第6章+马尔可夫预测方法

合集下载

马尔可夫预测

马尔可夫预测

4.6 马尔可夫预测4.6.1 马尔可夫预测法分析概述马尔可夫是俄国著名的数学家,马尔可夫过程是以马尔可夫名字命名的一种特殊的描述事物发展过程的方法。

马尔可夫过程主要用于对企业产品的市场占有率的预测。

众所周知,事物的发展状态总是随着时间的推移而不断地变化的。

对于有些事物的发展,需要综合考察其过去与现在的状态,才能预测未来。

但有些事物的发展,只要知道现在状态,就可以预测将来的状态而不需要知道事物的过去状态。

例如,在下中国象棋时,一个棋子下一步应该怎样走,只与它当前的位置有关,而不需要知道它以前处于什么位置,也不需要知道它是怎么走到当前位置的。

这种与过去的取值无关,称为无后效性。

这种无后效性的事物的发展过程,就称为马尔可夫过程。

1.一步转移概率与转移概率矩阵如果变量的状态是可数的,假设有N个,那么从状态i经一步转移到j,都有发生的可能,我们称Pij为一步转移概率。

将这些依序排列起来构成的一个矩阵,叫做转移概率矩阵:转移概率矩阵具有下述性质;(1)矩阵每个元素均非负;(2)矩阵每行元素之各等于1.2.多步转移概率与转移概率矩阵在一步转移概率概念的基础上,可导出多步转移概率。

若系统在时刻T0处于状态i,经过n步转移,在时刻Tn时处于状态j,这种转移的可能性的数量指标称为n步转移概率,记为P(Xn=j|X0=i)=Pij(n)。

n步转移概率矩阵记为经过计算,可以得到一个有用的结论:同时,n步转移概率同一步转移概率一样具有下列性质;2.4.2市场占有率预测分析1.市场占有率预测分析概述在市场经济条件下,各企业都十分重视扩大自身产品的市场占有率。

因此,预测企业产品市场占有率,也就成为企业十分关心的问题。

市场占有率是指在一定地理范围内,某一类商品因为具有相同的用途或性质而相互竞争,那么在这类商品的整个销售市场上,每一种品牌的产品的销售额(销量)点该类商品总销售额(销量)的份额即为该品牌商品的市场占有率。

2.市场占有率预测分析的基本市场占有率预测分析的基本步骤如下:假设该地区市场上有三种同类商品。

系统预测马尔可夫预测

系统预测马尔可夫预测
18
解:
划分状态。 按销售额多少作为划分状态的标准。 状态1——滞销:销售额60万元; 状态2——平销:60万元销售额
100万元; 状态3——畅销:销售额100万元。
19
则各状态出现的次数Mi为:
M1=7; M2=5; M3=8。 根据统计数据计算比例数,建立状态 转移概率矩阵。
20
由状态i转移为状态j的次数记为Mij,
24
条件
设市场中提供某种商品的厂商共有n家。 当前的市场占有率,即本期市场占有率为:
用Pij代表经过一个时期后i厂商丧失的顾 客转移到j厂商的概率,或j厂商得到由i 厂商转来的顾客的概率。特别是当i=j时, Pij代表i厂商保留上期顾客的概率。这样 Pij即为市场占有率的转移概率。
25
转移概率矩阵
3
一、Markov预测原理
例1:出租公司车站租、还车一步转移概率。
机场 租 风景区 车 宾馆
机场 0.8 0.2 0.2
还车 风景区
0.2
0
0.2
宾馆 0 0.8 0.6
p11
p12
p13 0.8 0.2
0
P
p21
p22
p23
0.2
0
0.8
p31
p32
p33 0.2 0.2 0.6
4
一、Markov预测原理
若假定各期的转移概率不变,则那 么对于下K期市场占有率的预测,可 以看成是在当前状态下经过K步转移 所达到的状态。即:S(K)=S(0)PK。
31
例5
已知市场上有A、B、C三种品牌
的洗衣粉,上月的市场占有率分布
为(0.3 0.4 0.3),并且转移概率矩
阵为:

