实验四 汉明码系统

合集下载

汉明码编译码实验

汉明码编译码实验

汉明码编译码实验一、实验目的1、掌握汉明码编译码原理2、掌握汉明码纠错检错原理二、实验内容1、汉明码编码实验。

2、汉明码译码实验。

3、汉明码纠错检错能力验证实验。

三、实验器材LTE-TX-02E通信原理综合实验系统----------------------------------------------模块8四、实验原理在随机信道中,错码的出现是随机的,且错码之间是统计独立的。

例如,由高斯白噪声引起的错码就具有这种性质。

因此,当信道中加性干扰主要是这种噪声时,就称这种信道为随机信道。

由于信息码元序列是一种随机序列,接收端是无法预知的,也无法识别其中有无错码。

为了解决这个问题,可以由发送端的信道编码器在信息码元序列中增加一些监督码元。

这些监督码元和信码之间有一定的关系,使接收端可以利用这种关系由信道译码器来发现或纠正可能存在的错码。

在信息码元序列中加入监督码元就称为差错控制编码,有时也称为纠错编码。

不同的编码方法有不同的检错或纠错能力。

有的编码就只能检错不能纠错。

那么,为了纠正一位错码,在分组码中最少要加入多少监督位才行呢?编码效率能否提高呢?从这种思想出发进行研究,便导致汉明码的诞生。

汉明码是一种能够纠正一位错码且编码效率较高的线性分组码。

下面我们介绍汉明码的构造原理。

一般说来,若码长为n,信息位数为k,则监督位数r=n−k。

如果希望用r个监督位构造出r个监督关系式来指示一位错码的n种可能位置,则要求2r− 1 ≥n 或2r ≥k + r + 1 (14-1)下面我们通过一个例子来说明如何具体构造这些监督关系式。

