大数据简介PPT

合集下载

大数据介绍PPT课件

大数据介绍PPT课件

数据清洗与转换
缺失值处理
对缺失数据进行填充、插值或删除等操作。
数据转换
将数据转换为适合分析的格式,如数值型、 类别型等。
异常值处理
识别并处理数据中的异常值,如离群点、噪 声等。
数据规约
降低数据维度,减少数据冗余和复杂性。
数据集成与融合
01
数据集成
将来自不同数据源的数据进行整合, 形成一个统一的数据视图。
副本机制
为确保数据可靠性和可用性,对每个数据分片创建多个副本,并将 它们存储在集群的不同节点上。
一致性协议
通过分布式一致性协议(如Paxos、Raft等)确保数据在多个副本之 间保持一致性。
数据备份与恢复策略
定期备份
制定定期备份计划,将数据备份到远程存储或云 存储中,以防止数据丢失。
增量备份
仅备份自上次完整备份以来发生更改的数据,以 减少备份时间和存储空间。
数据去重
识别并删除重复的数据记录,确保 数据的唯一性。
03
02
数据融合
对多个数据源的数据进行融合,提 取出更全面、准确的信息。
数据校验
对数据进行校验,确保数据的准确 性和一致性。
04
04 大数据存储与管 理
分布式存储原理
数据分片
将大数据集分割成小块,分别存储在多个节点上,以实现数据的分 布式存储。
大数据可视化
处理大规模数据集的可视化技术,如分布式可视化、并行可视化等。
06 大数据挑战与未 来趋势
数据质量与可信度问题
数据来源多样性
大数据来自各种渠道和源头,数 据质量参差不齐,可能存在不准 确、不完整或误导性的数据。
数据清洗与预处理
为确保数据质量,需要进行数据 清洗、去重、异常值处理等预处 理步骤,增加数据处理复杂性和 成本。

(完整版)大数据介绍ppt

(完整版)大数据介绍ppt
•非结构化海量信息的智能化处理:自然语言 理解、多媒体内容理解、机器学习等.
➢异常检测:识别其特征显著不同于其他 数据的观测值
实战项目1—— Python 网络爬虫
网络爬虫是一个自动提取网页的程序/脚 本,它可以搜索引擎从万维网上下载网 页,是搜索引擎的重要组成。 ➢做为oping、 chinahr) ➢科学研究:在线人类行为,在线社群 演化,复杂网络,数据挖掘领域的实证 科学研究,快速收集大量数据
2020/4/14
6
大数据的4V特性
体量Volume 多样性Variety 价值密度Value 速度Velocity
非结构化数据的超大规模和增长 总数据量的80~90% 比结构化数据增长快10倍到50倍 是传统数据仓库的10倍到50倍
大数据的异构和多样性 很多不同形式(文本、图像、视频、机器数据) 无模式或者模式不明显 不连贯的语法或句义
数据挖掘基本方法
➢预测建模:将已有数据和模型用于对未 知变量的语言。(1)分类,用于预测离 散的目标变量(2)回归,用于预测连续 的目标变量
➢关联分析:反映一个事物与其他事物之 间的相互依存性和关联性。用来发现描述 数据中强关联特征的模式。
➢聚类分析:发现紧密相关的观测值组群, 使得与属于不同簇的观测值相比,属于同 一簇的观测值相互之间尽可能类似
-分布式文件系统(HDFS) -分布式数据库存储系统(Hbase) -分布式计算构架(MapReduce) ➢使用Java编写 ➢运行平台:Linux
HDFS 分布式文件系统
HDFS: - 分布式文件存储系统,存储海量的数 据;
- 数据冗余,硬件容错; - 流式的数据访问; - 存储大文件;
- 适合数据批量读写,吞吐量高;适 一次写入,多次读取,顺序读写。 - 不适合交互式应用,低延迟很难 满足不支持多用户并发写相同文件。

