=-3,或x=5
。。
∴ 不等式的解集为:
-3 0
例4 . 已知一元二次不等式a x2 +bx+6>0 的解集为{x │- 2 <x<3}, 求a-b的值.
分析:二次不等式的解是通过二次方程的 根来确定的,由此可以理解为 a x2 +bx+6=0 的根为-2,3。
解:由条件可知 : 方程a x2 +bx+6=0的根-2,3 又解在两根之间; ∴a<0
解法1:(换元法) 设│x│ =t,则t ≥ 0原不等式可化为
t2 -2t-15≥0 由例1 可知解为t≥5或t≤-3 ∵t ≥ 0 ∴ 不等式的解集为{t│t≥5 }
∴ │x│≥5 ∴原不等式的解为{x│x≥5或x≤-5 }。
例3:解不等式: x2-2│x│-15≥0
分析2:也可用绝对值定义去掉绝对值 将不等式转化为不含绝对值的求解。