《地球化学》练习题2剖析
地球化学考试复习资料

地球化学考试复习资料第一部分课后习题及答案绪论1. 简要说明地球化学研究的基本问题。
1)地球系统中元素及同位素的组成问题;2)地球系统中元素的组合和元素的赋存形式;3)地球系统各类自然过程中元素的行为(地球的化学作用)、迁移规律和机理;4)地球的化学演化,即地球历史中元素及同位素的演化历史。
2. 简述地球化学学科的研究思路和研究方法。
1)自然过程在形成宏观地质体的同时也留下了微观踪迹,其中包括了许多地球化学信息;2)自然界物质的运动和存在状态是环境和体系介质条件的函数;3)地球化学问题必须至于地球或其其子系统中进行分析,以系统的组成和状态来约束作用的特征和元素的行为。
地球化学研究方法:反序法和类比法第一章太阳系和地球系统的元素丰度1.简述太阳系元素丰度的基本特征.1)原子序数较低的范围内,元素丰度随原子序数增大呈指数递减,而在原子序数较大的范围内(Z>45)各元素丰度值很相近。
2)原子序数为偶数的元素其丰度大大高于相邻原子序数为奇数的元素。
具有偶数质子数(A)或偶数中子数(N)的核素丰度总是高于具有奇数A 或N的核素。
3)质量数为4的倍数的核类或同位素具有较高的丰度,原子序数或中子数为“约数”(2、8、20、50、83、126等)的核类或同位素分布最广、丰度最大。
4)锂、铍、硼元素丰度严重偏低,属于强亏损的元素。
5)氧和铁元素丰度显著偏高,它们是过剩元素。
6)含量最高的元素为H、He,这两种元素的原子几乎占了太阳中全部原子数目的98%。
2.简介地壳元素丰度特征.1)地壳元素丰度差异大:丰度值最大的元素(O)是最小元素(Rn)的1017倍;丰度值最大的三种元素之和达82.58%;丰度值最大的九种元素之和达98.13%;2)地壳元素丰度的分布规律与太阳系基本相同。
与太阳系或宇宙相比,地壳和地球都明显地贫H, He, Ne, N等气体元素;而地壳与整个地球相比,则明显贫Fe和Mg,同时富集Al, K 和Na。
地球化学作业习题(含标准标准答案)

地球化学作业习题1、为什么硅酸盐矿物中K地配位数经常比Na地配位数大?答: K和Na都属于碱性元素,其离子半径分别为:1.38A和1.02A(Krauskopf et al,1995)或1.59和1.24A(Gill,1996).以与阴离子O2-结合为例,O2-离子半径1.40A(Krauskopf et al,1995)或1.32(Gill,1996),根据阳离子与氧离子半径比值与配位数关系,K+/O2-=0.9857, Na+/O2-=0.7286,由于等大球周围有12个球,而在离子晶体中,随阳离子半径地较小,为达到紧密接触,因此配位数也要减少,因此,在硅酸盐矿物中K地配位数经常比Na地配位数大,前者与氧地配位数为8,12,而后者为6,8.b5E2R。
2、Zn2+和Mg2+地离子半径相近,但在天然矿物中,前者经常呈四面体配位,后者则常呈八面体配位,为什么?答:这是由于二者地球化学亲和性差异造成地,Mg2+离子半径0.72A,Zn2+离子半径≈0.70A,二者离子半径相近,但是前者地电负性为1.2,后者电负性为1.7,在与氧形成地化学键中,前者71%为离子键成分,后者离子键成分仅为63%.前者易于亲氧,后者则是典型地亲硫元素.根据确定配位数地原则,Zn2+/S2-=0.41(Krauskopf et al,1995),因此闪锌矿形成典型地四面体配位,而后者Mg2+/O2-=0.51,因此呈八面体配位.p1Ean。