2024大数据ppt课件完整版

2024大数据ppt课件完整版
2024大数据ppt课件完整版
目录 CONTENTS
• 大数据概述与发展趋势 • 数据采集与预处理技术 • 数据存储与管理技术 • 数据分析与挖掘算法 • 数据可视化与报表呈现技巧 • 大数据安全与隐私保护策略
01
大数据概述与发展趋势
大数据定义及特点
01
数据量在TB、 PB甚至EB级别以上的数据。
,降低医疗成本。
金融科技
利用大数据技术进行风 险控制和客户管理,提 高金融业务的智能化水
平。
智能制造
通过大数据分析优化生 产流程,提高生产效率
和产品质量。
02
数据采集与预处理技术
数据来源及采集方法
互联网数据
社交媒体、新闻网站、论坛等。
企业内部数据
CRM、ERP、SCM等系统数据。
数据来源及采集方法
动态交互式报表设计思路
实时更新
通过数据接口实现报表数据的实时更 新,反映最新业务情况。
交互操作
提供筛选、排序、分组等交互功能, 方便用户按需查看和分析数据。
图表联动
实现不同图表之间的联动,当用户在 一个图表上操作时,其他相关图表也 能相应变化。
个性化定制
提供报表样式、布局等个性化定制功 能,满足不同用户的需求。
基于文本的特征提取
对文本数据进行分词、词频统计等操 作。
特征提取和降维技术
• 基于图像的特征提取:提取图像的形状、纹理等 特征。
特征提取和降维技术
主成分分析(PCA)
流形学习
通过线性变换将原始数据变换为一组 各维度线性无关的表示。
通过保持数据的局部结构来发现数据 的全局结构,如Isomap、LLE等。
• 重复值处理:删除或合并重复数据记录。

大数据PPT免费

大数据PPT免费

人工智能和机器学习在大数据中的应用前景
数据挖掘与预测分析
通过机器学习算法对历史数据进行深度挖掘,发现数据间的潜在 联系和规律,实现预测分析。
自动化决策支持
基于大数据和人工智能技术,构建自动化决策支持系统,提高决策 的准确性和效率。
个性化推荐与服务
利用大数据分析和机器学习技术,为用户提供个性化的产品推荐和 服务体验。
总结:把握大数据时代机遇,应对挑战
01
强化技术创新
持续推动大数据、人工智能、物联网等领域的技术创新,提升数据处理
和分析能力。
02
加强人才培养
重视大数据领域人才培养,打造具备跨学科知识和技能的专业团队。
03
完善政策法规
建立健全大数据相关政策法规,保障数据安全和个人隐私,促进大数据
产业健康发展。
THANK YOU
物联网和5G技术对大数据的影响和挑战
数据量爆炸式增长
物联网设备的普及和5G技术的推广将带来数据量的爆炸式 增长,对大数据存储和处理能力提出更高要求。
数据实时性要求提 高
物联网和5G技术使得数据实时传输和处理成为可能,对大 数据处理速度和实时性要求更高。
数据安全与隐私保 护
随着物联网设备的普及,数据安全和隐私保护问题日益突 出,需要加强相关技术和政策保障。
工具选择建议
根据数据量、分析需求、呈现效果等因素选择合适的工具。
图表类型选择及设计原则
1 2
常见图表类型
柱状图、折线图、饼图、散点图、热力图等。
图表选择原则
根据数据类型和分析目的选择合适的图表类型。
3
图表设计原则
简洁明了、颜色搭配合理、突出重点、避免过度 装饰。
报告撰写技巧与注意事项

大数据专题(共43张PPT)

