相干解调的抗噪声性能
2ASK抗噪声性能分析

2ASK抗噪声性能分析2ASK抗噪声性能分析⽅向:视听模式分析学号:83320081002034 姓名:徐丽丽摘要:2ASK(⼆进制幅度键控)是⼀种最简单的数字信号的载波传输,本⽂通过对数字信号的2ASK调制,解调在不同信噪⽐的情况下误码率分析,得出不同信噪⽐下的误码率。
通过对2ASK的仿真更好的理解了数字调制系统的组成以及各模块的功能。
关键词:⼆进制幅度键控(2ASK),调制,解调,信噪⽐,误码率Abstract:2ASK (2 Amplitude Shift Keying) is the simplest digital signal carrier transmission technique. This paper researches 2ASK, demodulates the BER analysis in with different noise ratioes and arrives at a BER under different noise.Through the simulation of 2ASK, a better understanding of the digital modulation system, as well as the function of each module are acquired.Key words:binary amplitude shift keying (2ASK), modulation, demodulation, SNR, bit error rate(BER)1引⾔:数字基带信号的功率谱从零频开始⽽且集中在低频段,因此只适合在低通型信道中传输。
但常见的实际信道是带通型的,不能直接传送基带信号,因此必须⽤数字基带信号对载波进⾏调制,使基带信号的功率谱搬移到较⾼的载波频率上。
从原理上来说,受调载波的波形可以是任意的,只要已调信号适合于信道传输就可以了。
重庆理工大学现代通信原理与技术复习重点

3、请简述逐次比较型编码器的工作原理。
4、采用13折线A律编码器电路,设接收到的码组为“01010011”,最小量化间隔为△。
(1)试问编码器输出的该样值量化电平为多少;
(2)写出对应于该7位码的均匀量化11位码。
5、若采用13折线A律编码,设最小的量化间隔为△,已知抽样值为 – 95△。
2、简述题20分,每题4分。
3、综合计算题60分,A6~B7个题,每题分值不等(课堂例题及课后习题)。
第1章
1、通信系统的模型(数字通信系统模型)
2、通信系统的分类。
3、通信方式:(1)单工、半双工和全双工传输;(2)串行传输和并行传输。
4、通信系统的主要性能指标。
(1)模拟通信系统的有效性和可靠性指标(带宽和信噪比);
因为是单路信号每秒有8000个抽样值一个抽样值用3个码元所以码元传输速率fbpcm3800024kbaud3因为128级量化需用7位二进制码进行编码所以码元速率为fbpcm7800056kbaud思考与练习题1脉冲编码调制pcm是把模拟信号转换为数字信号的一种调制方式
考题类型:1、填空题20分,每空1分。
(3)段内码: (四次比较)
取IW4= 64 + 8 × 4 = 96 ,因为Is < IW4 所以, C5 = 0 ;
取IW5= 64 + 4 × 4 = 80 ,因为Is > IW5 所以, C6 = 1 ;
取IW6= 64 + 6 × 4 = 88 ,因为Is > IW6 所以, C7= 1 ;
IW=段落起始电平+8×(量化间隔)
=1024+8×64=1536Δ
线性与非线性调制系统的抗噪声性能分析