林伍德电负性法则-具有较低电负性地离子优先进入晶格当阳离子地离子键成分不同时,电负性较低地离子形成较高离子键成分(键强较高)地键,它们优先被结合进入矿物晶格,而电负性较高地离子则晚进入矿物晶格.例如,Zn2+地电负性为857.7kJ/mol,Fe2+地电负性为774 kJ/mol,而Mg2+地电负性为732 kJ/mol,用林伍德法则判断,三个元素中Mg2+和Fe2+优先进入晶格组成镁铁硅酸盐,Zn2+则很难进入早期结晶地硅酸盐晶格,这与地质事实十分吻合.电负性决定了元素之间相互化合时地化学键性,因此可以用电负性大小来衡量离子键地强弱,由此判断元素进入矿物晶格地先后顺序.Zn2+(0.083nm)与Mg2+(0.078nm)、Fe2+(0.083nm)地离子性质很相似,若按戈氏法则从相互置换质点间地电价和半经地角度进行判断,Zn2+应于早期进入铁镁硅酸盐晶格.由于Zn2+地电负性较大,化合时共价键性较强,难于以类质同象方式进入Fe2+和Mg2+结晶矿物中,Zn2+往往在硅酸盐熔体晚期结晶形成ZnSiO4(硅锌矿)和Zn4[Si2O7][OH]2.2H2O)(异极矿)等矿物.林伍德电负性法则更适合于非离子键性地化合物.DXDiT。
《地球化学》练习题2要点

恩《地球化学》练习题第一章太阳系和地球系统的元素丰度(答案)1.概说太阳成份的研究思路和研究方法。
2.简述太阳系元素丰度的基本特征。
3.说说陨石的分类及相成分的研究意义.4.月球的结构和化学成分与地球相比有何异同?5.讨论陨石的研究意义。
6.地球的结构对于研究和了解地球的总体成分有什么作用?7.阐述地球化学组成的研究方法论。
8.地球的化学组成的基本特征有哪些?9.讨论地壳元素丰度的研究方法。
10.简介地壳元素丰度特征。
11.地壳元素丰度特征与太阳系、地球对比说明什么问题?12.地壳元素丰度值(克拉克值)有何研究意义?13.概述区域地壳元素丰度的研究意义。
14.简要说明区域地壳元素丰度的研究方法。
15.岩浆岩中各岩类元素含量变化规律如何?16.简述沉积岩中不同岩类中元素含量变化规律。
第二章元素结合规律与赋存形式(答案)1.亲氧元素和亲硫元素地球化学性质的主要差异是什么?2.简述类质同像的基本规律。
3.阐述类质同像的地球化学意义。
4.简述地壳中元素的赋存形式及其研究方法。
5.举例说明元素存在形式研究对环境、找矿或农业问题的意义。
6.英国某村由于受开采ZnCO3矿的影响,造成土壤、房尘及饮食摄入Cd明显高于其国标,但与未受污染的邻村相比,在人体健康方面两村没有明显差异,为什么?第三章自然界体系中元素的地球化学迁移(答案)1.举例说明元素地球化学迁移的定义。
2.举例说明影响元素地球化学迁移过程的因素。
3.列举自然界元素迁移的标志。
4.元素地球化学迁移的研究方法。
5.水溶液中元素的迁移形式有那些?其中成矿元素的主要迁移形式又是什么?6.解释络离子的稳定性及其在地球化学迁移中的意义。
7.简述元素迁移形式的研究方法。
8.什么是共同离子效应?什么是盐效应?9.天然水的pH值范围是多少?对于研究元素在水介质中的迁移、沉淀有何意义?10.举例说明Eh、pH值对元素迁移的影响。
11.非标准电极电位E及环境的氧化还原电位Eh,在研究元素地球化学行为方面有什么作用?12.试述影响元素溶解与迁移的内部因素。
地球化学作业习题(含答案)

地球化学作业习题1、为什么硅酸盐矿物中K的配位数经常比Na的配位数大?答: K和Na都属于碱性元素,其离子半径分别为:1.38A和1.02A(Krauskopf et al,1995)或1.59和1.24A(Gill,1996)。
