3.1不等关系与不等式(1)
高中数学教学课例《3.1不等关系与不等式(1)》课程思政核心素养教学设计及总结反思

学科
高中数学
教学课例名
《3.、三角等内容有着密切的联系.
在高考题中不等式常与其他知识交汇呈现,因此不等式
在高考中占有比较重要的地位。而本节课是本章的起始
课,学好本节课是学习本章的基础。通过学习有助于学 教材分析
(3)练习巩固 4、联系实际,探索研究 在教学中,我们提倡让学生在问题解决中学习,在问题 探索中学习,从而使学生建构起对知识的理解,因此在 下一环节中,我设计了一个生活实际问题,让学生在问 题探索中学习新知。 能否用所学知识准确表示“糖水加糖甜更甜”的现象? 下面通过复习实数的基本理论,利用数轴数形结合,归 纳总结得出比较两个实数(式)大小的方法,学生容易 接受。 然后给出两组比较简单的作差比较,师生合作完成,教 师板书,学生回答,再总结提炼步骤方法。并变式练习, 一方面可以巩固作差比较法,另一方面,渗透了分类讨 论的数学思想,为课后的能力作业给予一点启示。 例 3、比较下面两组代数式的大小: 步骤:作差→变形→判号→结论. 其中变形是关键,常用的变形手段有提公因式、分解因 式、通分、配方、有理化等. 最后通过例 4,可以先让学生尝试,教师巡视学生解答 情况,最后通过幻灯片展示标准过程,指出学生易错点, 强调关键点。对本题的教学既是对实际探索问题的解 决,前后呼应;也是对作差比较法的进一步巩固,突破
教学策略选 教师的主导作用,主要教会学生清晰的思维和严谨的推 择与设计 理。 为了更好地体现课堂教学中“教师为主导,学生为主 体”的教学关系和“以人为本,以学定教”的教学理 念,在本节课的教学过程中,我将紧紧围绕教师组织— —启发引导,学生探究——交流发现,组织开展教学活 动。我设计了以下六个环节,层层深入,在教学中注意 关注整个过程和全体学生,充分调动学生积极参与教学 过程的每个环节。
不等关系和不等式

a 与n b 的大
n
a > b >0
n
n
a > b (n∈N*)
a ≤ n b ,即
证明:用反证法,假定
n
n n 或 a b , a b
n
根据乘方性质,得 (n a )n (n b )n 或(n a )n (n b )n
即:a<b或a=b,
这都与a>b矛盾,因此
n
a b
n
ac 2)a>b,b>c ____________
思考6:如果a>b>0,c>d>0,那么ac与bd的 大小关系如何?为什么? 性质6:a>b>0,c>d>0
ac>bd
(乘法法则)
思考7:如果a>b>0,n∈N*,那么an与bn的大小 关系如何?
性质7:a>b>0
n>bn (n∈N*) a
(乘方法则)
思考8:如果a>b>0,n∈N*,那么n 小关系如何? (开方法则) 性质8:
=(x-1)2+1, 因为(x-1)2≥0, 所以(x2-x)-(x-2)>0, 因此x2-x>x-2.例 2 已知 x<1,试比较 x-1 与 2x -2x 的大小.
3
2
若去掉x<1这条件,结果还一样吗?
探究:不等式的基本性质
思考1:若甲的身材比乙高,则乙的身材比甲矮, 反之亦然.从数学的观点分析,这里反映了一个不 等式性质。
性质1:如果a > b,那么b < a,如 果b < a,那么a > b.(对称性)
思考2:若甲的身材比乙高,乙的身材比丙高, 那么甲的身材与丙的有什么大小关系? 性质2:如果a > b,且b > c,那么a > c.(传递性) 即:a > b,b > c a > c.