大数据专题(共43张PPT)
应用
MapReduce广泛应用于大数据处理领域,如日志分析、数据挖掘、机器学习等。
分布式数据库HBase
概述
HBase(Hadoop Database)是一个高可扩展性的列存储系统,构建在Hadoop分布 式文件系统之上。它提供了对大规模结构化数据的随机、实时读写访问能力。
特点
HBase采用列式存储,支持动态扩展,具有良好的伸缩性和高性能。它支持ACID事务 ,提供了高可用性和数据一致性保证。
Hadoop的核心组件之一,为大 数据应用提供了一个高度容错、
可扩展的分布式文件系统。
架构
HDFS采用主从架构,包括一个 NameNode和多个DataNode 。NameNode负责管理文件系 统的元数据,而DataNode负责
存储实际的数据。
特点
HDFS支持大规模数据存储,具 有高度的容错性和可扩展性。它 采用流式数据访问模式,适合处
云计算发展
云计算技术的发展为大数据处理提供了强大的计 算能力和存储空间,使得大数据处理成为可能。
大数据发展趋势
数据驱动决策
未来企业将更加依赖数据进行决 策,大数据技术将发挥更加重要 的作用。
数据共享与开放
政府和企业将更加注重数据的共 享和开放,促进数据的流通和利 用,推动经济社会发展。
人工智能融合
应用
HBase适用于非结构化或半结构化数据的存储和查询,如用户画像、推荐系统、时序数 据等场景。
数据仓库Hive
01
概述
Hive是基于Hadoop的一个数据仓库 工具,可以将结构化的数据文件映射 为一张数据库表,并提供简单的SQL 查询功能。
02
特点
Hive支持类SQL查询语言HiveQL, 使得数据分析人员可以方便地使用 SQL语言对大规模数据进行查询和分 析。Hive还支持自定义函数和存储过 程等功能,增强了其数据处理能力。

大数据介绍pptppt课件

大数据介绍pptppt课件

01大数据概述Chapter大数据的定义与特点定义特点1 2 3萌芽期发展期成熟期大数据的发展历程物联网物联网产生的海量数据需要大数据技术进行处理和分析,以实现智能化应用。

金融机构利用大数据分析进行风险评估、信用评级、反欺诈等。

医疗健康大数据在医疗健康领域的应用包括疾病预测、个性化医疗、药物研发等。

商业智能通过大数据分析,帮助企业了解市场趋势、客户需求和行为公共服务效率和质量,如交通拥堵预测、大数据的应用领域02大数据技术基础Chapter分布式计算技术MapReduce01Spark02Flink03Hadoop HDFS一个分布式文件系统,设计用来存储和处理大规模数据集,具有高容错性和高吞吐量。

HBase一个高可扩展性的列存储系统,用于存储非结构化和半结构化的稀疏数据。

Cassandra一个高度可扩展的NoSQL数据库,提供高可用性和无单点故障的数据存储服务。

数据挖掘与机器学习通过统计学、计算机视觉、自然语言处理等技术,从数据中提取有用信息和预测未来趋势。

数据清洗与整合对数据进行预处理,包括数据去重、缺失值处理、异常值检测等,以保证数据质量。

SQL 与NoSQL 数据库(如MySQL 、PostgreSQL )和非关系型数据库(如MongoDB 、Redis )。

数据可视化技术TableauPower BID3.js03大数据平台与工具ChapterHadoop平台介绍Hadoop概述Hadoop核心组件Hadoop应用场景Spark概述01Spark核心组件02Spark应用场景03Flink概述Flink核心特性Flink应用场景常用大数据工具介绍Hive HBase Kafka Sqoop04大数据应用案例Chapter风险管理与合规客户洞察投资决策支持精准医疗流行病预测与防控医疗资源优化智能调度预测性维护供应链优化通过实时分析交通状况、货物信息和配送需求,实现智能调度和路线规划。