以与阴离子O2-结合为例,O2-离子半径1.40A(Krauskopf et al,1995)或1.32(Gill,1996),根据阳离子与氧离子半径比值与配位数关系,K+/O2-=0.9857, Na+/O2-=0.7286,由于等大球周围有12个球,而在离子晶体中,随阳离子半径的较小,为达到紧密接触,因此配位数也要减少,因此,在硅酸盐矿物中K的配位数经常比Na的配位数大,前者与氧的配位数为8,12,而后者为6,8。
2、Zn2+和Mg2+的离子半径相近,但在天然矿物中,前者经常呈四面体配位,后者则常呈八面体配位,为什么?答:这是由于二者地球化学亲和性差异造成的,Mg2+离子半径0.72A,Zn2+离子半径≈0.70A,二者离子半径相近,但是前者的电负性为1.2,后者电负性为1.7,在与氧形成的化学键中,前者71%为离子键成分,后者离子键成分仅为63%。
前者易于亲氧,后者则是典型的亲硫元素。
根据确定配位数的原则,Zn2+/S2-=0.41(Krauskopf et al,1995),因此闪锌矿形成典型的四面体配位,而后者Mg2+/O2-=0.51,因此呈八面体配位。
林伍德电负性法则-具有较低电负性的离子优先进入晶格当阳离子的离子键成分不同时,电负性较低的离子形成较高离子键成分(键强较高)的键,它们优先被结合进入矿物晶格,而电负性较高的离子则晚进入矿物晶格。
例如,Zn2+的电负性为857.7kJ/mol,Fe2+的电负性为774 kJ/mol,而Mg2+的电负性为732 kJ/mol,用林伍德法则判断,三个元素中Mg2+和Fe2+优先进入晶格组成镁铁硅酸盐,Zn2+则很难进入早期结晶的硅酸盐晶格,这与地质事实十分吻合。
地球化学判断试题及答案

地球化学判断试题及答案一、选择题(每题2分,共10分)1. 地球化学研究的主要对象是什么?A. 地球的物理性质B. 地球的化学组成C. 地球的生物过程D. 地球的大气环境答案:B2. 以下哪项不是地球化学分析中常用的方法?A. 质谱分析B. 光谱分析C. 热重分析D. 核磁共振分析答案:D3. 地球化学循环中,哪个元素是生物体中含量最多的?A. 氧B. 碳C. 氢D. 氮答案:A4. 地球化学中,岩石圈的化学成分主要受哪些因素影响?A. 地壳运动B. 地幔物质的上升C. 地表风化作用D. 所有以上因素答案:D5. 地球化学研究中,哪种元素的同位素比值常用于追踪物质来源?A. 碳B. 氢C. 氧D. 氦答案:A二、填空题(每题2分,共10分)1. 地球化学分析中,_________是测定元素含量的重要手段。
答案:质谱分析2. 地球化学循环中,_________元素是构成生物体的基本元素之一。
答案:碳3. 在地球化学研究中,_________是指地球内部的化学元素在不同圈层之间的迁移和转化过程。
答案:地球化学循环4. 地球化学中,_________是指地球表面和大气中的化学元素通过风化、侵蚀、沉积等过程在地球表面循环的过程。
答案:地表化学循环5. 地球化学研究中,_________是指通过分析岩石、矿物、土壤、水体等样品的化学成分来了解地球内部和表面的化学过程。
答案:地球化学分析三、简答题(每题5分,共20分)1. 简述地球化学在环境监测中的应用。
答案:地球化学在环境监测中的应用主要体现在通过分析土壤、水体、大气等环境样品中的化学成分,来评估环境污染的程度和来源,以及预测环境变化的趋势。
2. 描述地球化学循环中水循环的主要过程。
答案:地球化学循环中的水循环主要过程包括蒸发、凝结、降水、地表径流、地下渗透和海洋循环等,这些过程共同构成了地球上水的循环系统。
3. 阐述地球化学分析在矿产资源勘探中的作用。
地球化学考试试题

地球化学考试试题
一、选择题
1. 地球形成以来,经历了多少个构造周期?