设分组码(n,k)中k=4,为了纠正一位错码,由式(14-1)可知,要求监督位数r≥3。

若取r=3,则n= k + r =7。

我们用α6α5…α0表示这7个码元,用S1、S2、S3表示三个监督关系式中的校正子,则S1 S2 S3的值与错码位置的对应关系可以规定如表14-1所列。

表14-1由表中规定可见,仅当一错码位置在α2 、α4 、α5 或α6 时,校正子S1 为1;否则S1 为0。

hamming实验报告

hamming实验报告

hamming实验报告Hamming实验报告引言:Hamming实验是一项重要的计算机科学实验,旨在研究和验证Hamming码的纠错能力。

Hamming码是一种用于纠正单一比特错误的错误检测和纠正编码方式,被广泛应用于数据传输和存储中。

本实验将通过模拟数据传输过程,并使用Hamming码进行纠错,来验证其在实际应用中的有效性。

实验目的:本实验的目的是通过模拟数据传输过程,验证Hamming码的纠错能力。

具体而言,我们将通过引入人为制造的错误,检测和纠正这些错误,以验证Hamming码的可靠性和有效性。

实验步骤:1. 设计Hamming码生成矩阵和校验矩阵。

2. 生成待发送的数据,并使用Hamming码进行编码。

3. 引入人为制造的错误,模拟数据传输过程中的错误。

4. 使用Hamming码进行错误检测和纠正。

5. 比较纠错前后的数据,验证Hamming码的纠错能力。

实验结果:在本次实验中,我们成功设计并实现了Hamming码的纠错过程。

通过引入人为制造的错误,我们模拟了数据传输过程中的错误情况。

使用Hamming码进行错误检测和纠正后,我们成功恢复了原始数据,并验证了Hamming码的纠错能力。

讨论:Hamming码作为一种常用的纠错编码方式,具有较高的纠错能力和可靠性。

通过本次实验,我们进一步验证了Hamming码的有效性。

然而,Hamming码并不能纠正所有错误,它只能纠正单一比特错误。

对于多比特错误或连续错误,Hamming码的纠错能力将受到限制。

因此,在实际应用中,我们需要综合考虑数据传输的可靠性需求,并选择适当的纠错编码方式。

结论:通过本次实验,我们验证了Hamming码的纠错能力。

Hamming码作为一种常用的纠错编码方式,在数据传输和存储中具有重要的应用价值。

然而,我们也需要认识到Hamming码的局限性,它只能纠正单一比特错误。

在实际应用中,我们需要根据具体需求选择适当的纠错编码方式,以确保数据的可靠性和完整性。

汉明码的原理

汉明码的原理

汉明码的原理汉明码是一种错误检测和纠正的编码方式,它以理论家理查德·汉明的名字命名。

汉明码通过在数据中插入冗余位来检测和纠正错误。

它的原理是在发送数据的时候,根据一定的规则生成一组冗余位,并将其附加到原始数据中。

接收方在接收到数据后,通过对数据进行校验,可以检测出错误的位置,并进行纠正。

汉明码的生成规则如下:假设发送方要发送一个m位的数据,需要生成r位的冗余位。

冗余位的数量r需要满足以下条件:2^r ≥ m + r + 1。

也就是说,冗余位的数量需要满足能够容纳原始数据和冗余位的总长度。

生成冗余位的方法是通过对原始数据进行一系列的异或运算。

首先,确定冗余位的位置,通常是2的幂次方位置,比如第1位、第2位、第4位等。

然后,对于每一个冗余位,计算其值,即将与其相关的原始数据位进行异或运算,并将结果作为冗余位的值。

最后,将生成的冗余位附加到原始数据中,形成最终的发送数据。

接收方在接收到数据后,需要对数据进行校验。

校验的过程是将接收到的数据和冗余位进行一系列的异或运算,然后检查结果。

如果结果为0,则说明数据没有错误;如果结果不为0,则说明数据存在错误,并且错误的位置对应于校验结果中值为1的位。

在纠正错误的时候,可以通过计算错误位置的二进制表示来确定具体是哪一位出现了错误。

例如,如果校验结果中值为1的位的位置是5,则说明第5位出现了错误。

接下来,将错误位的值进行取反操作,即从0变成1,或者从1变成0,然后将纠正后的数据发送给上层应用。

汉明码的好处是能够检测出错误的位置并进行纠正,从而提高数据传输的可靠性。

它广泛应用于通信和存储系统中,特别是在数据传输距离较远或者噪声较大的情况下,汉明码可以有效地保证数据的完整性和准确性。

总结起来,汉明码是一种通过插入冗余位来实现错误检测和纠正的编码方式。

它的原理是在发送数据的时候,根据一定的规则生成一组冗余位,并将其附加到原始数据中。

接收方在接收到数据后,通过对数据进行校验,可以检测出错误的位置,并进行纠正。

通信原理实验报告汉明编译码系统自行设计实验附加同步位实验

通信原理实验报告汉明编译码系统自行设计实验附加同步位实验

汉明编译码系统自行设计实验一、 实验原理差错控制编码的基本作法是:在发送端被传输的信息序列上附加一些监督码元,这些多余的码元与信息之间以某种确定的规则建立校验关系。

汉明码(7,4)是一种纠错码,是能纠正单个错误的线性分组码。

它有以下特点:码长n=2m -1 最小码距d=3 信息码位 k=2n -m -1纠错能力t=1监督码位r=n -k这里m 位≥2的正整数,给定m 后,既可构造出具体的汉明码(n ,k )。

汉明码的监督矩阵有n 列m 行,它的n 列分别由除了全0之外的m 位码组构成,每个码组只在某列中出现一次。

系统中的监督矩阵如下图所示:1110100H=01110101101001其相应的生成矩阵为:1000101010011100101100001011G=汉明译码的方法,可以采用计算校正子,然后确定错误图样并加以纠正的方法。

图9.1和图9.2给出汉明编码器和译码器电原理图。

a 6 a 5 a 4 a 3 a 2 a 1 a 0a 6 a 5 a 4 a 3图9.1汉明编码器电原理图●●●●●●●●●a 6 a 5 a 4 a 3a 6 a 5 a 4 a 3 a 3 a 3 a 3图9.2汉明译码器电原理图3-8译码器校正子生成错码 指示765432 1● ●● ● ●●●●表1.1 (7,4)汉明编码输入数据与监督码元生成表4位信息位 a 6, a 5, a 4, a 3 3位监督码元 a 2, a 1, a 04位信息位 a 6, a 5, a 4, a 3 3位监督码元a 2, a 1, a 00000 000 1000 101 0001 011 1001 110 0010 110 1010 011 0011 101 1011 000 0100 111 1100 010 0101 100 1101 001 0110 001 1110 100 01110101111111表1.1为(7,4)汉明编码输入数据与监督码元生成表。

