“华杯赛”复赛模拟试题(六年级组)附答案
第 届“华杯赛”浙江赛区复赛试题 六年级组

第十二届 “华杯赛”浙江赛区复赛试题(六年级组)一、填空题(每题10分,共80分) 1、=⨯÷⎪⎭⎫⎝⎛++1919989898199800980019001900980980190190989898191919 . 2、规定“※”为一种运算,对任意两数a ,b ,有a ※b 32b a +=,若6※x 322=,则x = .3、某仓库内有一批货物,如果用3辆大卡车,4天可以运完;如果用4辆小卡车,5天可以运完;如果用20辆板车,6天可以运完.现在先用2辆大卡车,3辆小卡车和7辆板车共同运2天后,全部改用板车运,必须在两天内运完,那么后两天每天至少需要__________辆板车.4、甲、乙两包糖的重量比是4:1,如果从甲包取出10克放入乙包后,甲、乙两包糖的重量比变为7:8,那么两包糖重量的总和是___________克.5、用甲、乙两种糖配成什锦糖,如果用3份甲种糖和2份乙种糖配成的什锦糖,比用2份甲种糖和3份乙种糖配成的什锦糖每千克贵1.32元,那么1千克甲种糖比1千克乙种糖贵 元.6、乘火车从甲城到乙城,1998年初需要19.5小时,1998年火车第一次提速30%,1999年第二次提速25%,2000年第三次提速20%.经过这三次提速后,从甲城到乙城乘火车只需__________小时.7、一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是________.8、将4434421Λ3210323232个⨯⨯⨯的乘积写成小数时的前两位小数是 .二、解答题(共70分,要求写出解答过程)9、1978年,有个人在介绍自己的家庭时说:“我有一儿一女,他们不是双胞胎,儿子年龄的立方加上女儿年龄的平方,正好是我的出生年,我是在1900年以后出生的.我的儿女都不满21岁.我比我妻子大8岁.”请求出1978年这一家每个人的年龄.(本题15分)10、如下图A、B、C、D四个小盘拼成了一个环形,每只小盘中放若干糖果.每次可取其中的1只、3只、或4只盘中的全部糖果,也可取出2只相邻盘中的全部糖果.这样取出的糖果数量最多有几种?请说明理由.(本题15分)11、甲乙两个数的和是888888,甲数万位与十位上的数字都是2,乙数万位与十位上的数字都是6.如果甲数与乙数万位上的数字与十位上的数字都换成零,那么甲数是乙数的3倍.则甲数是多少?乙数是多少?(本题20分)12、唐老鸭与米老鼠进行一万米赛跑,米老鼠的速度是每分钟125米,唐老鸭的速度是每分钟100米.唐老鸭手中掌握着一种迫使米老鼠倒退的电子遥控器,通过这种遥控器发出第n次指令,米老鼠就以原速度的n 10%倒退一分钟,然后再按原来的速度继续前进,如果唐老鸭想在比赛中获胜,那么它通过遥控器发出指令的次数至少应是多少次? (本题20分)第十二届 “华杯赛”浙江赛区复赛试题(六年级组) 参考答案注:第8题,每空5分.部分答案提示:1. 解:原式101191019898191000198001000119001001980100119010101981010119⨯⨯⨯÷⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯+⨯⨯= 19981998981998199819⨯⨯⎪⎭⎫⎝⎛++= 19915192941998199898193==⨯⨯⨯=.2. 解:依题意,6※326x x +=,因此322326=+x ,所以x=8.3. 解:可以将这批货物的总量设为1,则有:一辆大卡车,每天可以运121431=⨯;一辆小卡车,每天可以运201541=⨯;一辆板车,每天可以运12016201=⨯. 全部改用板车后,剩余工作量为:412)1201720131212(1=⨯⨯+⨯+⨯-要想两天运完,需板车151201241=÷÷(辆).4. 解:设甲包糖重x 4克,乙包糖重x 克,则8:7)10(:)104(=+-x x 解得6=x ,共重305=x (克).5. 解:因用第一种方法配成的1千克什锦糖中甲种糖占53千克,乙种糖占52千克;用第二种方法配成的1千克什锦糖中甲种糖占52千克,乙种糖占53千克,故51千克甲种糖比51千克乙种糖贵1.32元.故1千克甲种糖比1千克乙种糖贵1.32×5 = 6.6(元).6. 解:根据题意,当距离一定时,速度和时间成反比例.19.5÷(1+30%)÷(1+25%)÷(1+20%)=101201001251001301005.19=⨯⨯⨯(小时) 答:从甲城到乙城乘火车只需10小时.7. 解:这本书的页码是从1到n 的自然数,和是2)1(21+=+++n n n Λ,错加的页码在1和n 之间,即1997应在12)1(++n n 与n n n ++2)1(之间.当n =61时和为1891,199719526118912)1(<=+=++n n n ,不合题意;当n =62时,和为1953,20152)1(,195412)1(=++=++n n n n n ,1997恰在其间;当n =63时,和为2016,2016>1997,不合题意。