A. 1个
B. 2个
C. 3个
D. 4个
2. 地幔中占比重最大的元素是:
A. 铁
B. 镁
C. 硅
D. 钠
3. 地球的地壳主要由以下哪两种岩石类型组成?
A. 硅钟岩和辉长岩
B. 花岗岩和玄武岩
C. 石英砂岩和页岩
D. 片麻岩和变质岩
4. 地球表层的大气主要由以下哪两种气体组成?
A. 氧气和氮气
B. 氧气和氩气
C. 氮气和二氧化碳
D. 二氧化碳和水蒸气
5. 以下哪个元素是地球核心的主要成分?
A. 铁
B. 镍
C. 钛
D. 铝
二、填空题
6. 地球的内部结构分为地幔、外核和内核三部分,地幔的平均厚度约为____________km。
7. 地球表层的陆地之上,覆盖了约_____的水。
8. 地球大气的最外层叫做____________。
三、解答题
1. 请简要描述地球的形成过程及不同构造周期的特点。
2. 试分析地球大气的组成及其在地球环境中的重要性。
3. 简要解释地球磁场的形成原理以及其对地球生命环境的重要性。
4. 从地幔和地壳的成分组成方面,简要说明它们在地球化学循环中的作用。
四、论述题
请就目前全球气候变暖的趋势,结合地球化学知识,提出个人见解及对应的解决方案,并解释其可能的影响和挑战。
(以上内容仅为参考,具体试题内容以考试实际情况为准)
以上是地球化学考试试题,请根据要求写出3000字文章。
《地球化学》复习思考题.doc

《地球化学》复习思考题.doc名词解释自己搞吧,版本太多。
第一章太阳系和地球系统的元素丰度1.简要说明地球化学研究的基本问题*1地球系统11元素及同位素的组成问题;2地球系统中元素的组合和元素的赋存形式;3地球系统各类自然过程中元素的行为(地球的化学作用)、迁移规律和机理;4地球的化学演化,即地球历史中元素及同位素的演化历史。
2.简述太阳系元素丰度的基本特征及原因1.H和He是丰度最高的两种元素。
占据太阳中全部原子数目的98%。
%1原子序数较低的范围内,元素丰度随原子序数增大呈指数递减,而在原子序数较大的范围内(Z>45)各元素丰度值很相近。
%1原子序数为偶数的元素其丰度大大高于相邻原子序数为奇数的元素。
具有偶数质子数(A)或偶数中子数(N)的核素丰度总是高于具有奇数A或N的核素。
这一规律称为奥多■哈根斯法则,亦即奇偶规律。
%1质量数为4的倍数(即a粒子质量的倍数)的核素或同位素具有较高丰度%1原子序数(Z)或中子数(N)为“幻数”的核素或同位素丰度最大例如,4He (Z=2, N = 2)、160 (Z=8, N=8)、40Ca (Z=20, N=20)和140Ce(Z=58, N=82)等都具有较高的丰度%1Li、Be和B具有很低的丰度,属于强亏损的元素而O和Fe呈现明显的峰,它们是过剩元素原因:%1与元素结构有关宇宙元素丰度的分布与原子核的结构控制。
%1与元素形成过程有关在恒星的高温(nxlO6K)条件下,Li、Be 和B作为氢燃烧的一部分迅速地转变为He的同位素42He o因此,造成宇宙中Li、Be和B 亏损。
O, Fe的丰度异常地高是因为这两种元素是氮燃烧的稳定产物。