3.1不等关系与不等式(两课时)

500x 600y 4000
y 3x
x≥0,y≥0 上面三个不等关系,是“且”的关系,要同时满足的话, 用不等式组表示为:
数学应用
问题3.某钢铁厂要把长度为4000mm的钢管截成 500mm和600mm的两种规格。按照生产的要求, 600mm的钢管的数量不能超过500mm钢管的3倍, 写出满足上述所有不等关系的不等式.
数学应用
问题1:设点A与平面α的距离为d, B为平面α上任意一点,则
d与线段AB的关系?
A
d≤|AB|
d
B
数学应用
问题2.某种杂志原以每本2.5元的价格销售,可以 售出8万本。据市场调查,若单价每提高0.1元销售 量就可能相应减少2000本。若把提价后杂志的定价 设为x元,怎样用不等式表示销售的总收入仍不低 于20万元呢?
∴
(a b) (b c) 0
ac 0
∴
ac
由定理1,定理2可以表示为如果
c b且b a
那么
ca
不等式的性质
性质3.如果
a b,那么 a c b c
不等式的可加性
(即a b a c b c)
证明: ∵
∴
(a c) (b c) a b 0
证明:ac-bc=( a-b )c 因为 a >b 所以 a-b>0, 根据同号相乘得正,异号相乘得负,得 当c>0时,(a-b)c>0, 即 ac>bc 当c<0 时,(a-b)c<0, 即 ac<bc
不等式的性质
性质5: 如果
a b 且 c d ,那么
ac bd
不等式的同向可加性
3.1不等式与不等关系1

a b ,(n∈N,n≥2).
n
开方法则
c c 已知a > b > 0,c < 0, 求证 > .(课本P83) a b
1 证明: a b 0, ab 0, 0. ab
1 1 于是 a b , ab ab 1 1 c c 即 . 由c 0, 得 a b b a
f 2.5% p 2.3%
一 .新课引入
问题1:设点A与平面α的距离为d,
d
A
B为平面α上任意一点,则
d≤|杂志原以每本2.5元的价格销售,可以销售出8 万本.据市场调查,若单价每提高0.1元,销售量就可以相 应减少200本,若把提价后杂志的定价设为X元,怎样用不 等式表示销售的总收入仍比低于20万元呢?
性质1:如果a>b,那么b<a;如果b<a,那么a>b.即
abba
性质2:如果a>b,b>c,那么a>c.即
(对称性) (传递性)
(可加性)
a b, c 0 ac bc a b, c 0 ac bc
a b, b c a c
性质3:如果a>b,那么a+c>b+c.即
x 2.5 (8 0.2) x 20 0.1
问题3:某钢铁厂要把长度为4000mm的钢管截成
500mm和600mm两种.按照生产的要求,
600mm钢管的数量不能超过500mm钢管的 3倍. 写出满足上述所有不等关系的不等式?
500 x 600 y 4000; 3x y; x 0; y 0.