华杯复赛试题及答案

华杯复赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是华杯赛的全称?A. 中国数学奥林匹克竞赛B. 全国青少年数学奥林匹克竞赛C. 华罗庚数学竞赛D. 中国数学华杯赛答案:D2. 华杯赛的举办周期是多久?A. 每年一次B. 每两年一次C. 每三年一次D. 每四年一次答案:A3. 华杯赛的参赛对象通常是?A. 小学生B. 初中生C. 高中生D. 大学生答案:B4. 华杯赛的复赛通常在什么时间举行?A. 春季B. 夏季C. 秋季D. 冬季答案:C二、填空题(每题5分,共20分)5. 华杯赛的复赛通常采用_________形式进行。
答案:笔试6. 华杯赛的复赛题目通常包括_________和_________两部分。
答案:选择题、解答题7. 华杯赛的复赛成绩优异者有机会获得_________资格。
答案:决赛8. 华杯赛的复赛试卷通常由_________和_________两部分组成。
答案:试题、答题卡三、解答题(每题10分,共30分)9. 已知函数f(x) = 2x^2 - 3x + 1,求f(1)的值。
答案:f(1) = 2(1)^2 - 3(1) + 1 = 010. 一个数列的前三项为1, 2, 3,从第四项开始,每一项都是前三项的和。
求数列的第10项。
答案:14411. 已知一个等差数列的前三项分别为2, 5, 8,求这个数列的第10项。
答案:29四、证明题(每题10分,共30分)12. 证明:对于任意正整数n,n^2 - 1总是可以被24整除。
答案:略13. 证明:对于任意实数x,y,有(x+y)^2 ≤ 2(x^2 + y^2)。
答案:略14. 证明:对于任意正整数n,n^3 - n可以被6整除。
答案:略。
(完整版)六年级华杯赛奥数竞赛模拟题(30套)

六年级华杯赛奥数竞赛模拟题(30套)小学奥数模拟试卷.1姓名得分一、填空题:1.用简便方法计算:2.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高______%.3.算式:-的结果是______.4.两个桶里共盛水40斤,若把第一桶里的水倒7斤到第2个桶里,两个桶里的水就一样多,则第一桶有______斤水.5.20名乒乓球运动员参加单打比赛,两两配对进行淘汰赛,要决出冠军,一共要比赛______场.6.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是______.7.一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为______厘米.8.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5分.小宇最终得41分,他做对______题.9.在下面16个6之间添上+、-、×、÷、,使下面的算式成立: 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 = 1997 二、解答题:1.如图中,三角形的个数有多少?2.某次大会安排代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个空床位.问宿舍共有几间?代表共有几人?3.现有10吨货物,分装在若干箱内,每箱不超过一吨,现调来若干货车,每车至多装3吨,问至少派出几辆车才能保证一次运走?4.在九个连续的自然数中,至多有多少个质数?小学奥数模拟试卷.2姓名得分一、填空题:1.用简便方法计算下列各题:1997×19961996-1996×19971997=______;100+99-98-97+?+4+3-2-1=______.2.上右面算式中A代表_____,B代表_____,C代表_____,D代表_____.3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟_____岁.4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗_____面,黄旗_____面.5.在乘积1×2×3×?×98×99×100中,末尾有______个零.6.如图中,能看到的方砖有______块,看不到的方砖有______块.7.上右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.8.在已考的4次考试中,张明的平均成绩为90分,为了使平均成绩尽快达到95分以上,他至少还要连考____次满分.9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走千米,乙每小时走千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,??这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.