3.陨石的分类及相成分的研究意义传统分类,通常根据其中的金属含量将陨石划分为3大类型:球粒陨石约含10%金属1 .石陨石{无球粒陨石约含1%金属2.石一铁陨石:镣■铁金属相和硅峻盐相各50%3.铁陨石:金属镣■铁含量大于90%研究意义:碳质球粒陨石虽然十分稀少,但在探讨太阳系元素丰度方面却具有特殊的意义。
地球化学(复习资料)剖析

第一章1.克拉克值:元素在地壳中的丰度,称为克拉克值。
元素在宇宙体或地球化学系统中的平均含量称之为丰度。
丰度通常用重量百分数(%),PPM(百万分之一)或g/t表示。
2.富集矿物:指所研究元素在其中的含量大大超过它在岩石总体平均含量的那种矿物。
3.载体矿物:指岩石中所研究元素的主要量分布于其中的那种矿物。
4. 浓集系数=工业利用的最低品位/克拉克值。
为某元素在矿床中可工业利用的最低品位与其克拉克值之比。
5.球粒陨石:是石陨石的一种。
(约占陨石的84%):含有球体,具有球粒构造,球粒一般为橄榄石和斜方辉石。
基质由镍铁、陨硫铁、斜长石、橄榄石、辉石组成。
划分为: E群——顽火辉石球粒陨石,比较稀少;O群——普通球粒陨石: H亚群—高铁群,橄榄石古铜辉石球粒损石;L亚群—低铁群,橄榄紫苏辉石球粒陨石; LL 亚群—低铁低金属亚群;C群——碳质球粒陨石,含有碳的有机化合物和含水硅酸盐,如烷烃、芳烃、烯烃、氨基酸、卤化物、硫代化合物等。
为研究生命起源提供重要信息。
分Ⅰ型、Ⅱ型和Ⅲ型。
Ⅰ型其非挥发性组成代表了太阳系星云的非挥发性元素丰度。
6.浓度克拉克值=某元素在地质体中的平均含量/克拉克值,反映地质体中某元素的浓集程度。
1.陨石在地化研究中的意义:(一)陨石的成分是研究和推测太阳系及地球系统元素成分的重要依据:(1)用来估计地球整体的平均化学成分。
○1陨石类比法,即用各种陨石的平均成分或用球粒陨石成分来代表地球的平均化学成分。
○2地球模型和陨石类比法来代表地球的平均化学成分,其中地壳占质量的1%,地幔31.4%,地核67.6%,然后用球粒陨石的镍—铁相的平均成分加5.3%的陨硫铁可以代表地核的成分,球粒陨石的硅酸盐相平均成分代表地壳和地幔的成分,用质量加权法计算地球的平均化学成分。
(2)I型碳质球粒陨石其挥发性组成代表了太阳系中非挥发性元素的化学成分。
(二)陨石的类型和成分是用来确定地球内部具层圈结构的重要依据:由于陨石可以分为三种不同的陨石—石陨石、石铁陨石和铁陨石,因而科学家设想陨石是来自某种曾经分异成一个富含金属的核和一个硅酸盐外壳的行星体,这种行星经破裂后就成为各种陨石,其中铁陨石来自核部,石铁陨石来自金属核和硅酸盐幔的界面,而石陨石则来自富硅酸盐的幔区。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
恩《地球化学》练习题第一章太阳系和地球系统的元素丰度(答案)1.概说太阳成份的研究思路和研究方法。
2.简述太阳系元素丰度的基本特征。
3.说说陨石的分类及相成分的研究意义.4.月球的结构和化学成分与地球相比有何异同?5.讨论陨石的研究意义。
6.地球的结构对于研究和了解地球的总体成分有什么作用?7.阐述地球化学组成的研究方法论。
8.地球的化学组成的基本特征有哪些?9.讨论地壳元素丰度的研究方法。
10.简介地壳元素丰度特征。
11.地壳元素丰度特征与太阳系、地球对比说明什么问题?12.地壳元素丰度值(克拉克值)有何研究意义?13.概述区域地壳元素丰度的研究意义。