马尔科夫预测法

马尔科夫预测法

• 定义2: (k) pij (m) = P(Xm+k = E j | Xm = Ei ) 为k步 称 的转移概率。 特别是,当k=1时, P( xm+1 = Ej | Xm = Ei)称为一步转移概率,记为:
p ij (m) = P(X m +1 = E j | X m = E i )
若对任何非负整数n,马尔科夫链 { Xn,n ≥ 0}的一步转移概率 pij (m) 与m无 关,则为齐次马尔科夫链。记作 p ij
V (1) +r V2(1) +r 1 11 12 R = V (1) +r V (1) +r 21 2 22 1
• 由此二步转移之后的期望利润为 • V (2) = V (1) + r p + V (1) + r
i
[1
i1
]
i1
[2
i2
]pi2
= ∑Vj (1)pij + qi
S = P ,P ,P
0 (0) 1 (0) 2
式中: S (0)------初始市场占有率向量 (0) p i i=1,2,3------甲乙丙厂初始市 场占有率 另有市场占有率转移概率矩阵:
(
(0) 3
)
P 11 P = P21 P 31
P 12 P22 P32
P 13 P32 P33
用数学表达定义为(定义1): 设随机时间序列{ Xn,n ≥ 0}满足如下条件: (1)每个随机变量Xn只取非负整数值。 (2)对任何的非负整数t1< t2 <… <m <m+k,及E1, E2,…, Em ;当P(Xt1 = E1 , Xt2 = E2,…… Xm = Em) >0 时,有 P( Xm+k = Ej | Xt1 = E1 , Xt2 = E2,…, Xm = Em)=P( xm+k = Ej | Xm = Em),则称{ Xn,n ≥ 0} 为马尔科夫链。

马尔柯夫预测法 PPT课件

马尔柯夫预测法 PPT课件

3
在自然界和人类社会生活中普遍存在着两类现 象:
(1)确定性现象(在一定条件下必然出现);
(2)随机现象(掷硬币、射手打靶等)。
随机现象的统计规律性:
同一随机现象在大量重复出现时,其每种可能 的结果出现的频率却具有稳定性,从而表明随 机现象也具有其固有的规律性。
马尔柯夫预测法:
应用概率论中马尔柯夫链的理论和方法来研究 有关经济现象变化规律并藉以此预测未来状况 的一种方法。
6月份,甲厂有400户原来的顾客,上月的顾客有 50户转乙厂,50户转丙厂;乙厂有300户原来的顾 客,上月的顾客有20户转甲厂,80户转丙厂;丙厂 有80户原来的顾客,上月的顾客有10户转甲厂, 10户转乙厂。
试计算其状态转移概率。
2020/3/31
8
6月份顾客转移表
从到



合计

400
50
记为: P(xn j | x0 i) Pij (n)
并令
P11 (n) P12 (n)
P(n)
P21 (n)
PN1 (n)
P22 (n)
PN 2 (n)
则称P(n)为n步转移概率矩阵。
P1N (n)
P2N (n)
PNN (n)
当n=2时,为2步转移概率,P(2)为2步转移概率矩阵。
0.1
P32 100 0.1
P33
0.8 100
10
基本概念
3、状态转移概率矩阵
状态转移概率具有如下特征: 0 Pij 1 i, j 1,2, , N
N
Pij
1
i 1,2 , N
j1
并且,在一定条件下,系统只能在可能出现的状态 E1,