01020304通过分析学生的学习数据,提供个性化教育资源和教学方法。

大数据介绍ppt

大数据介绍ppt

大数据的价值与影响
01
价值
02
商业价值:通过大数据分析,企业可以更准确地了 解市场需求,优化产品和服务。
03
社会价值:政府和企业可以利用大数据提高公共服 务和决策效率。
大数据的价值与影响
• 个人价值:大数据也可以帮助个人更好地了解自己和他人 。
大数据的价值与影响
影响 经济影响:大数据产业已经成为全球经济的重要组成部分。
医疗资源优化
通过分析医疗资源的使用数据,优化医疗资源的 配置和调度,提高医疗效率和质量。
金融投资
1 2
市场预测
通过对历史市场数据的挖掘和分析,预测市场走 势和未来趋势,为投资决策提供支持。
风险管理
通过对金融数据的分析和建模,识别和评估潜在 的风险因素,为风险管理提供依据。
3
客户画像
通过对客户数据的挖掘和分析,了解客户的投资 偏好和风险承受能力,为个性化服务提供支持。
数据完整性
由于数据丢失、篡改等原因,数据完整性难以保证,需要采用数据 校验和恢复技术。
数据可信度
由于数据造假、欺骗等问题,数据可信度受到挑战,需要建立数据 信任机制。
数据处理与分析效率问题
数据存储与处理
大数据量巨大,需要高效的数据 存储和处理技术,如分布式存储 、并行计算等。
数据查询与分析
大数据查询和分析需要快速响应 和高效处理,需要采用实时计算 、流式计算等技术。
数据安全与隐私保护
数据安全
通过加密技术、访问控制和安全审计等手段,确保大数据的 安全性和完整性。
隐私保护
在处理大数据时,需要遵守隐私保护原则,保护个人隐私和 敏感信息,避免数据泄露和滥用。
03
大数据应用领域