14.简要说明区域地壳元素丰度的研究方法。
15.岩浆岩中各岩类元素含量变化规律如何?16.简述沉积岩中不同岩类中元素含量变化规律。
第二章元素结合规律与赋存形式(答案)1.亲氧元素和亲硫元素地球化学性质的主要差异是什么?2.简述类质同像的基本规律。
3.阐述类质同像的地球化学意义。
4.简述地壳中元素的赋存形式及其研究方法。
5.举例说明元素存在形式研究对环境、找矿或农业问题的意义。
6.英国某村由于受开采ZnCO3矿的影响,造成土壤、房尘及饮食摄入Cd明显高于其国标,但与未受污染的邻村相比,在人体健康方面两村没有明显差异,为什么?第三章自然界体系中元素的地球化学迁移(答案)1.举例说明元素地球化学迁移的定义。
2.举例说明影响元素地球化学迁移过程的因素。
3.列举自然界元素迁移的标志。
4.元素地球化学迁移的研究方法。
5.水溶液中元素的迁移形式有那些?其中成矿元素的主要迁移形式又是什么?6.解释络离子的稳定性及其在地球化学迁移中的意义。
7.简述元素迁移形式的研究方法。
8.什么是共同离子效应?什么是盐效应?9.天然水的pH值范围是多少?对于研究元素在水介质中的迁移、沉淀有何意义?10.举例说明Eh、pH值对元素迁移的影响。
11.非标准电极电位E及环境的氧化还原电位Eh,在研究元素地球化学行为方面有什么作用?12.试述影响元素溶解与迁移的内部因素。
13.自然界中地球化学热力学体系基本特点是什么?14.自然体系中哪些特征可作为体系达到平衡态的证据与标志?15.讨论相律及其应用。
16.编制相图的原理和方法。
17.简述化学反应制动原理的宏观解释。
18.简述热力学在地球化学中的应用。
19.简述地球化学热力学与地球化学动力学的异同。
20. 简述水溶液中元素的迁移方式。
第四章微量元素地球化学(答案)1.什么是微量元素地球化学?其研究意义是什么?2.了解微量元素地球化学的研究思路及研究方法。
3.什么叫微量元素、什么是主量(常量)元素?微量元素的主要存在形式有哪些?4.阐述能斯特分配定律、能斯特分配系数的概念及其研究意义。
5.稀土元素的主要特点是什么?其在地球化学体系中行为差异主要表现有哪些方面?6.讨论稀土元素的研究意义。
7.你认为岩浆作用过程中决定元素浓集成矿的主要机制和决定因素是什么?8 根据微量元素的特点,说明那些元素适合于研究沉积岩物源区特征,为什么?第五章同位素地球化学(答案)1. 同位素地球化学在解决地学领域问题中有何独到之处?2. 何谓稳定同位素、何谓轻稳定同位素和重稳定同位素。
3. 选择同位素标准样品的条件。
4. 造成稳定同位素组成变化的原因是什么?5. 放射性同位素年龄测定公式,各符号的含义。
6. 利用衰变定律来测定岩石、矿物的年龄,应满足的哪些前提条件?7. 概述同位素研究工作方法程序。
8. 以Rb-Sr等时线法为例说明同位素测年的样品采集过程中应注意的事项。
1.概说太阳成份的研究思路和研究方法。
答:我们地球所在的太阳系是由太阳、行星、行星物体(宇宙尘、彗星、小行星)组成的,其中太阳的质量占太阳系总质量的99.8%,其他成员的总和仅为0.2%,所以太阳的成分是研究太阳系成分的关键。