二、重难点讲解
3.1不等关系与不等式(1)导学案

3.1《不等关系与不等式》(1)【学习目标】1、会用不等式(组)表示实际问题中的不等关系;2、理解不等式(组)对于刻画不等关系的意义和价值。
【重点】用不等式(组)表示实际问题中的不等关系;【难点】用不等式(组)正确表示不等关系。
【知识链接】大于用表示,小于用表示,不大于用表示,不小于用表示,正数用表示,负数用表示,非负数用表示,非正数用表示知识点1:现实世界和日常生活中常见的不等关系问题1:用不等式表示下列不等关系:(1)a与b的和是非正数;(2)某公路立交桥对通过车辆的高度h“限高 4m”;(3)右图是限速为40km/h的路标,指示司机在前方路段行驶时,应使汽车的速度不超过40km/h,表示为 40(4) 设点A与平面的距离为d,B为平面上的任意一点,表示为问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本,据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。
若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元呢?(1)根据题意,提价前杂志的定价为元,提价后杂志的定价为元,因此提高了元;(2)由(1)可知,价格提高了0.1元的倍,即个0.1元;(3)由(2)可知,销售量减少了2000本的倍,即本,因此,提价后的销售量为本;(4)提价后的销售总收入=销售量单价,因此可表示为,不低于用表示,所以可得到不等式为知识点2:现实世界和日常生活中常见的不等式组关系问题3:用不等式组表示下列不等关系:(1)中国“神州七号”宇宙飞船的飞行速度v不小于第一宇宙速度7.9km/s,且小于第二宇宙速度11.2km/s. 表示为(2)某品牌酸奶的质量检查规定,酸奶中脂肪f的含量应不少于2.5﹪,蛋白质p 的含量应不少于2.3﹪. 表示为(3)铁路旅行常识规定:旅客每人免费携带物品——杆状物长度w不超过200cm,重量m不超过20kg. 表示为问题4:某钢铁厂要把长度为4000mm的钢管截成500mm和600mm的两种。
高二数学不等关系与不等式

的简报中医师名录听者莫不撕小纸片记录……。彷佛太平盛世就应该这样,每件事都跟昨天、前天没什么差别。一位迟到妈妈拉著尚未换穿球衣、头发睡歪一边的儿子小跑步而来,手上还捧著纸碗装蚵仔面线,由於限塑政策推行彻底,一支小汤匙只好含在嘴里,就这么快快快抵达树荫下,
立刻有几只妈妈手围上来替男孩剥衣换服下一秒钟他就像走出电话亭的超人,直接上场了。 ? 唉,在太平盛世的范围,早起算是相当痛苦的。 ? 你坐在布满粉紫草花的草地上,看这浮世一角看得趣味盎然,甚至还不想打开手中诗集。你不禁想,浮生之所以有趣,在於允许你隐身於安全
一粒吃又揣了一粒在口袋,再将它放回原处,装作啥事都不知晓。过不了几日,便会听到她的抱怨:“半包软糖仔那是你们阿姑买给我的,放在棉被堆里也给你们偷拿去呷。看看,剩三粒,比日本仔还野!夭鬼囡仔,我藏到无路啰!--喏,敏嫃,剩这粒给你。”
?我
的确是特权了,可以分享到阿嬷的卷仔饼,及她那个年代的甜处。于是,公事包里常常有些奇怪的东西:五条卷仔饼、一把纽仔饼、六粒龙眼球、两块爆米香、一块红龟仔果......我便拿着去普渡众生,遇到谁就给谁。回到家,阿嬷还要问食后心得:“好呷莫?”我说:“马马虎虎啦,
气息。扑蝶事件将成为他生命中的奇异点,此後因不断被引述、传诵而有了亮度。浮生甚暖,一陌生男孩抓到奇异光点时,你正好在现场。 ? 中场休息。孩子奔来,肥鸭们赶忙递水、擦汗、喂面包、抹驱蚊膏。你打开波兰女诗人辛波丝卡诗集,阳光捆著你的眼眸放在〈越南〉那页: ?
妇人,你叫什么名字?── 我不知道。 ? 你生於何时,来自何处?──我不知道。 ? 你为什么在地上挖洞?──我不知道。 ? 你在这里多久?」──我不知道。 ? 你看著树荫下十多个家庭的寻常早晨,相信太平盛世里所有的缺口都有办法弥补,即使「挖洞」这讨人厌的事,也能找
§3.1.1不等关系与不等式(一)

浓度为 b m ,
am
bm b 可以证明 成立. am a
你能证明吗?预习下一节内容,给出证明.
2013-1-21 重庆市万州高级中学 曾国荣 wzzxzgr@ 16
§3.1.1不等关系与不等式(一)
小结 1. 两 实数间的大小与两数之差有如下关系:
a>ba–b>0 a=ba–b=0 a<ba–b<0
根据两个正数的和仍是正数,得
(a b) (b c) 0, 即a c 0,
推论: 由a b, 且b c a c.