通信原理实验 汉明编码和译码实验 实验报告

通信原理实验 汉明编码和译码实验 实验报告

姓名:学号:班级:
第周星期第大节
实验名称:汉明编码和译码实验
一、实验目的
1.掌握汉明码编译码原理。

2.掌握汉明码纠错检错原理。

3.通过纠错编解码实验,加深对纠错编解码理论的理解。

二、实验仪器
1.ZH5001A通信原理综合实验系统
2.20MHz双踪示波器
三、实验内容
2.编码规则验证
(1)输入数据为0011
(2)输入数据为1100
3.译码数据输出观测
(1)m序列方式为11
(1)不加错
♦观测加错指示TPC03与错码检测指示输出波形TPW03波形
(2)加1位错
♦观测加错指示TPC03与错码检测指示输出波形TPW03波形
(4)加3位错
(1)不加错
加2位错不能全部正确译码
(4)加3位错
四、思考题
2.汉明编码器模块的使能开关,译码器模块的使能模块(H_EN断路器)起什么作用?
从电路图中可以看出,没有插入H_EN时,汉明编码器被短路,输出数据没有经过汉明编码。

插入H_EN时,输出数据经过汉明编码。

实验报告书汉明码设计与实现

实验报告书汉明码设计与实现

实验报告书------汉明码设计与实现汉明码编译码器系统班级: 姓名: 学号:一.实验原理描述1.1汉明码编码原理一般来说,若汉明码长为n ,信息位数为k ,则监督位数r=n-k 。

若希望用r 个监督位构造出r 个监督关系式来指示一位错码的n 种可能位置,则要求21r n -≥或211rk r -≥++(1)下面以(7,4)汉明码为例说明原理:设汉明码(n,k )中k=4,为了纠正一位错码,由式(1)可知,要求监督位数r ≥3。

若取r=3,则n=k+r=7。

我们用6543210a a a a a a a 来表示这7个码元,用123s s s 的值表示3个监督关系式中的校正子,则123s s s 的值与错误码元位置的对应关系可以规定如表1所列。

表1 校正子和错码位置的关系则由表1可得监督关系式: S 1=a 6⊕a 5⊕a 4⊕a 2 (2)S 2=a 6⊕a 5⊕a 3⊕a 1(3)S 3=a 6⊕a 4⊕a 3⊕a 0(4) 在发送端编码时,信息位6543a a a a 的值决定于输入信号,因此它们是随机的。

监督位2a 、1a 、0a 应根据信息位的取值按监督关系来确定,即监督位应使式(2)~式(4)中1s 、2s 、3s的值为0(表示编成的码组中应无错码){a 6⊕a 5⊕a 4⊕a 2=0a 6⊕a 5⊕a 3⊕a 1=0a 6⊕a 4⊕a 3⊕a 0=0(5)式(5)经过移项运算,接触监督位{a 2=a 6⊕a 5⊕a 4a 1=a 6⊕a 5⊕a 3a 0=a 6⊕a 4⊕a 3(6)式(5)其等价形式为: [1 1 1 0 1 0 01 1 0 1 0 1 01 0 1 1 0 0 1][ a 6a 5a 4a 3a 2a 1a 0]=[000](7)式(6)还可以简记为H ∙A T =0T 或A ∙H T =0 (8)其中H =[1 1 1 0 1 0 01 1 0 1 0 1 01 0 1 1 0 0 1]A =[a 6a 5a 4a 3a 2a 1a 0]P =[1 1 1 01 1 0 11 0 1 1]I r =[1 0 00 1 00 0 1]0=[0 0 0]所以有H =[PI r ](9)式(6)等价于[a 2a 1a a ]=[a 6 a 5 a 4 a 3][1 1 11 1 01 0 10 1 1]=[a 6 a 5 a 4a 3]Q (10)其中Q 为P 的转置,即T Q P (11)式(10)表示,信息位给定后,用信息位的行矩阵乘矩阵Q 就产生出监督位。