获得太阳系丰度资料的主要途径有:1)光谱分析,对太阳和其它星体的辐射光谱进行定性和定量分析;2)直接分析,如测定地壳岩石、各类陨石和月岩、火星样品;3)利用宇宙飞行器分析测定星云和星际物质及研究宇宙射线。
2.简述太阳系元素丰度的基本特征。
答:对太阳系元素的丰度估算各类学者选取太阳系的物体是不同的。
有的是根据太阳和其它行星光谱资料及陨石化学成分,有的根据I型球粒陨石,再加上估算方法不同,得出的结果也不尽相同。
1)氢和氦是丰度最高的两种元素。
这两种元素的原子几乎占了太阳中全部原子数目的98%;2)随元素的原子序数增大,元素丰度呈指数下降,原子序数>45的元素,元素丰度变化不明显;3)原子序数为偶数的元素,其元素丰度大于相邻的奇数元素;4)锂、铍、硼元素丰度严重偏低,氧和铁元素丰度显著偏高;5)质量数为4的倍数(即α粒子质量的倍数)的核素或同位素具有较高丰度。
此外,还有人指出原子序数(Z)或中子数(N)为“幻数”(2、8、20、50、82和126等)的核素或同位素丰度最大。
这是一种估计值,反映的是目前人类对太阳系的认识水平,因此这个估计值不可能是准确的,随着人们对太阳系以至于宇宙体系探索的不断深入,这个估计值会不断的修正。
同时,从总的方面来看,虽然还是很粗略的,但它反映了元素在太阳系分布的总体规律。
3.说说陨石的分类。
答:陨石主要是由镍-铁合金、结晶硅酸盐或两者的混合物所组成。
按陨石中金属的含量可将陨石分为三类:1)铁陨石,主要由金属Ni、Fe和少量其它元素组成;2)石陨石,主要由硅酸盐矿物组成(橄榄石、辉石)。
这类陨石可以分为两类,即决定它们是否含有球粒硅酸盐结构,分为球粒陨石和无球粒陨石;3)铁石陨石,铁石陨石由数量上大体相等的Fe、Ni和硅酸盐矿物组成。
4.月球的结构和化学成分与地球相比有何异同?答:1)月球的主要岩石类型为玄武岩和辉长岩类,没有花岗岩和沉积岩,但有一种特殊的岩石(克里普岩),是一种含钾、稀土元素和磷的岩石;2)月球没有铁镍核,也没有大气圈和水圈(所以月球表面无风化作用);3)与地球化学成分相比较,月岩中碱金属和挥发性元素,富耐熔元素和稀土元素。
5.讨论陨石的研究意义。
答; 研究陨石主要从陨石的成分、年龄、成因出发,其研究成果不仅对研究太阳系的化学成分、起源和演化、有机质起源和太阳系空间环境等有着重要意义,而且对研究地球的形成、组成演化以及地球早期生命系统的化学演化也有重要意义。
1)它是认识宇宙天体、行星的成分、性质及其演化的最易获取、数量最大的地外物质;2)是认识地球的组成、内部构造和起源的主要资料来源,可以用陨石类比法,地球模型和陨石的类比法来研究地球元素的丰度;3)陨石中的60多种有机化合物是非生物合成的“前生物物质”,对探索生命前期的化学演化开拓了新的途径;4)可作为某些元素和同位素的标准样品(稀土元素,铅、硫同位素)。
6.地球的结构对于研究和了解地球的总体成分有什么作用?答:地球是由地壳、地幔和地核等不同圈层组成。
由于地球物质组成具不均一性,不能用地球表层(如地壳)或某一研究区成分代表地球化学组成,所以地球的结构模型成为研究地球的总体成分的基础。
7.阐述地球化学组成的研究方法论。
答:一)分层研究法:分别获取地球各层的成分,按各层的相对质量百分比计算地球平均成分;二)总体研究法:1)陨石相成分分类;2)地球相成分分类及不同相成分质量百分比;3)据各相质量百分比计算地球平均成分。