二、解答题:1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸若P点在岸上,则A点在岸上还是水中?某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点B,他脱鞋的次数与穿鞋的次数和是奇数,那么B 点在岸上还是水中?说明理.2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于199721602142能否办到?若办不到,简单说明理.若办得到,写出正方框里的最大数和最小数. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 3.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶.请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.小学奥数模拟试卷.3姓名得分一、填空题:1.×+11×+537×=______.2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,?,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5.2.如图,把四边形ABCD的各边延长,使得AB=BA′,BC=CB′CD=DC′,DAAD′,得到一个大的四边形A′B′C′D′,若四边形ABCD的面积是1,求四边形A′B′C′D′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.图是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?在图中,要想按的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀?要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?小学奥数模拟试卷.4姓名得分了10辆迎面开来的电车.当到达甲站时,恰又有一辆电车从甲站开出,问他从乙站到甲站用了多少分钟?小学奥数模拟试卷.7姓名得分一、填空题:2.下面三个数的平均数是170,则圆圈内的数字分别是:○;○9;○26.于3,至少要选______个数.4.图中△AOB的面积为15cm2,线段OB的长度为OD的3倍,则梯形ABCD的面积为______.5.有一桶高级饮料,小华一人可饮14天,若和小芳同饮则可用10天,若小芳独自一人饮,可用______天.6.在1至301的所有奇数中,数字3共出现_______次.7.某工厂计划生产26500个零件,前5天平均每天生产2180个零件,于技术革新每天比原来多生产420个零件,完成这批零件一共需要_______天.8.铁路与公路平行.公路上有一个人在行走,速度是每小时4千米,一列火车追上并超过这个人用了6秒.公路上还有一辆汽车与火车同向行驶,速度是每小时67千米,火车追上并超过这辆汽车用了48秒,则火车速度为______,长度为______.9.A、B、C、D4个数,每次去掉一个数,将其余3个数求平均数,这样计算了4次,得到下面4个数:23,26,30,33,A、B、C、D4个数的平均数是______.10.一个圆的周长为米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒分别爬行厘米和厘米.它们每爬行1秒,3秒,5秒,,就调头爬行.那么,它们相遇时,已爬行的时间是______秒.二、解答题:1.小红见到一位白发苍苍的老爷爷,她问老爷爷有多大年岁?老爷爷说:把我的年龄加上10用4除,减去15后用10乘,结果正好是100岁.请问这位老爷爷有多大年龄?数最小是几?3.下图中8个顶点处标注数字a,b,c,d,e,f,g,h,其f+g+h)的值.4.底边长为6厘米,高为9厘米的等腰三角形20个,迭放如下图:每两个等腰三角形有等距离的间隔,底边迭合在一起的长度是44厘米.回答下列问题:两个三角形的间隔距离;三个三角形重迭部分的面积之和;只有两个三角形重迭部分的面积之和;迭到一起的总面积.小学奥数模拟试卷.8姓名得分一、填空题:2.“趣味数学”表示四个不同的数字:则“趣味数学”为_______.正好是第二季度计划产量的75%,则第二季度计划产钢______吨.个数字的和是_______.积会减少______.6.两只同样大的量杯,甲杯装着半杯纯酒精,乙杯装半杯水.从甲杯倒出一些酒精到乙杯内.混合均匀后,再从乙杯倒同样的体积混合液到甲杯中,则这时甲杯中含水和乙杯中含酒精的体积,哪一个大?______ 7.加工一批零件,甲、乙二人合作需12天完成;现甲先工作3天,则这批零件共有______个.8.一个酒精瓶,它的瓶身呈圆柱形,如图所示.它的容积为π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米,瓶子倒放时,空余部分的高为2厘米,则瓶内酒精体积是______立方厘米.9.