汉明码编码实验报告

汉明码编码实验报告

汉明码实验报告一、实验目的实现汉明码纠错编码算法二、实验步骤1、判断是否执行程序2、输入要查错的码字3、分析输入的码字并输出码字4、继续判断三、源代码#include<iostream>using namespace std;void input(int *a){cout<<"请输入7位要查错的码字(输入一个数(0或1)就空格):"<<endl;for(int i=0;i<7;i++)cin>>a[i];}void analyze(int *a,int ht[7][3]){ //二维数组ht[7][3]调用之前一定要明确定义int p[3]={0};int q=0; //数据要初始化int h[3][7];int out[7];for(int k=0;k<3;k++){for(int i=0, j=0;j<7;i++,j++){p[k]=p[k]+a[i]*ht[j][k];p[k]=p[k]%2; //使数值小于2}if(p[k]==1){q++;}}cout<<"伴随式为:"<<p[0]<<p[1]<<p[2]<<endl;if(q==2||q==3){cout<<"一共有"<<q<<"位错误,超越了纠错范围"<<endl; }if(q==0){cout<<"码字没有错误!!"<<endl;cout<<"输出的码字为:";for(int i=0;i<7;i++){out[i]=a[i];cout<<out[i];}cout<<endl;}if(q==1){for(int i=0;i<3;i++){for(int j=0;j<7;j++){if((h[i][j]==p[0])&&(h[i+1][j]==p[1])&&(h[i+2][j]==p[2])){cout<<"要查错的码字的第"<<j+1<<"位出错"<<endl;a[j]=(a[j]+1)%2;cout<<"输出的码字应为";for(i=0;i<7;i++){out[i]=a[i];cout<<a[i];}cout<<endl;}}}}}void main(){int H[4][7]={{1,0,0,0,0,1,1}, //生成矩阵{0,1,0,0,1,0,1},{0,0,1,0,1,1,0},{0,0,0,1,1,1,1}};int h[3][7]={{0,0,0,1,1,1,1}, // 校验矩阵{0,1,1,0,0,1,1},{1,0,1,0,1,0,1}};int ht[7][3]={{0,0,1}, //ht (h的转置矩阵) {0,1,0},{0,1,1},{1,0,0},{1,0,1},{1,1,0},{1,1,1}};int in[7];int c;while(c){cout<<"是否需要查错(是请输入1不是输入0): ";cin>>c;switch(c){case 1: input(in);analyze(in,ht);break;case 0: break; }}}四、运行结果。

汉明码实验报告

汉明码实验报告

一、实验目的1. 理解汉明码的基本原理及其在数据传输中的作用。

2. 掌握汉明码的编码和译码方法。

3. 通过实验验证汉明码在纠正单个错误和检测多个错误方面的能力。

4. 增强对编码理论在实际应用中的理解和应用能力。

二、实验原理汉明码是一种线性分组码,由理查德·汉明于1950年提出。

它通过在原始数据中插入额外的校验位来检测和纠正错误。

汉明码的特点是,它可以纠正单个错误,同时也能检测出两个或更多的错误。

在汉明码中,校验位的位置是按照2的幂次来安排的,即第1位、第2位、第4位、第8位等。

信息位则填充在这些校验位之间。

在编码过程中,校验位通过计算特定信息位的逻辑和来确定。

三、实验内容1. 设置汉明码参数:选择要编码的信息位长度和校验位长度。

例如,选择7位信息位和4位校验位,总共编码为11位。

2. 生成生成矩阵:根据校验位的数量,生成对应的生成矩阵。

例如,对于7位信息位和4位校验位,生成矩阵为:```G = [1 0 0 0 1 0 10 1 0 0 1 1 00 0 1 0 1 1 10 0 0 1 1 1 1]```3. 编码:将信息位与生成矩阵相乘,得到编码后的数据。

例如,信息位为`1101010`,编码后的数据为`1111000110`。

4. 译码:在接收端,首先计算每个校验位的值。

如果所有校验位的值都为0,则认为没有错误。

否则,通过计算错误位置,纠正错误。

5. 纠错:如果检测到错误,根据错误位置进行纠正。

例如,如果检测到第3位(校验位)错误,则将其反转。

四、实验步骤1. 编码过程:- 初始化信息位和校验位。

- 使用生成矩阵对信息位进行编码。

- 输出编码后的数据。

2. 译码过程:- 初始化校验位。

- 计算每个校验位的值。

- 根据校验位的值判断是否有错误。

- 如果有错误,纠正错误。

3. 纠错过程:- 根据错误位置,反转对应的位。

五、实验结果与分析1. 正确性验证:通过实验验证,编码后的数据在传输过程中发生单个错误时,能够被正确纠正。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四汉明码系统
一、实验原理和电路说明
差错控制编码的基本作法是:在发送端被传输的信息序列上附加一些监督码元,这些多余的码元与信息之间以某种确定的规则建立校验关系。