大数据ppt课件

大数据ppt课件

改善社会治理和公共服务
2
• 大数据技术可以提升政府服务能力和效率 ,推动公共服务的个性化和精细化。
推动科技创新和进步
3
• 大数据技术为科学研究提供了更加高效和 准确的数据分析工具,推动了科技创新和进
步。
大数据的技术与发展
数据采集与存储技术
数据处理和分析技术
• 大数据的采集和存储需要使用分布式 文件系统、数据库等技术。
分析方法
结论与展望
• 采用自然语言处理、图像识别、情感 分析等方法,对社交媒体数据进行情感分 析,提取其中的情感词汇和情感表达。
• 通过基于社交媒体的情绪分析。我们 可以更好地了解公众对于某个事件或产品 的情感倾向
案例五:金融行业的风控大数据应用
背景与目标
• 金融行业是风险密集的行业,如何 有效地进行风险控制是金融行业的重要 任务之一
市场调研
02
• 通过大数据分析,了解市场趋势和竞争对手情况,制定
市场策略。
客户分析
03
• 通过分析客户数据,了解客户需求和行为,提供个性化
服务。
医疗健康
病患数据分析
• 通过分析病患数据,提高医疗质量和效率。
药物研发
• 通过大数据分析,加速药物研发过程。
健康管理
• 通过分析个人健康数据,提供个性化健康建议。
分析方法
• 采用数据挖掘、空间分析等方法, 对城市数据进行分类、预测、聚类等分 析。
结论与展望
• 通过基于公共数据的城市规划研究 。我们可以提高城市规划的科学性和有 效性
案例四:基于社交媒体的情绪分析
背景与目标
数据来源
• 社交媒体的普及使得人们可以在网络 上公开表达自己的情绪和意见
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大数据定义
多样化
洞察 发现力
海量
决策力
流程优 化能力
高增 长率
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能 具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
大数据是“未来的新石油”
大数据是需要新处理模式才能具有更强 的决策力、洞察发现力和流程优化能力 的海量、高增长率和多样化的信息资产。 大数据就是“未来的新石油”。
指获得数据的速度
大数据的特征
价值(value)
合理运用大数据,以低成本 创造高价值
复杂性(Complexity)
数据量巨大,来源多渠道
真实性(Veracity)
数据的质量
可变性(Variability)
妨碍了处理和有效地管理数 据的过程
大数据的结构
结构 化
半结 构化
非结 构化
大数据包括结构化、半结构化和非结构化数据, 非结构化数据越来越成为数据的主要部分。据IDC的调查 报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按 指数增长60%。大数据就是互联网发展到现今阶段的一种表象或特征而已,没有 必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集 和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。
互联网大数据 PPT通用模板
宣讲人:XXX 时间:XXX.X.X.
目录 CONTENTS
1 大数据是什么? 2 大数据的特征和结构 3 大数据时代的机遇和挑战 4 大数据的趋势 5 大数据的应用和案例
甜丝丝的味道沁人心脾;童年是一支神奇的笔,描绘出一幅幅美丽的图画;童年是一幅画,开满了 艳丽的鲜花;童年是一束花,散发着沁人的芳香。多么美好的童年生活啊,这不禁让我想到了那可 爱善良的英子。 《城南旧事》是台湾女作家林海音的代表作之一。在林海音的笔下,写出了一个个栩栩如生的人物, 有善良活泼的小英子,有可爱坚强的妞儿,有坚持不懈的秀贞&;&;在那个记忆中的老北京,有厚厚 的能直立起来的小棉裤,有西厢房的小油鸡,有美味的八珍梅&;&;书中的英子有慈祥严厉的父亲, 勤劳的母亲,善良和蔼的宋妈宠爱着,幸福极了。 小英子也是一个乐于助人的好孩子,在《惠安馆》中,小英子没有害怕秀贞的疯疯癫癫,还想办法 让秀贞和妞儿
80+
BUSINESS SERVICES Professional corporate human capital vis-a-vis performance channels.
大数据(BIG DATA)
指无法在一定时间范围内用常规软件工具进 行捕捉、管理和处理的数据集合,是需要新 处理模式才能具有更强的决策力、洞察发现 力和流程优化能力的海量、高增长率和多样 化的信息资产。
BIG DATA
何谓大?(数据度量) Nhomakorabea1Byte = 8 Bit 1 KB = 1,024 Bytes = 8192 bit 1 MB = 1,024 KB = 1,048,576 Bytes 1 GB = 1,024 MB = 1,048,576 KB 1 TB = 1,024 GB = 1,048,576 MB 1 PB = 1,024 TB = 1,048,576 GB 1 EB = 1,024 PB = 1,048,576 TB 1 ZB = 1,024 EB = 1,048,576 PB 1 YB = 1,024 ZB = 1,048,576 EB 1 BB = 1,024 YB = 1,048,576 ZB 1 NB = 1,024 BB = 1,048,576 YB 1 DB = 1,024 NB = 1,048,576 BB
相认。《我们看海去》中,在草丛中和作文:..小偷的约定,写出了小英子的纯洁天真。《兰姨娘》 中小英子帮助兰姨娘和德先叔和好,让生活慢慢变得快乐。《驴打滚儿》中,宋妈的孩子去世了, 可是因为要帮助英子一家,她那种顽强的精神让我感动极了。《爸爸的花儿落了,我也再不是小孩 了》一篇中,描述了父亲因病去世了,小英子也告别了童年,走向了生活和社会&;&; 我想这就是每个人的童年生活吧,充满着快乐,隐含着悲伤,偶尔也有傻傻的蠢事。童年像糖果一 样甜美,童年像百合一样纯洁,童年像花园一样美丽。读着这样的故事,我仿佛身临其境。城南旧 事读后感550字-满分作文网
历史上凡有成就和学习好的人,都是通过阅读课外书培养的。
PART 01
大数据是什么?
Synergistically utilize technically sound portals with frictionless chains. Dramatically customize empowered networks rather than goal-opportunities.
人工 智能
人工
智能
“人工”比较好理解,争议性也不大。有时我 们会要考虑什么是人力所能及制造的,或者人 自身的智能程度有没有高到可以创造人工智能 的地步,等等。但总的来说,“人工系统”就 是通常意义下的人工系统。
关于什么是“智能”,就问题多多了。这涉及到其它 诸如意识(CONSCIOUSNESS)、自我(SELF)、 思维(MIND)(包括无意识的思维 (UNCONSCIOUS_MIND))等等问题。人唯一了 解的智能是人本身的智能,这是普遍认同的观点。
大数据带来的变革
更多
不是随机样本 而是全部数据
1
2
更好
不是因果关系 而是相关关系
3
更杂
不是精确性 而是混杂性
PART 02
大数据的特征和结构
Synergistically utilize technically sound portals with frictionless chains. Dramatically customize empowered networks rather than goal-opportunities.
80+
BUSINESS SERVICES Professional corporate human capital vis-a-vis performance channels.
容量(Volume)
数据的大小决定所考虑的数 据的价值和潜在的信息
种类(Variety)
数据类型的多样性
速度(Velocity)
相关文档
最新文档