2013-1-21 重庆市万州高级中学 曾国荣 wzzxzgr@ 12
a c.
§3.1.1不等关系与不等式(一)
不等式的性质
性质3:
3
§3.1.1不等关系与不等式(一)
问题2 :某种杂志原以每本2.5元的价格销售,可以 销售出8万本。据市场调查,若单价每提高0.1元, 销售量就可能相应减少2000本,若把提价后杂志的 定价设为x元,怎样用不等式表示销售的总收入仍 不低于20万元呢? 分析:若杂志的定价为x元,则销售的总收入为
x 2.5 (8 0.2)x 万元。 0.1
4 x y 10 18 x 15 y 66 x 0 y 0
2013-1-21 重庆市万州高级中学 曾国荣 wzzxzgr@ 7
§3.1.1不等关系与不等式(一)
练习3、某年夏天,我国遭受特大洪灾,灾区学生 小李家中经济发生困难,为帮助小李解决开学费用 问题,小李所在班级学生(小李除外)决定承担这 笔费用。若每人承担12元人民币,则多余84元;若 每人承担10元,则不够;若每人承担11元,又多出 40元以上。问该班共有多少人?这笔开学费用共多 少元? 分析:设该班除小李外共有x人,这笔开学费用共 y元,则:
3.1不等式与不等关系课(共32张PPT)

探究点1
不等式的性质
(对称性) (1)a > b b < a; (传递性) (2)a > b,b > c a > c;
(可加性) (3) a > b a + c > b + c;
由性质(3)可得:
a + b > c a + b +( - b )> c +( - b ) a > c - b .
解:因为15 < b < 36,所以 - 36 < -b < -15. 又因为12 < a < 60,所以12 - 36 < a - b < 60 - 15, 所以 - 24 < a - b < 45. 1 1 1 12 a 60 因为 < < ,所以 < < , 36 b 15 36 b 15 1 a 所以 < < 4. 3 b
2.某品牌酸奶的质量检查规定,酸奶中脂肪的含量 f应不少于2.5% ,蛋白质的含量p应不少于2.3%,
f≥2.5% 写成不等式组为 p≥2.3% .
【即时练习】 某高速公路对行驶的各种车辆的最大限速为120km/h.
行驶过程中,同一车道上的车间距d不得小于10 m,用不
等式表示为( B )
A.v≤120 (km/h)或 d≥10 (m)
2.设M=x2,N=x-1,则M与N的大小关系为 ( A ) A.M>N C.M<N B.M=N D.与x有关
【解析】 ∵M-N=x2-(x-1)=x2-x+1 1 3 =x -x+ + 4 4
2
12 3 =(x- ) + >0. 2 4 ∴M>N.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a>b
a+c>b+c(可加性)
思考4:如果a>b,c>0,那么ac与bc的 大小关系如何?如果a>b,c<0,那么 ac与bc的大小关系如何?为什么? a>b,c>0 ac>bc; a>b,c<0 ac<bc
(可乘性)
思考5:若甲班的男生比乙班多,甲班的 女生也比乙班多,则甲班的人数比乙班 多. 这里反映出的不等式性质如何用数 学符号语言表述?
a b ab 0 a b ab 0
知识上,本节课我们主要学习了如何将实际问 题中的不等关系表示成不等式. 方法上,用不等式(组)表示实际问题中的不 等关系时,(1)要先读懂题,设出未知量(2) 抓关键词,找到不等关系(3)用不等式表示不 等关系. 思维要严密、规范.
3.1
v
v
(3)某品牌酸奶的质量检查规定,酸奶中脂肪的含量 f应不少于2.5%,蛋白质的含量p应不少于2.3%.
f 2 .5 % p 2 .3 %
我们用数学符号“≠”,“>”,“<”, “≥”,“≤”连接两个数或代数式,以表 示它们之间的不等关系。含有这些不等号 的式子叫做不等式.