接收端按照既定的规则检验信息码元与监督码元之间的关系,一旦传输过程中发生差错,则信息码元与监督码元之间的校验关系将受到破坏,从而可以发现错误,乃至纠正错误。

通信原理综合实验系统中的纠错码系统采用汉明码(7,4)。

所谓汉明码是能纠正单个错误的线性分组码。

它有以下特点:
码长n=2m-1 最小码距d=3
信息码位k=2n-m-1 纠错能力t=1
监督码位r=n-k
这里m位≥2的正整数,给定m后,既可构造出具体的汉明码(n,k)。

汉明码的监督矩阵有n列m行,它的n列分别由除了全0之外的m位码组构成,每个码组只在某列中出现一次。

系统中的监督矩阵如下图所示:
1110100
H=0111010
1101001
其相应的生成矩阵为:
1000101
0100111
G=
0010110
0001011
汉明译码的方法,可以采用计算校正子,然后确定错误图样并加以纠正的方法。

图2.4.1和图2.42给出汉明编码器和译码器电原理图。

a6
a5
a4
a3
a2
a1
a0
a
a
a
a
图2.4.1汉明编码器电原理图
a
a
a
a
a
a
a3
图2.4.2汉明译码器电原理图
表2.4.1 (7,4)汉明编码输入数据与监督码元生成表
a6bit,其次是a5、a4……,最后输出a0位。

汉明编译码模块实验电路功能组成框图见图2.4.4和图2.3.5所示。

汉明编码模块实验电路工作原理描述如下:
1、输入数据:汉明编码输入数据可以来自ADPCM1模块的ADPCM码字,或来自同
步数据端口数据、异步端口数据、CVSD编码数据、m序列。

选择ADPCM码字由工作方式选择开关SWC01中的ADPCM状态决定,当处于ADPCM状态时(插入跳线器),汉明编码器对ADPCM信号编码;否则处于非ADPCM状态时(拔除跳线器),输入编码数据来自开关KC01所设置的位置,分别为同步数据端口数据、异步端口数据、CVSD编码数据、m序列。

2、m序列发生器:m序列用于测试汉明编码规则,输出信号与开关KWC01位置表2.4.2
所示:
3、编码使能开关:此开关应与接收端汉明译码器使能开关同步使用,该开关处于使能
状态(H_EN短路器插入),汉明码编码器工作;否则汉明码编码器不工作。

需注意:汉明码编码器不工作时,ADPCM和CVSD话音数据无法通话,这是因为编码速率与信道速率不匹配。

4、错码产生:错码产生专门设计用于测量汉明译码器的纠错和检错性能。

输出错码与
开关KWC01位置参见表2.4.3所示:
表2.4.3 跳线器KWC01与插入错码信号
错码可以用示波器从错码指示端口TPC03监测。

汉明编码模块各测试点定义:
1、T PC01:输入数据
2、T PC02:输入时钟
3、T PC03:错码指示(无加错时,该点为低电平。


4、T PC04:编码模块输出时钟(56KHz/BPSK/DBPSK)
5、T PC05:编码模块输出数据(56Kbtps/BPSK/DBPSK)
汉明译码模块实验电路工作原理描述如下:
1、输入信号选择开关:开关KW01、KW02用于选择输入信号和时钟是来自解调器信
道或直接来自汉明编码模块。

当KW01、KW02设置在1_2位置(CH:左端),则输入信号来自信道;开关KW01、KW02设置在2_3位置(LOOP:右端),则输入
信号来自汉明编码模块。

2、汉明译码器:主要由串/并变换器、校正子生成器、3/8译码器和纠错电路构成。


电路专门由一个CPLD(EPM7128)实现。

3、汉明译码使能开关:SW03中H_EN与发端编码使能开关同步使用。

汉明译码模块各测试点定义:
1、T PW01:输入时钟(56KHz BPSK/DBPSK)
2、T PW02:输入数据(56Kbtps BPSK/DBPSK)
3、T PW03:检测错码指示
4、T PW04:输出时钟
5、T PW05:CVSD数据输出
6、T PW06:同步数据输出
7、T PW07:m序列输出
8、T PW08:异步数据输出
CVSD m 序列 SWC01
图2.4.4 汉明编码模块电路功能组成框图 时钟
图2.4.5 汉明译码模块电路功能组成框图 时钟输出时钟
错码指示
同步数据
序列
异步数据
信道 信道 终端 终端 数据
AS CVSD
二、 实验仪器
1、 J H5001通信原理综合实验系统 一台
2、 20MHz 双踪示波器
一台 3、 J H9001型误码测试仪(或GZ9001型) 一台
三、实验目的
1、 通过纠错编解码实验,加深对纠错编解码理论的理解;
三、 实验内容
准备工作:
(1)首先通过菜单将调制方式设置为BPSK 或DBPSK 方式;将汉明编码模块内工作
方式选择开关SWC01中,编码使能开关插入(H_EN ),ADPCM 数据断开(ADPCM );将输入数据选择开关KC01设置在m 序列(DT_M )位置;设置m 序列方式为(00:M_SEL2和M_SEL1拔下),此时m 序列输出为1/0码。