线性与非线性调制系统的抗噪声性能分析摘要:本文主要是通过对线性调制系统的不同调制方式在大信噪比条件下抗噪声性能的分析,分析了解不同的解调方法下,系统的抗噪声性能。
关键词:线性调制系统性能分析抗噪声性能系统引言所谓调制就是使基带信号(调制信号)控制载波的某个(或几个)参数,使这一个(或几个)参数按照基带信号的变化规律而变化的过程。
调制后所得到的信号为已调信号或频带信号,载波是一种不含任何有用信号用来搭载基带信号的高频信号。
调制信号m(t)为连续变化的模拟量叫模拟调制,其系统称为模拟调制系统。
其调制分为幅度调制和角度调制,幅度调制是用调制信号去控制高频载波的振幅,使其按调制信号的规律变化的过程,分为标准调幅(AM)、抑制载波双边带调制(DSB)、单边带调制(SSB)和残留边带调制(VSB)等。
幅度调制属于线性调制,它通过改变载波的幅度,以实现调制信号频谱的搬移,一个正弦载波有幅度、频率、相位3个参量,因此,不仅可以把调制信号的信息寄托在载波的幅度变化中,还可以寄托在载波的频率和相位变化中。
这种使高频载波的频率或相位按照调制信号规律的变化而振幅恒定的调制方式,称为频率调制(FM)和相位调制(PM),分别简称为调频和调相。
因为频率或相位的变化都可以看成是载波角度的变化,故调频和调相又统称为角度调制。
在分析抗噪声性能时,主要考虑的是加性高斯白噪声对系统的影响,同时也是最基本的噪声和干扰模型,又因为加性高斯白噪声被认为只对信号的接受产生影响,所以调试系统的抗噪声性能是通过解调器的抗噪声性能来衡量。
1. 线性调制系统的抗噪声性能分析1.1.AM的相干解调和非相干解调系统抗噪声性能对比分析AM信号的解调非为相干解调和非相干解调,两种解调的模型不同,所以抗噪声性能也随之不同,即分开进行讨论,先讨论相干解调系统的抗噪声性能。
AM相干解调模型框图如图1所示。
若解调器的输入信号为式中则解调器输入信号的平均功率为,解调器输入信号的平均功率为,所以AM的输入信噪比。
通信原理相干解调系统的抗噪声性能

s(t)
r(t)
n(t)
Tb ( )dt 0
-
s0 (t)
y
-
判决
ak'
+
Tb ( )dt 0
s1 (t )
相关接收
Vd
一元检测
最佳检测
二元检测
5.3.1 相干解调系统的抗噪声性能:最佳接收机结构
s(t)
r(t)
n(t)
Tb ( )dt 0
s0 (t )
Tb ( )dt 0
s1 (t )
相关接收
发送绝对码 发送相对码 (a) 无错:接收相对码
绝对码 (b) 错1:接收相对码
绝对码 (c) 错2:接收相对码
绝对码 (d) 错5:接收相对码
绝对码
0010110111
00011011010 0011011010
010110111 0 0 1 0X 0 1 1 0 1 0
0 1 1X 0X 1 0 1 1 1 0 0 1 0X 1X 1 1 0 1 0
数字通信原理
联合战术通信教研室 张伟明
理工大学通信工程学院
5 正弦载波数字调制
5.1 5.2 5.3 5.4 5.5
概述 二进制数字调制原理 二进制数字调制系统的抗噪声性能 二进制数字调制系统的性能比较 多进制数字调制系统
5.3 二进制数字调制系统的抗噪声性能 5.3.1 相干解调系统的抗噪声性能 5.3.2 非相干解调系统的抗噪声性能 5.3.3 其它解调系统
y
ak'
-
判决
Vd
最佳检测
1、0等能量
Vd
n0 2
ln
p(H0 ) p(H1)
相关系数
5.3二进制数字调制系统的抗噪声性能

Pe
分析其抗噪声性能
重庆大学通信工程学院
性能分析
数字通信原理
u () t 发 送 “ 1 ” 符 号 T () t 码元时间间隔Ts内,发送端输出的2ASK信号 s T 0 发 送 “ 0 ” 符 号
其中
A c o s t , 0 < t < T c s u () t T , 其 它 t 0
数字通信原理
分析二进制数字调制系统的抗噪声性能,也 就是分析在信道等效加性高斯白噪声的干扰 下系统的误码性能,得出误码率与信噪比之 间的数学关系。
在二进制数字调制系统抗噪声性能分析中, 假设信道特性是恒参信道,在信号的频带范 围内其具有理想矩形的传输特性(可取传输系 数为K)。噪声为等效加性高斯白噪声,其均 值为零,方差为σ 2。
P0 f0 x
P1 f1 x
当判决门限b取两条曲线 相交点b*时,阴影的面积 最小。这个门限就称为最 佳判决门限
0
b b*
a P(1/0)
x
重庆大学通信工程学院
P(0/1)
数字通信原理
最佳判决门限也可通过求误码率Pe关于判决门限b的最小值的方法得到 令 当
Pe 0 b
2 a P(0) n b ln 2 2 P(1 )
相干检测法的系统性能 包络检波法的系统性能
重庆大学通信工程学院
相干检测法的系统性能
数字通信原理
2ASK信号相干检测法的系统性能分析模型
发送端 信道 带通 滤波器 y ( t ) 相乘器 低通 滤波器 x ( t ) 抽样 判决器 输出
sT (t)
n i(t)
y i(t)
2cos(ct )
定时 脉冲
发送“0”符号时的抽样值x=nc的一维概率密度函数
2psk的相干解调