注意:“ ”表示“>”或“=”其中一个成立; “ ”表示“<”或“=”其中一个成立。
例3:已知-
2
2
,求
+ -
2 , 2
的取值范围。
小结作业
1.不等式的8条基本性质,就是不等式的 运算法则,是分析、研究和解决不等式 问题的逻辑依据,在此基础上还可引伸 出许多其他性质,学习上要求掌握基本 性质,了解拓展性质.
2.上述不等式性质都是可以证明的结论, 反映实数大小关系的基本原理是证明不 等式性质的理论基础.
课堂练习1:用不等式表示下面的不等关系:
1.a与b的和是非负数;
a+b≥0
2.某公路立交桥对通过车辆的高度h“限高 0<h≤4 4m” 3.在一个面积为350平方米的矩形地基 上建造一个仓库,四周是绿地.仓库的长L 大于宽W的4倍.写出L与W的关系
5m 5m 5m 5m
( L 10)(W 10) 350, L 4W L 0 W 0
(乘方法则)
思考8:如果a>b>0,n∈N*,那么 n a
与 b 的大小关系如何? a >b >0
n
n
a > n b(n∈N*)
(开方法则)
探究(二):不等式的拓展性质
推广1:在等式中有移项法则,即a+b= c a=c-b,那么移项法则在不等式 中成立吗? a +b >c a >c -b
在数轴上,如果表示实数a和b的两个点分别 为A和B,则点A和点B在数轴上的位置关系有 以下三种: (1)点A和点B重合;
(2)点A在点B的右侧; (3)点A在点B的左侧. 在这三种位置关系中,有且仅有一种成立,由 此可得到结论: 对于任意两个实数a和b,在a=b,a>b,a<b 三种关系中有且仅有中的不等关系
(1)中国“神舟七号”宇宙飞船的飞行速 度不小于第一宇宙速度 ,且小于第二宇 宙速度 (2)《铁路旅行常识》规定:旅客每人免 费携带物品 ------杆状物不超过200cm, 重量不得超过20kg (3)我们班的数学成绩高于平行班的成绩
问题:上面的不等关系是用什么不等词表示的? 请你举出生活中的一些不等关系的例子
不等关系与不等式 第二课时
问题提出
1.反映实数大小关系的基本原理是什么?
a -b >0 a >b
a-b=0
a=b a -b <0 a <b
2.用“作差法”比较两个代数式大小的一般步骤 如何? 作差→变形→判断符号→确定大小
探究(一):不等式的基本性质
思考1:若甲的身材比乙高,则乙的身材比甲矮, 反之亦然.从数学的观点分析,这里反映了一个不 等式性质,你能用数学符号语言表述这个不等式 性质吗?
∴ (a 3)(a 5) (a 2)(a 4)
1 例2 设a 0, 且a 1, t 0.比较 loga t 2 t 1 与 loga 的大小. 2 t 1 t 1 ( t 1) 2 解: t 0 t , 2 2 2 1 t 1 当a 1时, log a t log a ; 2 2 1 t 1 当0 a 1时, log a t log a ; 2 2
2 ab > b +
b
例2
已知b>a>c,a>0,求证: bc a+ < b+ c a
3 2
例5 已知c>a>0, c>b>0,比较 a与 c -
c - ab .
2
例6 已知数列{an}是等比数列,数 列{bn}是等差数列,且a1=b1>0,a3= b3>0,a1≠a3,试比较a5与b5的大小.
例3
若b>a,结论 又会怎样呢?
课堂练习: 1 在下列各题的横线中填入适当的不等号. < 6 2 6; ⑴ ( 3 2) 2 _____
⑵ ( 3 2) 2 ____( < 6 1) 2 ; 1 1 < ⑶ ______ ; 52 6 5
> log 1 b. ⑷若0 a b , log 1 a ____
2 2
2. 比较
x 3 与 x 2 x 1 的大小.