(2)将汉明译码模块内输入信号和时钟选择开关KW01、KW02设置在LOOP 位置(右端),输入信号直接来自汉明编码模块;将译码器使能开关KW03设置在工作位置0N (左端)。

1. 编码规则验证
(1)用示波器同时观测编码输入信号TPC01波形和编码输出波形TPC05,观测时以
TPC01同步,观测是否符合汉明编码规则(参见表2.4.1所示)。

注意此时输入、输出数据速率不同,输入数据速率为32Kbps ,输出数据速率为56Kbps 。

(2)设置m 序列方式为(10:M_SEL2插入、M_SEL1拔下),此时m 序列输出为11/00
码(参见表2.4.2所示)。

用示波器同时观测编码输入信号TPC01波形和编码输出波形TPC05,观测时以TPC01同步,观测是否符合汉明编码规则。

(3)设置其它m 序列方式,重复上述测量步骤。

注:其它两种m 序列周期因非4bit 的倍数,观测时要仔细调整示波器才能观测。

2.译码数据输出测量
(1)用示波器同时观测汉明编码模块的编码输入信号TPC01波形和汉明译码模块译码输出m序列波形TPW07,观测时以TPC01同步。

测量译码输出数据与发端信
号是否保持一致。

(2)设置不同的m序列方式,重复上述实验,验证汉明编译码的正确性。

问题与思考:当m序列产生输出0/1码或00/11码或7位周期序列时(都是短周期性数据),观测译码接收和发送数据信号一致,此时保持跳线开关和设置不变,插拔H-EN。

此时有可能发生译码输出数据与编码数据有不一致。

如不一致,可将SWC01中的ADPCM开关插入再断开(加入一段随机数据),在加入ADPCM数据时须将KO01置于左边,K501置于右边。

此时译码输出数据与编码数据又一致,这是为什么(参照表2.4.1进行分析)?在实际通信中如何解决这问题?
3.译码同步过程观测
将汉明编码模块工作方式选择开关SWC01的编码使能开关插入(H_EN);ADPCM数据有效(ADPCM)。

将汉明译码模块的输入信号和时钟选择开关KW01、KW02设置在2_3位置(右端),输入信号直接来自汉明编码模块。

(1)用示波器检测汉明译码模块内错码检测指示输出波形TPW03。

将汉明编码模块内工作方式选择开关SWC01的编码使能开关断开(H_EN),使汉明译码模块失步,
观测TPW03变化;将编码使能开关插入(H_EN),观测汉明译码的同步过程,
记录测量结果。

4.发端加错信号观测
将汉明编码模块工作方式选择开关SWC01的编码使能开关插入(H_EN);ADPCM数据有效(ADPCM)。

将汉明译码模块内输入信号和时钟选择开关KW01、KW02设置在LOOP 位置(右端),输入信号直接来自汉明编码模块;将译码器使能开关KW03设置在工作位置0N(左端)。

(1)用示波器同时测量汉明编码模块内加错指示TPC03和汉明译码模块内错码检测指示输出波形TPW03的波形,观测时以TPC03同步。

此时无错码。

(2)将汉明编码模块工作方式选择开关SWC01的加错开关E_MOD0接入,产生1位错码,定性观测明译码能否检测出错码,记录结果。

(3)将汉明编码模块工作方式选择开关SWC01的加错开关E_MOD1接入,产生2位错码,定性观测明译码能否检测出错码,记录结果。

(4)将汉明编码模块工作方式选择开关SWC01的加错开关E_MOD0、E_MOD1都插入,产生更多错码,定性观测明译码能否检测出错码和失步,记录结果。

五、实验报告
1、画出输入为0/1码、00/11码和1110010m序列码的汉明编码输出波形。

2、分析整理测试数据。

相关文档
最新文档