马尔科夫链预测方法

马尔科夫链预测方法

一、几个基本概念
3.马尔可夫过程 若每次状态的转移都只仅与前 一时刻的状态有关、而与过去的状态无关,或 者说状态转移过程是无后效性的,则这样的状 态转移过程就称为马尔可夫过程。
在区域开发活动中,许多事件发展过程中的状 态转移都是具有无后效性的,对于这些事件的 发展过程,都可以用马尔可夫过程来描述。
9月
10月
0.1 0.2 0.7 p( 2) p(0) P 2 (0.3,0.2,0.5) 0 . 1 0 . 7 0 . 2 0.08 0.04 0.88
2
11月
0.1 0.2 0.7 (0.2512 ,0.1816 ,0.5672) p( 3) p(0) P 3 (0.3,0.2,0.5) 0 . 1 0 . 7 0 . 2 0.08 0.04 0.88 (0.2319 ,0.1698 ,0.5983 )
3
1 0.7 1 0.1 2 0.08 3 2 0.1 1 0.7 2 0.04 3 由 得 (0.219,0.156,0.625) 3 0.2 1 0.2 2 0.88 3 1 2 3 1
率及极限分布.
解:频数转移矩阵为
得转移概率矩阵为
336 48 96 N 32 224 64 64 32 704
0.7 P 0.1 0.08
0.1 0.7 0.04
0.2 0.2 0.88
n个月的市场占有率为 p(n)= p(0) Pn
二、马尔可夫预测法
表2-19 某地区1990—2000年农业收成状态概率预测值
二、马ቤተ መጻሕፍቲ ባይዱ可夫预测法
(二)终极状态概率预测

第六章 马尔科夫预测法完整版

第六章 马尔科夫预测法完整版

(3)25
1、先求出12月份,厂商1、2、3的市场占 有率情况,得到初始分布为
2、通过转移频数矩阵计算转移概率矩阵
(3)26
假设P是稳定的,得到: 1月份各厂家的市场占有率,即当k=1时,
2月份各厂家的市场占有率,即当k=2时,
(3)27
2、由于概率矩阵P是标准概率矩阵,因此 存在唯一的市场均衡点。因此存在
S3
S3
S2
S1
S1
S3
S2
S2
S1
S2
年份 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 状态
S1
S3
S2
S1
S1
S2
S2
S3
S1
S2
(3)30
试计算: 1、初始状态概率。 2、该地区农业收成变化的一步和二步转移 概率矩阵。 3、2006-2010年可能出现的各种状态的概 率 4、终极状态的概率
(0) (0.5 0.3 0.2)
(3)42
未来各期的市场占有率:
1 0 P 0.7 0.1 0.2 0.5,0.3,0.2 0.1 0.8 0.1 0.05 0.05 0.9 0.39,0.3,0.31
基期 t=0 时的状态概率称为初始概率,初始概率 向量为 (0) (1 (0), 2 (0), n (0)) ,k步转移概率矩 k 阵为 ,预测稳定下来的平衡向量。 Pk P 当马尔可夫过程达到平衡状态时,上一期的状态 经过转移之后其状态应该保持不变。先假设平衡 状态为 ( , , ) 则 P
• 这个稳定下来的值我们称为平衡向量,也叫终极状 态概率。我们会在后面补充。

马尔可夫预测方法

马尔可夫预测方法

马尔可夫预测方法1马尔可夫预测的性质及运用对事件的全面预测,不仅要能够指出事件发生的各种可能结果,而且还必须给出每一种结果出现的概率,说明被预测的事件在预测期内出现每一种结果的可能性程度。

这就是关于事件发生的概率预测。

马尔可夫(Markov)预测法,就是一种关于事件发生的概率预测方法。

它是根据事件的目前状况来预测其将来各个时刻(或时期)变动状况的一种预测方法。

马尔可夫预测法是地理预测研究中重要的预测方法之一。

2基本概念(一)状态、状态转移过程与马尔可夫过程1.状态 在马尔可夫预测中,“状态”是一个重要的术语。

所谓状态,就是指某一事件在某个时刻(或时期)出现的某种结果。

一般而言,随着所研究的事件及其预测的目标不同,状态可以有不同的划分方式。

譬如,在商品销售预测中,有“畅销”、“一般”、“滞销”等状态;在农业收成预测中,有“丰收”、“平收”、“欠收”等状态;在人口构成预测中,有“婴儿”、“儿童”、“少年”、“青年”、“中年”、“老年”等状态;等等。