有一个算式,上边方格里都是整数,右边答案只写出了四舍五入后四位数是______.二、解答题:1.如图,阴影部分是正方形,则最大长方形的周长是______厘米.2.如图为两互相咬合的齿轮.大的是主动轮,小的是从动轮.大轮半径为105,小轮半径为90,现两轮标志线在同一直线上,问大轮至少转了多少圈后,两条标志线又在同一直线上?3.请你用1,2,3,4,5,6,7,8,9这九个数字,每个只能用一次,拼凑出五个自然数.让第二个是第一个的2倍,第3个是第一个的3倍,第四个是第一个的4倍,第五个是第一个的5倍.4.有一列数2,9,8,2,6,?从第3个数起,每个数都是前面两个数乘积的个位数字.例如第四个数就是第二、第三两数乘积9×8=72的个位数字是2.问这一列数第2003个数是几?小学奥数模拟试卷.9姓名得分一、填空题:2.已知A=2×3×3×3×3×5×5×7,在A的两位数的因数中,最大的是______.3.在下图中所示的方格中适当地填上1、2、3、4、5、6、7、8,使它的和为153.此时所有“个位数字”之和与所有“十位数字”之和相差_______.4.A、B两只青蛙玩跳跃游戏,A每次跳10厘米,B每次跳15厘米,它们每秒都只跳1次,且一起从起点开始.在比赛途中,每隔12厘米有一陷阱,当它们中第一只掉进陷阱时,另一只距离最近的陷阱有______厘米.5.如上右图所示,按一定规律用火柴棍摆放图案:一层的图案用火柴棍2支,二层的图案用火柴棍7支,三层的图案用火柴棍15支,??,二十层的图案用火柴棍______支.6.在下左图中ABCD是梯形,AECD是平行四边形,则阴影部分的面积是______平方厘米.7.用43个边长1厘米的白色小正方体和21个边长1厘米的黑色小正方体堆成如图所示的大正方体,使黑色的面向外露的面积要尽量大.那么这个立方体的表面积上有______平方厘米是黑色的.8.甲、乙、丙三人射击,每人打5发子弹,中靶的位置在图中用点表示.计算成绩时发现三人得分相同.甲说:“我头两发共打了8环.” 乙说:“我头两发共打了9环.” 那么唯一的10环是______打的.9.有三堆棋子,每堆棋子一样多,并且都有黑白两色棋子.第一堆里黑棋子和第二堆里白棋子的数目相等,第三堆里的黑棋子占全部黑棋子6.一个六位数□1997□能被33整除,这样的数是______.7.有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合,如图所示,已知露在外的部分中,红色面积是20,黄色面积是14,绿色面积是10,那么正方形盒子的面积是_______.8.有200多枚棋子摆成了一个n行n列的正方形,甲先从中取走10枚,乙再从中取走10枚,??,这样轮流取下去,直到取完为止.结果最后一枚被乙取走.乙共取走了______枚棋子.9.一艘油轮的船长已经50多岁,船上有30多名工作人员,其中男性占多数.如果将船长的年龄、男工作人员的人数和女工作人员的人数相乘,则积为15606,船上共有______名工作人员,船长的年龄是______岁.10.小明放学后沿某路公共汽车路线,以每小时4千米的速度步行回家.沿途该路公共汽车每隔9分就有一辆从后面超过他,每7分又遇到迎面开来的一辆车.如果这路公共汽车按相同的时间间隔以同一速度不停地运行,那么汽车每隔______分发一辆车.二、解答题:1.计算:2.有一种用六位数表示日期的方法,如用911206表示91年12月6日,也就是用前两位表示年,中间两位表示月,后两位表示日.如果用这种方法表示1997年的日期,全年中六个数字都不相同的日期共有多少天?3.少年歌手大奖赛的裁判小组若干人组成,每名裁判员给歌手的最高分不超过10分.第一名歌手演唱后的得分情况是:全体裁判员所给分数的平均分是分;如果只去掉一个最高分,则其余裁判员所给分数的平均分是分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是分.求所有裁判员所给分数中的最低分最少可以是多少分?这时大奖赛的裁判员共有多少名?4.A、B、C三名同学参加了一次标准化考试,试题共10道,都是正误题,每道题10分,满分为100分.正确的画“√”,错误的画“×”.他们的答卷如下表:小学奥数模拟试卷.20姓名得分一、填空题:1.13×99+135×999+1357×9999=______.2.一个两位数除以13,商是A,余数是B,A+B 的最大值是_______.3.12345678987654321除本身之外的最大约数是______.4.有甲、乙两桶油,甲桶油比乙桶油多174千克,如果从两桶中各取5.图中有两个正方形,这两个正方形的面积值恰好2、3、4、5、6、7这六个数字组成,那么小正方形的面积是______,大正方形的面积是______.6.如图,E、F分别是平行四边形ABCD两边上的中点,三角形DEF的面积是平方厘米,平行四边形ABCD的面积是_______平方厘米.7.