解:x3-(x2-x+1)=x3-x2+x-1 =x2(x-1)+(x-1) =(x-1)(x2+1), ∵ x2+1>0, ∴ 当x>1时,x3>x2-x+1; 当x=1时,x3=x2-x+1,
当x<1时,x3<x2-x+1.
1.不等关系是现实世界和日常 生活中客观存在的广泛的数量 小 关系,不等式是研究不等关系 的数学工具,用不等式或不等 结 式组表示实际问题中的不等关 系时,思维要严密、规范. 2.判断两个实数大小的依据是: a b ab 0
如果a-b是正数,则a>b;如果a>b, 则a-b为正数; 如果a-b是负数,则a<b;如果a<b, 则a-b为负数; 如果a-b等于零,则a=b;如果a=b, 则a-b等于零.
上述结论可以写成:
a b 0 a b
a b 0 a b
a b 0 a b
注:“ ”表示“等价于”,即可以相互推出。
=(x-1)2+1,
因为(x-1)2≥0, 所以(x2-x)-(x-2)>0, 因此x2-x>x-2.
作差,与零比较大小.
练习 1.比较(a+3)(a-5)与(a+2)(a-4)的大小.
解: ∵ (a 3)(a 5) (a 2)(a 4)
(a 2 2a 15) (a 2 2a 8) 7 ∴ (a 3)(a 5) (a 2)(a 4) <0
a >b ,c >d
a+c>b+d(同向可加性)
思考6:如果a>b>0,c>d>0,那么 ac与bd的大小关系如何?为什么? a >b >0 ,c >d >0
ac>bd
(同向同正可乘性)
思考7:如果a>b>0,n∈N*,那么an与 bn的大小关系如何? a >b >0
n>bn (n∈N*) a
已知a、b为正实数,求证:
a b a b b a
例4 比较下列各组代数式的大小: (1)a2+b2与2(a+b-1); (2)(a+b)(a3+b3)与(a2+b2)2 (a>0,b<0).
小结作业
1.证明不等式和比较大小,是不等式的 两个基本问题,解决不等式问题必须以 不等式性质为理论依据,常用方法有比 较法、综合法、分析法等.
1 1 与 a b
1 1 a>b,ab>0 a b
理论迁移
例1
已知a>b>0,c<0,
c c 求证: . a b
例2
1 1 已知a b 0
,x >y >0 ,
x y 求证: . xa y b
例3:比较下列各组数的大小(a b) ab 2 (1) 与 (a>0,b>0) 1 1 2 a b 4 4 3 (2)a b 与4a (a b)
推广2:如果ai>bi(i=1,2,3,„, n),a1+a2+„+an与b1+b2+„+bn的 大小关系如何? ai>bi (i=1,2,3,„,n) Þ a1+a2+„+an>b1+b2+„+bn
推广3:如果ai>bi(i=1,2,3,„, n),那么a1· a2„an>b1· b2„bn吗? ai>bi>0 (i=1,2,3,„,n)
二.用不等式(组)表示不等关系 (1)右图是限速40km/h的路标,指示司
机在前方路段行驶时,应使汽车的速度 v不超过40km/h . 0<v≤40
40
v1 v v2
(2)中国"神舟七号”宇宙飞船飞天取得了最圆满的 成功.我们知道,它的飞行速度( )不小于第一宇 宙速度( 记作 v2 ). 1 ),且小于第二宇宙速度(记
a+c>b+d (5)a>b,c>0 ac>bc;
(4 )a >b ,c >d a>b,c<0 ac<bc (6 )a >b >0 ,c >d >0 (7 )a >b >0
ac>bd
(n∈N*)
a n>b n
n
(8 )a >b > 0
a >
n
b (n∈N*)
应用举例
例1
已知 a>b>1,求证:
2.比较法包括差比法和商比法.其中商比 a 法的理论依据是 1, b 0 a b 或
a 1, b 0 a b b
b
.
判断两个实数大小的依据是: a b ab 0