2.状态转移过程 在事件的发展过程中,从一种状态转变为另一种状态,就称为状态转移。

事件的发展,随着时间的变化而变化所作的状态转移,或者说状态转移与时间的关系,就称为状态转移过程,简称过程。

3.马尔可夫过程 若每次状态的转移都只仅与前一时刻的状态有关、而与过去的状态无关,或者说状态转移过程是无后效性的,则这样的状态转移过程就称为马尔可夫过程。

在区域开发活动中,许多事件发展过程中的状态转移都是具有无后效性的,对于这些事件的发展过程,都可以用马尔可夫过程来描述。

(二)状态转移概率与状态转移概率矩阵1.状态转移概率 在事件的发展变化过程中,从某一种状态出发,下一时刻转移到其它状态的可能性,称为状态转移概率。

根据条件概率的定义,由状态E i 转为状态E j 的状态转移概率P (E i →E j )就是条件概率P (E j /E i ),即P(Ei Ej)=P(Ej/Ei)=Pij → (1)2.状态转移概率矩阵 假定某一种被预测的事件有E 1,E 2,…,E n ,共n 个可能的状态。

马尔可夫预测方法

马尔可夫预测方法
年份 序号 状态 年份 序号 状态 年份 序号 状态 年份 序号 状态 1960 1 E1 1970 11 E3 1980 21 E3 1990 31 E1 1961 2 E1 1971 12 E1 1981 22 E3 1991 32 E3 1962 3 E2 1972 13 E2 1982 23 E2 1992 33 E2 1963 4 E3 1973 14 E3 1983 24 E1 1993 34 E1 1964 5 E2 1974 15 E1 1984 25 E1 1994 35 E1 1965 6 E1 1975 16 E2 1985 26 E3 1995 36 E2 1966 7 E3 1976 17 E1 1986 27 E2 1996 37 E2 1967 8 E2 1977 18 E3 1987 28 E2 1997 38 E3 1968 1969 9 E1 1978 19 E3 1988 29 E1 1998 39 E1 10 E2 1979 20 E1 1989 30 E2 1999 40 E2
个时刻( 第k个时刻(时期)的状态概率预测 个时刻 时期)
如果某一事件在第0个时刻(或 时期)的初始状态已知,即π ( 0 ) 已知, 则利用递推公式(3.7.8),就可以求得 它经过k次状态转移后,在第k个时刻 (时期)处于各种可能的状态的概率, 即 ,从而就得到该事件在第k个 π (k ) 时刻(时期)的状态概率预测。
状态转移: 状态转移: 事件的发展,从一种状态转变为另一种状态, 称为状态转移。例如某产品在当前考察时处于畅 销阶段,过了一段时间,我们再来考察时,犹豫 市场竞争等多种因素,产品可能不再畅销,比如 处于滞销,则其状态从1转移到了2;某产品当前 装有是其市场占有率的20%,假如在下一个考察 时间点其市场占有率为25%,则其装有从20%转移 到了25%;某机器设备当前状态处于正常运转, 下一个考察时间点其状态有可能仍然是正常运转, 也可能处于待修状态。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6章
如果对任一n>1,任意的i1, i2, …, in-1 , j∈S, P{Xn=j|X1=i1, X2=i2, …, Xn-1=in-1}=P{Xn=j|Xn-1=in-1}
(6.1)
则称离散型随机过程{Xt, t∈T}为马尔可夫链。
例如,在荷花池中有N张荷叶,编号为1, 2, …, N。假设有一
第6章
例6.2
0.50 0.25 0.25 P 0.50 0.00 0.50
0.25 0.25 0.50
求其平稳分布及稳态分布。
解 (1) P不可约。
0.4375 0.1875 0.375
P(2)