一辆公共汽车起点到终点站共有10个车站,已知前8个车站共上车93人,除终点外前面各站共计下车76人.从前8个车站上车且在终点站下车的共有______人.9.某人以分期付款的方式买一台电视机,买时第一个月付款750元,以后每月付150元;或者前一半时间每月付300元,后一半时间每月付100元.两种付款方式的付款总数及时间都相同,这台电视机的价格是______元.10.一辆长12米的汽车以每小时36千米的速度甲站开往乙站,上午9点40分,在距乙站2000米处遇到一行人,1秒后汽车经过这个行人,汽车到达乙站休息10分后返回甲站,汽车追上那位行人的时间是______.二、解答题:1997+1÷1999 19981.计算:1997÷1997 2.小明拿一些钱到商店买练习本,如果买大练习本可以买8本而无剩余;如果买小练习本可以买12本而无剩余,已知每个大练习本比小练习本贵0.32元,小明有多少元钱?3.某工厂的一只走时不够准确的计时钟需要69分时针与分钟才能重合一次,工人每天的正常工作时间是8小时,在此期间内,每工作1小时付给工资4元,而若超出规定时间加班,则每小时付给工资6元,如果一个工人照此钟工作8小时,那么他实际上应得到工资多少元?4.某次比赛中,试题共六题,均为是非题.正确的画“+ ”,错误的画“-”,记分方法是:每题答对的得2分,不答的得1分,答错的得0分,已知赵、钱、孙、李、周、吴、郑七人的答案及前六个人的得分记录如下表所示,请计算姓郑的得分.小学奥数模拟试卷.21姓名得分一、填空题:1124311.[÷-×]÷=。
六年级华赛杯试题及答案

六年级华赛杯试题及答案一、选择题(每题2分,共10分)1. 以下哪个选项是华赛杯的全称?A. 华罗庚数学竞赛B. 华赛杯数学竞赛C. 华罗庚数学竞赛杯D. 华赛杯数学竞赛答案:B2. 华赛杯的举办周期是多久?A. 每年一次B. 每两年一次C. 每三年一次D. 每四年一次答案:A3. 华赛杯的参赛对象是?A. 小学生B. 初中生C. 高中生D. 大学生答案:B4. 华赛杯的试题类型包括以下哪一项?A. 选择题B. 填空题C. 简答题D. 论述题答案:A5. 华赛杯的试题难度级别是?A. 容易B. 适中C. 困难D. 非常困难答案:C二、填空题(每题3分,共15分)1. 华赛杯的试题通常由_________个选择题和_________个填空题组成。
答案:10;52. 华赛杯的试题内容主要涉及数学的_________、_________和_________。
答案:代数;几何;概率3. 华赛杯的试题评分标准通常是每题_________分,总分_________分。
答案:2;1004. 华赛杯的试题中,选择题和填空题的分值比例是_________。
答案:2:35. 华赛杯的试题答案通常在考试结束后的_________天内公布。
答案:7三、简答题(每题5分,共20分)1. 请简述华赛杯的举办目的。
答案:华赛杯的举办目的是为了激发学生对数学的兴趣,提高学生的数学素养,选拔优秀的数学人才。
2. 华赛杯的试题设计有哪些特点?答案:华赛杯的试题设计注重考察学生的数学基础知识、逻辑思维能力和解题技巧,同时试题具有一定的创新性和挑战性。
3. 参加华赛杯对学生有哪些好处?答案:参加华赛杯可以锻炼学生的数学思维,提高解题能力,增强自信心,同时也有助于学生了解数学竞赛的流程和规则。
4. 华赛杯的试题如何保证公平性?答案:华赛杯的试题在设计时会经过严格的审核,确保试题的难度适中,覆盖面广,同时在考试过程中会采取严格的监考措施,确保考试的公平性。
第15届华杯赛复赛试题(含答案)

第15届华杯赛决赛小学组试题2011年3月22日一、填空题1.在10个盒子中放乒乓球,每个盒子中的球的个数不能少于11,不能是13,也不能是5的倍数,且彼此不同,那么至少需要个乒乓球。
2.有五种价格分别为2元、5元、8元、11元、14元的礼品以及五种价格分别为1元、3元、5元、7元、9元的包装盒。
一个礼品配一个包装盒,共有种不同价格。
3.汽车A从甲站除法开往乙站,同时汽车B、C从乙站出发与A相向而行开往甲站,途中A与B相遇20分钟后再与C相遇。
已知A、B、C的速度分别是每小时90千米,80千米,60千米,那么甲乙两站的路程是千米。
4.将111111,,,,,234567和这6个分数的平均值从小到大排列,则这个平均值排在第位。
5.将一个数的各位数字相加得到新的一个数称为一次操作,经连续若干次这样的操作后可以变为6的数称为“好数”,那么不超过2012的“好数”的个数为,这些“好数”的最大公约数是。
6.右图所示的立体图形由9个棱长为1的立方块搭成。
这个立体图形的表面积为。
7.数字卡片“3”、“4”、“5”各10张,任意选出8张使它们的数字和是33,则最多有张是卡片“3”。
8.若将算式111111 123456782007200820092010的值化为小数,则小数点后第1个数字是。
二、解答题:需要写出简要过程。
9.如图有5个由4个11的小正方格组成的不同形状的硬纸板。
问能用这5个硬纸板拼成图中的45的长方形吗?如果能,请画出一种拼法;如果不能,请简述理由。