8.地球的化学组成的基本特征有哪些?答:首先,地球的元素丰度也遵守太阳系元素丰度的基本规律(递减规律和奇偶规律);其次,地球的元素丰度还具有以下特征:1)地球中含量大于10%的元素有Fe、O、Si、Mg;大于1%的元素有Ni、S、Ca、Al;其次为Na、K、Cr、Co、P、Mn和Ti,可以认为地球几乎是由15种元素组成的;2)与太阳系化学成分相比,地球富Fe、Mg、S和贫气态物质组分;3)与地壳化学成分相比,地球富Mg、Fe和贫Al、K、Na。
9.讨论地壳元素丰度的研究方法。
答:1)克拉克法: 收集尽可能多的研究样品,进行系统的样品分析;将样品按种类和地区分组,求平均成分;确定各类样品的权值;加权平均求地壳元素丰度;2)戈尔德斯密特法:挪威南部细粒冰川粘土;3)维诺格拉多夫法:岩石比例法,用二份酸性岩加一份基性岩;4)泰勒法:花岗岩和玄武岩质量比为1:1进行计算;5)黎彤法:在计算中国岩浆岩平均化学成分的基础上,并采用全球地壳模型,对各构造单元的质量加权平均。
10.简介地壳元素丰度特征。
答:1)地壳元素丰度差异大:丰度值最大的元素(O)是最小元素(Rn)的1017倍;丰度值最大的三种元素之和达82.58%;丰度值最大的九种元素之和达98.13%;2)地壳元素丰度的分布规律与太阳系、地球元素丰度的分布规律具有类似性,但地壳元素丰度值最大的10个元素与太阳系、地球的相比,其组成及排序有很大的不同。
太阳系:H>He>O>Ne>N>C>Si>Mg>Fe>S地球: Fe>O>Mg>Si>Ni>S>Ca>Al>Co>Na地壳: O>Si>Al>Fe>Ca>Na>K>Mg>Ti>H与太阳系或宇宙相比,地壳和地球都明显贫H, He, Ne, N等气体元素;而地壳与整个地球相比,则明显贫Fe和Mg,同时富集Al, K和Na; 3) 地壳中元素丰度不是固定不变的,它是不断变化的开放体系。
11.地壳元素丰度特征与太阳系、地球对比说明什么问题?答:1)元素丰度对元素原子序数作图,可看出地壳元素丰度的分布规律与太阳系的基本相同,说明其形成具有同一性;2)地壳元素丰度值最大的10个元素与太阳系、地球的相比,其组成及排列顺序有差别。
地壳元素分布规律与太阳系存在差异是由于在地球形成的过程中轻元素的挥发产生;而与地球元素分布规律相比存在差异,则为地球演化过程中元素的重新分配造成,具体表现为较轻易熔的碱金属铝硅酸盐在地球表层富集,而较重的难熔镁、铁硅酸盐和金属铁则向深部集中。
12.地壳元素丰度值(克拉克值)有何研究意义?答:1)确定了地壳体系的总体特征;2)为研究地球的形成、化学分异及地球、地壳元素的成因等重大问题提供信息,如大陆地壳化学组成对壳幔分异的指示;地壳元素的克拉克值在某种程度上影响元素参加许多化学过程的浓度,从而支配元素的地球化学行为;限定了自然界的矿物种类及种属;限制了自然体系的状态;对元素亲氧性和亲硫性的限定;3)元素克拉克值可作为衡量元素相对富集或贫化的标尺,如可以为阐明地球化学省(场)特征提供标准;4)根据地壳元素克拉克值可获得地壳中不同元素平均比值,可以提供重要的地球化学信息,如某些元素克拉克比值是相对稳定的,一旦某地区、某地质体中的这些元素组比值偏离了地壳正常比值,示踪着某种地球化学过程的发生。