P2


0.375
0.25
0.375

0.375 0.1875 0.4375 pij>0,仅当i≠2且j≠2时。又p (2) 22>0,由定义可知,P是
第6章
将表6.1中的数据化为转移概率将对研究分析未来 若干周期的顾客流向更为有利。表6.2列出了各公司顾 客流动的转移概率。表6.2中的数据是每家厂商在一个 周期中的顾客数与前一周期的顾客数相除所得。表中 每一行表示某公司从一个周期到下一个周期将能保住 的顾客数的百分比,以及将要丧失给竞争对手的顾客数 的百分比。表中每一列表示各公司在下一周期将能保 住的顾客数的百分比,以及该公司将要从竞争对手那里 获得顾客数的百分比。
第6章
6.1.2
马尔可夫链是一种描述动态随机现象的数学模型, 它建立在系统“状态”和“状态转移”的概念之上。
所谓系统,就是我们所研究的事物对象;所谓状态,是表
示系统的一组记号。当确定了这组记号的值时,也就确
定了系统的行为,并说系统处于某一状态。系统状态常
表示为向量,故称之为状态向量。例如,
A、
B、C三种牌号洗衣粉的市场占有率分别是0.3、0.4、
p (k) ij=P{Xn+k=j|XБайду номын сангаас=i}
P(k) =(p (k) ij) N×N
(6.3)
称p (k) ij为k步状态转移概率, P(k)为k步状态转移概率 矩阵,它们均与n无关(从式(6.4)也可看出)。
特别地,当k=1时,p (1) ij=pij为1步状态转移概率。马 尔可夫链中任何k步状态转移概率都可由1步状态转移 概率求出。
只青蛙随机地从这张荷叶上跳到另一张荷叶上。青蛙的运动
可看作一随机过程。在时刻tn,青蛙所在的那张荷叶,称为青蛙 所处的状态。那么,青蛙在未来处于什么状态,只与它现在所
处的状态i(i=1, 2, …, N)
,与它以前在哪张荷叶上无关。
此过程就是一个马尔可夫链。
由于系统状态的变化是随机的,因此,必须用概率描述状 态转移的各种可能性的大小。
p j (m)

lim
m
i 1
pi
(0)
p(m) ij

i 1
pi (0)
j

j
这mlim也是P称(mπ)为稳mli态m分(布p1的(m理),由p。2(m),...,pN (m))
设存在稳态分布π=(π1, π 2, …, πN),则由于下式恒成 立:
P(k)=P(k-1)P
为概率矩阵。对于一个概率矩阵P,若存在正整数m,使
得Pm的所有元素均为正数,则称矩阵P为正规概率矩阵。
例如,
A

0.7 0.5
0.3 0.5
中每个元素均非负,每行元素之和皆为1,行数和列
数相同,为2×2方阵,故矩阵A为概率矩阵。
第6章
概率矩阵有如下性质: 如果A、B皆是概率矩阵,则 AB也是概率矩阵;如果A是概率矩阵,则A的任意次幂 Am(m≥0)也是概率矩阵。对k≥1,
对k≥1,记pi(k)=P{Xk=i},
N
pi(k)= pj(0)·p (k) ji i=1, 2, …, N; k≥1
j 1
若记向量P(k)=(p1(k), p2(k), …, pN(k)),
P(k)=P(0)P (k) =P(0)Pk
(6.5) (6.6)
P(k)=P(k-1)P
(6.7)
第6章
现以1个月为时间单位。经观察统计,知从某月份到 下月份机床出现故障的概率为0.2,即p12=0.2。其对立事 件,保持正常状态的概率为p11=0.8。在这一时间,故障机 床经维修返回到正常状态的概率为0.9,即p21=0.9;不能 修好的概率为p22=0.1。机床的状态转移情形见图6.1。
第6章
0.3,则可用向量P=(0.3, 0.4, 0.3)来描述该月市场洗衣粉
销售的状况。
第6章
当系统由一种状态变为另一种状态时,我们称之为状态 转移。例如,洗衣粉销售市场状态的转移就是各种牌号洗衣 粉市场占有率的变化。显然,这类系统由一种状态转移到另 一种状态完全是随机的,因此必须用概率描述状态转移的各 种可能性的大小。如果在时刻tn系统的状态为Xn=i的条件下, 在下一个时刻tn+1系统状态为Xn+1=j的概率pij (n)与n无关,则 称 此 马 尔 可 夫 链 是 齐 次 马 尔 可 夫 链 , 并 pij=P{Xn+1=j|Xn=i}i, j=1, 2, …, N称pij为状态转移概率。显然,
0.18 0.19
矩阵的第一行表明,本月处于正常状态的机床,两个月后
仍处于正常状态的概率为0.82,转移到故障状态的概率为
0.18。第二行说明,本月处于故障状态的机床,两个月后转移
到正常状态的概率为0.81,仍处于故障状态的概率为0.19。
第6章
于是,两个月后机床的状态向量
P(2) P(0)P(2) [0.85
第6章
第6章 马尔可夫预测方法
6.1 马尔可夫预测的基本原理 6.2 马尔可夫预测的应用 思考与练习
第6章
6.1 马尔可夫预测的基本原理
6.1.1
为了表征一个系统在变化过程中的特性(状态),可 以用一组随时间进程而变化的变量来描述。如果系统在 任何时刻上的状态是随机的,则变化过程就是一个随机过 程。
第6章
由全概率公式可知, 对k≥1,有(其中P (0) 表示单位矩阵)
p (k) ij=P{Xn+k=j|Xn=i}
N
=