10.长度为L的一条木棍,分别用红、蓝、黑线将它等分成8,12和18段,在各划分线处将木棍锯开,问一共可以得到多少段?其中最短的一段的长是多少?11.足球队A,B,C,D,E进行单循环赛(每两队赛一场),每场比赛胜队得3分,负队得0分,平局两队各得1分。
若A,B,C,D队总分分别是1,4,7,8,请问:E队至多得几分?至少得几分?12.华罗庚爷爷出生于1910年11月12日。
历届华杯赛初赛、复赛真题及答案

华罗庚金杯少年数学邀请赛(简称“华杯赛”)是为了纪念我国杰出数学家华罗庚教授,于1986年始创的全国性大型少年数学竞赛活动,由中国少年报社(现为中国少年儿童新闻出版社)、中国优选法、统筹法与经济数学研究会、中央电视台青少中心等单位联合发起主办的。
华杯赛堪称国内小学阶段规模最大、最正式也是难度最高的比赛。
对一个对于学校课堂内容学有余力的学生来讲,适当学习小学奥数能够有以下方面的好处
1、促进在校成绩的全面提高,培养良好的思维习惯;
2、使学生获得心理上的优势,培养自信;
3、有利于学生智力的开发;
4、数学是理科的基础,学习奥数对于这个学生进入初中后的学习物理化学都非常有好处(很多重点中学就是因为这个原因招奥数好的学生)。
5、很多重点中学招生要看学生的奥数成绩是否优秀。
您可能还感兴趣的有:。
华杯赛六年级试题及答案

华杯赛六年级试题及答案
一、选择题
1. 下列哪个选项是正确的?
A. 2+3=5
B. 3+4=7
C. 5+5=10
D. 4+4=8
答案:C
2. 一个数的三倍加上另一个数的两倍等于20,如果这个数是4,那么另一个数是多少?
A. 4
B. 6
C. 8
D. 10
答案:A
二、填空题
1. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是______平方厘米。
答案:50
2. 如果一个数的一半加上3等于8,那么这个数是______。
答案:5
三、解答题
1. 一个班级有40名学生,其中男生人数是女生人数的两倍。
请问这个班级有多少名男生和女生?
答案:男生有26人,女生有14人。
2. 一个数乘以5,然后加上8,最后减去3,得到的结果为23。
求这
个数是多少?
答案:这个数是5。
四、应用题
1. 小明有若干个苹果,他给了小红一半,然后又给了小华剩下的一半,最后小明手里还有3个苹果。
请问小明最初有多少个苹果?
答案:小明最初有12个苹果。
2. 一个工厂生产了100个玩具,其中20%是不合格的。
工厂决定将不
合格的玩具销毁,合格的玩具以每个10元的价格出售。
请问工厂从这
些玩具中可以获得多少利润?
答案:工厂可以获得800元的利润。
2021年“华杯赛”复赛小学组试题及详解

2021年“华杯赛”复赛小学组试题及详解1. 原式=(2+4+6+8)-(1/2+1/4+1/6+1/8)=20-(1+1/24)=18+23/24。
2. 8个人用30天完成了工程的1/3,那么8个人完成剩余工程(2/3)应该用60天,增加4个人变成12个,应该用60÷12×8=40天,共用70天。
3. 甲乙的速度比为6:5,乙提速后的速度为5×1.6=8份。
假设乙耽误的时间也在以5的速度前进,则乙总共可以前进全程的7/6。
也就是说相当于乙在用甲的速度的5/6和8/6两种速度来骑甲的7/6的路程,根据十字相乘法,两种速度所用的时间之比为1:2。
也就是说,乙用5/6的速度行驶了5/6×1/3=5/18的路程,那么全程的5/18-1/6=1/9就是5千米,全程45千米。
5. △FAB是等边三角形,所以弧AF是六分之一圆,同理弧GC也是六分之一圆,则弧GF是1/6+1/6-1/4=1/12圆,四条弧是1/3圆,长度为2×π×1÷3=2.094。
6. 每种先都减去1本,剩余40-2-5-11=22元。
如果再买2本11元的,恰好用完,1种方法;如果再买1本11元的,剩余11元,可以买1本5元和3本2元,1种方法;如果不再买11元的,22元最多买4本5元的,5元的本数可以是4,2,0,3种方法。
共有1+1+3=5种方法。
7. 该几何体是一个四棱锥,底面积为20×20=400,高为20,所以体积为400×20÷3=8000/3(立方厘米)。
8. 大于11的质数13,17,19都只能作为分母为1的数的分母,如果它们作为同一个分数的分子和分母,则剩余的10个可以都是整数。
下面举例说明可以只有一个不是整数:13/1 22/11 20/10 18/9 16/8 14/7 15/5 21/3 4/2 12/6 19/17共9个是整数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“华杯赛”复赛模拟试题(六年级组)
一、填空题(每题10分,共80分) 1、=⨯
÷⎪⎭
⎫
⎝⎛++19199898
98199800980019001900980980190190989898191919 . 2、规定“※”为一种运算,对任意两数a ,b ,有a ※b 3
2b a +=,若6※x 322
=,
则x = .