2psk的相干解调2psk (二进制相移键控)是一种常见的数字调制技术,常用于无线通信系统中。
它的解调方式包括非相干解调和相干解调。
本篇文章将详细介绍2psk的相干解调。
相干解调是一种通过将接收到的信号与本地产生的参考信号进行相位对齐来恢复原始信号的方法。
在2psk的相干解调中,我们需要一个与发送信号的相位和频率都相同的本地参考信号。
以下是2psk相干解调的基本步骤:1.接收端接收到经过信道传输的调制信号后,首先进行限幅处理,以削除信道中的噪声和干扰。
2.然后,接收端产生的本地参考信号与接收到的信号进行相位对齐,以恢复原始信号的相位。
3.最后,通过低通滤波器滤除高频分量,得到解调后的基带信号。
在实现过程中,我们需要注意以下几点:1.参考信号的频率和相位必须与发送信号完全一致,否则解调效果会大打折扣。
2.解调过程中产生的噪声可能会影响解调效果,因此需要进行一些降噪处理。
3.在进行相位对齐时,需要使用一些算法来实现精确的相位对齐。
相对于非相干解调,相干解调具有更高的解调性能,因此在某些情况下,如高速数据传输等场景中,更倾向于使用相干解调。
在无线通信系统中,2psk的相干解调可以实现以下优点:1.可以提供更高的解调性能,从而提高系统的传输效率。
2.可以更好地抵抗信道噪声和干扰,从而提高系统的可靠性。
3.由于需要产生本地参考信号,因此可以实现更好的同步性能,从而支持更高的数据传输速率。
然而,相干解调也有一些缺点:1.需要产生本地参考信号,因此需要更多的硬件资源。
2.对于多径信道和时变信道,相干解调的性能可能会下降。
3.相干解调的算法相对复杂,实现难度较大。
综上所述,2psk的相干解调是一种高性能的数字调制解调技术,适用于需要高传输速率和高可靠性的无线通信系统。
在实际应用中,我们需要根据系统的需求和硬件资源的限制来选择合适的解调方式。
2fsk相干解调法

2fsk相干解调法2FSK相干解调法是一种常用的调制解调技术,用于数字通信系统中将数字信号转换为模拟信号进行传输和接收。
本文将介绍2FSK相干解调法的原理、应用以及其在通信系统中的优缺点。
我们来了解一下2FSK相干解调法的原理。
2FSK相干解调法是通过将数字信号转换为两个不同频率的正弦波进行调制,接收端利用相干解调的方法将接收到的信号转换回数字信号。
在2FSK相干解调法中,两个频率分别代表两个二进制数字,例如0和1,通过改变频率来表示不同的数字。
在实际应用中,2FSK相干解调法广泛应用于无线通信系统和调频广播系统中。
无线通信系统中,2FSK相干解调法可以提供高效可靠的数据传输,适用于需要高速传输和抗干扰能力的场景。
调频广播系统中,2FSK相干解调法可以实现多个频道的切换,使得广播系统能够同时传输多个信号。
2FSK相干解调法的优点之一是具有较高的抗干扰能力。
由于数字信号转换为模拟信号进行传输,抗干扰能力较强,可以有效地抵抗信道噪声和干扰信号的影响。
同时,2FSK相干解调法还具有较高的传输速率,可以满足大容量数据传输的需求。
然而,2FSK相干解调法也存在一些缺点。
首先,由于在解调过程中需要进行相干解调,对于接收端的要求较高,需要较复杂的电路设计和算法实现。
其次,2FSK相干解调法对于频率误差较为敏感,如果发射端和接收端的频率不一致,会导致解调错误。
为了克服2FSK相干解调法的一些缺点,还有一种改进的方法,即非相干解调法。
非相干解调法不需要进行相干解调,可以简化接收端的设计,提高系统的鲁棒性。
但是非相干解调法的传输速率较低,抗干扰能力较弱。
2FSK相干解调法是一种常用的调制解调技术,具有较高的传输速率和抗干扰能力。
它在无线通信系统和调频广播系统中得到广泛应用。
尽管2FSK相干解调法存在一些缺点,但通过不断的改进和优化,可以进一步提高系统的性能和可靠性。
未来随着通信技术的发展,相信2FSK相干解调法将继续在各种应用场景中发挥重要作用。
通信原理mask