l 1
P{Xn+k-1=l| Xn =i}·P{Xn+k=j|Xn+k-1=l}
N
= p (k-1) ilplj l 1
i, j=1, 2, …, N
其中用到马尔可夫链的“无记忆性”和齐次性。用矩阵
pij P{X n1 j X n i} i, j 1,2,...N
N
pij 1 i 1,2,...N
j 1
第6章
转移矩阵设系统的状态转移过程是一齐次马尔可夫
链,状态空间S={1, 2, …, N}为有限,状态转移概率为pij,则 称矩阵
p11 p12 p1N
0.8
0.2
1
0.9
0.1 2
图6.1 机床的状态转移
第6章
P


p11 p21
p12 p22


0.82

0.9
0.2 0.1
若已知本月机床的状态向量P(0)=(0.85, 0.15),现要预测
机床两个月后的状态。
P(2)

P2

0.8 0.9
0.22 0.82 0.1 0.81
第6章
表6.2
第6章
如用矩阵来表示表6.2中的数据,就得到了如下的状 态转移矩阵:
设有参数集T (-∞, +∞),如果对任意的t∈T,总有一随机
变量Xt与之对应,则称{Xt, t∈T}为一随机过程。
T
为离散集(不妨设T={t0, t1, t2, …, tn, …}),同时Xt的取值也
是离散的,则称{Xt, t∈T}为离散型随机过程。
第6章
设有一离散型随机过程,它所有可能处于的状态的集合 为S={1, 2,…, N},称其为状态空间。系统只能在时刻t0, t1, t2, … 改变它的状态。为简便计,以下将Xtn等简记为Xn。
第6章
例6.1 考察一台机床的运行状态。机床的运行存在 正常和故障两种状态。由于出现故障带有随机性,故可将 机床的运行看作一个状态随时间变化的随机系统。可以 认为,机床以后的状态只与其以前的状态有关,而与过去 的状态无关,即具有无后效性。因此,机床的运行可看作 马尔可夫链。
设正常状态为1,故障状态为2,即机床的状态空间由 两个元素组成。机床在运行过程中出现故障,这时从状态 1转移到状态2;处于故障状态的机床经维修,恢复到正常 状态,即从状态2转移到状态1。
不可约的。
第6章
(2) P非周期。
由p (1) 11>0, p (2) 11>0, 而1、2的公约数为1,故状态1 为非周期状态。同理可得状态2、3均为非周期状态。 故P
(3)由于P不可约且是非周期的,求解如下方程组:
XP X


3
i1
xi
1
得X=[0.4 0.2 0.4], 这就是该马尔可夫链的稳态
品销售额逐期稳定上升,而A公司的产品销售额却在下降。
通过市场调查发现三个公司间的顾客流动情况如表6.1所
示。
第6章
其中产品销售周期是季度。现在的问题是,按照目 前的趋势发展下去, A公司的产品销售额或客户转移的 影响将严重到何种程度? 更全面地,三个公司的产品销 售额的占有率将如何变化?
第6章 表6.1 A、B、C三公司的顾客流动情况
对于我们所讨论的状态有限(即N个状态)的马尔可夫 链,平稳分布必定存在。特别地,当状态转移矩阵为正规概率矩 阵时,平稳分布惟一。此时,求解方程(6.8),即可得到系统的平 稳分布。
相关文档
最新文档