3、某仓库内有一批货物,如果用3辆大卡车,4天可以运完;如果用4辆小卡车,5天可以运完;如果用20辆板车,6天可以运完.现在先用2辆大卡车,3辆小卡车和7辆板车共同运2天后,全部改用板车运,必须在两天内运完,那么后两天每天至少需要__________辆板车.
4、甲、乙两包糖的重量比是4:1,如果从甲包取出10克放入乙包后,甲、乙两包糖的重量比变为7:8,那么两包糖重量的总和是___________克.
5、用甲、乙两种糖配成什锦糖,如果用3份甲种糖和2份乙种糖配成的什锦糖,比用2份甲种糖和3份乙种糖配成的什锦糖每千克贵1.32元,那么1千克甲种糖比1千克乙种糖贵 元.
6、乘火车从甲城到乙城,1998年初需要19.5小时,1998年火车第一次提速30%,1999年第二次提速25%,2000年第三次提速20%.经过这三次提速后,从甲城到乙城乘火车只需__________小时.
7、一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是________.
8、将
3
2
10323232个
⨯⨯⨯的乘积写成小数时的前两位小数是 .
二、解答题(共70分,要求写出解答过程)
9、1978年,有个人在介绍自己的家庭时说:“我有一儿一女,他们不是双胞胎,儿子年龄的立方加上女儿年龄的平方,正好是我的出生年,我是在1900年以后出生的.我的儿女都不满21岁.我比我妻子大8岁.”请求出1978年这一家每个人的年龄.(本题15分)
10、如下图A、B、C、D四个小盘拼成了一个环形,每只小盘中放若干糖果.每次可取其中的1只、3只、或4只盘中的全部糖果,也可取出2只相邻盘中的全部糖果.这样取出的糖果数量最多有几种?请说明理由.(本题15分)
11、甲乙两个数的和是888888,甲数万位与十位上的数字都是2,乙数万位与十位上的数字都是6.如果甲数与乙数万位上的数字与十位上的数字都换成零,那么甲数是乙数的3倍.则甲数是多少?乙数是多少?(本题20分)
12、唐老鸭与米老鼠进行一万米赛跑,米老鼠的速度是每分钟125米,唐老鸭的速度是每分钟100米.唐老鸭手中掌握着一种迫使米老鼠倒退的电子遥控器,通过这种遥控器发出第n次指令,米老鼠就以原速度的n 10%倒退一分钟,然后再按原来的速度继续前进,如果唐老鸭想在比赛中获胜,那么它通过遥控器发出指令的次数至少应是多少次? (本题20分)
参考答案
一、填空(每题10分,共80分)
注:第8题,每空5分.
部分答案提示:
1. 解:原式10119101
9898191000198001000119001001980100119010101981010119⨯⨯⨯
÷⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯+⨯⨯= 1998
1998981998199819⨯
⨯⎪⎭
⎫ ⎝⎛++= 19
9
15192941998199898193==⨯⨯⨯
=.
2. 解:依题意,6※3
26x
x +=,因此322326=
+x ,所以x=8.
3. 解:可以将这批货物的总量设为1,则有:一辆大卡车,每天可以运12
1
431=
⨯;一辆小卡车,每天可以运
20
1
541=
⨯;一辆板车,每天可以运12016201=⨯. 全部改用板车后,剩余工作量为:4
1
2)1201720131212(1=⨯⨯+⨯+⨯-
要想两天运完,需板车15120
1
241=÷÷(辆).