通信原理mask
多进制幅度键控(MASK)是一种调制技术,它的原理是将正弦载波的三个参量(幅度、频率、相位)中的两个或者更多的参量随调制信号的变化而变化。
MASK的调制原理为:功率谱特性单/双极性,功率谱形状与2ASK、2PSK相同。
连续谱,有/无离散谱。
中心频率为$f_c$。
带宽(主瓣宽度):矩形脉冲成型为2*$f_B$ 根升余弦滚降为$(1+α)*f_B$,频谱效率为0.5-1(Baud/Hz)。
解调原理有相干解调和非相干解调两种。
相干解调的抗噪声性能较好。
MASK的好处是码元速率不变,比特速率增加,带宽不变,频带利用率增加。
总的来说,MASK是一种能够提高频带利用率的调制技术,但其抗噪声性能较差。
在实际应用中,需要根据具体的通信环境和需求选择合适的调制技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( S i / N i ) DSB
m 2 (t ) 2 n0 BDSB m 2 (t ) 4 n0 BSSB
( S i / N i ) SSB
解调器输出信噪比
• 1。解调器输出信号功率
AM和DSB 经解调后的信号输出 1 m0 (t ) m(t ) 2 则输出功率为( S 0 ) AM , DSB 1 2 m (t ) 4
( Si ) AM A0 m 2 (t ) 2 2
2
( Si ) DSB
m 2 (t ) 2
1 m 2 (t ) 4( S i Nhomakorabea) SSB
• 2. 解调器的输入噪声功率
N i n0 B
• 3。解调器的输入信噪 比
( S i / N i ) AM
2 Ao m 2 (t ) 2 n0 B AM
1 2 SSB经解调器后信号为 m (t ) 4 1 (S 0 ) SSB m 2 (t ) 16
• 2,解调器的输出噪声功率 • 各线性调制系统的输入噪声通过带通滤波器(BPF) 之后,变成窄带噪声ni(t),经乘法器相乘后得输出噪 声为:
n p (t ) ni (t ) cosc t [ nc (t ) cosc t ns(t ) sin c t ] cosc t 1 1 nc (t ) [ nc (t ) cos 2c t ns(t ) sin 2c t ] 2 2 1 经LP F 后,n0 (t ) nc (t ) 2 因此,解调器输出的噪 声功率为: 1 2 1 N o n (t ) nc (t ) Ni 4 4
相干解调的抗噪声性能
•
Sm(t)
有加性噪声的相干解调模型
Sm(t) BPF ni(t) n(t)
np(t) LPF
m0(t) n0(t)
coswct
解调器的输入信噪比
• • • • • 1。解调器的输入信号功率 SAM(t)=[A0+m(t)]coswct SDSB(t)=m(t)coswct SSSB(t)=(1/2)m(t)coswct +(1/2)m^(t)sinwct 则各已调信号的平均功率为:
2 0
• 3。 解调器的输出信噪比
( S 0 / N 0) AM , DSB ( S 0 / N 0) SSB m 2 (t ) m 2 (t ) no B 2no f
m 2 (t ) m 2 (t ) 4no B 4no f
• 解调器的信噪比增益
G AM So / N 0 2m (t ) 2 Si / Ni Ao m 2 (t )
2
GDSB 2 GSSB 1