4. 解:设甲包糖重x 4克,乙包糖重x 克,则
8:7)10(:)104(=+-x x 解得6=x ,共重305=x (克).
5. 解:因用第一种方法配成的1千克什锦糖中甲种糖占
53千克,乙种糖占52
千克;用第二种方法配成的1千克什锦糖中甲种糖占52
千克,乙种糖占53千克,故51千克甲种糖比5
1千克乙种
糖贵1.32元.故1千克甲种糖比1千克乙种糖贵1.32×5 = 6.6(元).
6. 解:根据题意,当距离一定时,速度和时间成反比例.
19.5÷(1+30%)÷(1+25%)÷(1+20%)=10120
100
1251001301005.19=⨯⨯⨯ (小时)
答:从甲城到乙城乘火车只需10小时.
7. 解:这本书的页码是从1到n 的自然数,和是2
)
1(21+=+++n n n ,错加的页码在1和n 之间,即1997应在
12)
1(++n n 与n n n ++2)1(之间. 当n =61时和为1891,199719526118912)
1(<=+=++n n n ,不合题意;
当n =62时,和为1953,20152
)
1(,195412)1(=++=++n n n n n ,1997恰在其间;
当n =63时,和为2016,2016>1997,不合题意。
所以n =62,正确的和为1953,错加的页码为1997-1953=44
8. 解:注意到3
5
327322=>=,所以2332132>,6992
1
32>,
所以01.01001
961321322132561010=>=⨯=⨯>.
又4
4
3818025=<=⨯,所以513
244<,251
3288<.
所以02.0501
212513
225132221010==⨯<⨯<.
故将
3
2
1032
3232个
⨯⨯⨯的乘积写成小数时的前两位小数是0,1.
二.简答下列各题(共70分,要求写出解答过程)
9. 1978年,儿子的年龄为12岁,女儿的年龄为14岁,母亲的年龄为46岁,父亲的年龄为54岁。
解:由于133=2197,所以儿子的年龄一定小于13岁;又由于113=1331,既使加上212=441,也只是1331+441=1772<1900,所以儿子的年龄一定大于11岁,只有12岁了.
设女儿的年龄为x ,根据已知条件有:123
+x 2
>1900,所以x 2
>1900-123
,x 2
>172,也就是说女儿的年龄大于13岁.又已知这个年龄小于21岁,所以女儿年龄的可能是:14,15,16,17,18,19,20.
如果x =15,那么父亲的出生年数就等于:123
+152
=1953,这显然是不合理的.同样道理,女儿的年龄也不可能是大于15的数,只能是14岁.
这时父亲的出生年数为:123
+142
=1924,1978年时的年龄为:1978-1924=54(岁).
1978年时母亲的年龄为:54-8=46(岁).
评分参考:①正确给出答案,给5分;②对于每一个算式,能说明理由,给10分;③即使最后答案不正确,对于推理正确的算式,要适当给分.
10 13
解:最多为13种.因为取1只盘子有4种取法;取3只盘子(即有1只不取),也有4种取法;取4只盘子只有1种取法;取2只相邻的盘子,在第1只取定后,(依顺时针方向),第2只也就确定了,所以也有4种取法,共有3⨯4+1=13种取法.
评分参考:见解答过程;仅给出正确的答案,无过程,只给5分.
11. 626626,262262
解:万位上的数字与十位上的数字都换成零后,甲乙两数的和是808808,又甲数是乙数的3倍,所以乙数为808808÷(3+1)=202202,甲数为3⨯202202=606606.故原来甲数为626626,乙数为262262.
评分参考:①正确给出答案,给5分;②对于每一位数字,能说明理由,给10分;③即使最后答案不正确,对于推理正确的数字,要适当给分.
12. 13
解:米老鼠跑完全程用的时间为10000÷125=80(分),唐老鸭跑完全程的时间为10000÷100=100(分).
唐老鸭第n 次发出指令浪费米老鼠的时间为n n 1.01125
%
101251+=⨯⨯+.
当n 取为1、2、3、4,…,13时,米老鼠浪费时间为1.1+1.2+1.3+1.4+…+2.3=22.1(分)大于20分.因为米老鼠早到100-80=20分,唐老鸭要想获胜,必须使米老鼠浪费的时间超过20分钟,因此唐老鸭通过遥控器至少要发13次指令才能在比赛中获胜.
评分参考:①正确给出答案,给5分;②对于每一个算式,能说明理由,给10分;③即使最后答案不正确,对于推理正确的算式,要适当给分.。