2019届中考数学模拟复习考试题9

合集下载

2019年最新版初三中考数学模拟试卷及答案7342616

2019年最新版初三中考数学模拟试卷及答案7342616

中考数学模拟试卷及答案解析学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.如图,从下列四个条件:①BC=B ′C ,②AC=A ′C ,③∠A ′CA =∠B ′CB ,④AB=A ′B ′中,任取三个为条件,余下的一个为结论,则最多可以构成正确结论的个数是( ) A . 1B .2C .3D .42.图中几何体的左视图是( )3.下列计算正确的是( )A .112333()a b a b +=+B .22222()y y x x=C .0a aa b b a-=-- D .220()()a aa b b a -=-- 4.在下列方程中,属于分式方程的有( )①21102x -=;②213x x -=;③114x y -=;④111x xx x--=-A .1 个B .2 个C .3 个D .4 个5.作△ABC 的高AD ,中线AE ,角平分线AF ,三者中有可能画在△ABC 外的是( ) A .中线AEB .高ADC .角平分线AFD .都有可能6.如图两个图形可以分别通过旋转( )度与自身重合? A .120°,45°B .60°,45°C .30°,60°D .45°,30°7.如图是一个可以自由转动的转盘,转动这个转盘,当它停止转动时,指针最可能停留的区域是( ) A .1B . 2C . 3D . 48.若a b c x b c a c a b ===+++,则x 等于( )A .1-或21 B .1- C .21 D .不能确定9.下列图案是几种名车的标志,在这几个图案中,是轴对称图形的有( ) A .1个B .2个C .3个D .4个10.某班级想举办一次书法比赛,全班45名同学必须每人上交一份书法作品,设一等奖5名,二等奖10名,三等奖15名,那么该班某位同学获一等奖的概率为( ) A .19B .29C .13D .2311.下列运算中,正确的是( ) A .2222(53)106ac b c b c ac +=+ B .232()(1)()()a b a b a b b a --+=---C .()(1)()()b c a x y x b c a y a b c a b c +-++=+-----+-D .2(2)(11b 2)(2)(3)5(2)a b a a b a b b a --=-+-- 12.若448n =,则n 等于( ) A .2 B . 4C . 6D . 813.若分式434x +的值为 1,则x 的取值应是( ) A .2B .1C .0D . -114.下列各式中,计算正确的是( ) A .325a a a +=B .326a a a ⋅=C .3332a a a ⋅=D . 2.36m m m m ⋅=15.用平方差公式计算2(1)(1)(1)x x x -++的结果正确的是( ) A .4(1)x -B .41x +C .41x -D .4(1)x +16.下列多项式中,含有因式1y +的多项式是( ) A .2223y xy x --B .22(1)(1)y y +--C .22(1)(1)y y +-- D . 2(1)2(1)1y y ++++17.化简229339x xx x-+-÷-+的结果是()A.29x-B.29x-+C.3x--D.3x-18.根据图中所给数据,能得出()A.a∥b,c∥dB.a∥b,但c与d不平行C.c∥d,但a与b不平行D.a 与b,c 与d均不互相平行19.如图,在下列给出的条件中,不能判定AB∥DF的是()A.∠A +∠2 = 180° B.∠A=∠3 C.∠1 = ∠A D.∠1 =∠420.等腰三角形的“三线合一”是指()A.中线、高、角平分线互相重合B.腰上的中线、腰上的高、底角的平分线互相重合C.顶角的平分线、中线、高线三线互相重合D.顶角的平分线、底边上的高及底边上的中线三线互相重合21.将两个完全一样的有一个角为30°的直角三角形拼成如图所示的图形,其中两条长直角边在同一直线上,则图中等腰三角形的个数有()A.4个B.3个C.2个D.1个22.△ABC和△DEF都是等边三角形,若△ABC的周长为24 cm ,△DEF的边长比△ABC的边长长3 cm,则△DEF的周长为()A.27 cm B.30 cm C.33 cm D.无法确定23.一个三角形的两条边分别为1和2,若要使这个三角形成为直角三角形,则应满足下列各个条件中的()A.第三边长为3 B.第三边的平方为3C.第三边的平方为5 D.第三边的平方为3或524.一个数的绝对值是正数,则这个数是( )A .不等于0 的有理数B .正数C .任何有理数D .非负数 25.在下列条件中,不能说明△ABC ≌△A ′B ′C ′的是( ) A .∠A=∠A ′,∠B=∠B ′,AC=A ′C ′ B .∠A=∠A ′,AB=A ′B ′,BC=B ′C ′ C .∠B=∠B ′,BC=B ′C ′、AB=A ′B ′ D .AB=A ′B ′,BC=B ′C ′,AC=A ′C ′26.如图所示,直线AB 、CD 被EF 所截,那么图中共有对顶角( ) A .5对B .4对C .3对D .2对27.在-5,110-,-3. 5,-0.01,-2,-12各数中,最大的数是( ) A .-12 B .110-C .-0.01D .-528.计算11731()(36)361249-++⨯-运用哪种运算律可避免通分( ) A .加法交换律 B .加法结合律 C .乘法交换律D .乘法分配律29.当 a=-3,b= 0,c=-4,d=9时,(a-b )×(c+d )的值是( ) A .10B .13C .-14D .-1530. 任何一个有理数的二次幂是( ) A .正数B .非负数C .负数D .无法确定31.下列说法正确的是( ) A . 有理数一定有平方根 B . 负数没有平方根C . 一个正数的平方根,只有一个D .1 的平方根是 132.在实数227π中无理数的个数是( ) A .1 个B .2 个C .3 个D .4 个33.计算|2|3+的值是( )A .1B .-1C . 5-D .534 )A .大于16小于18B .大于4小于5C .大于3小于4D .大于5小于6 35.若3-=b a ,则a b -的值是( ) A .3B .3-C .0D .636.关于x 的方程2(1)0x a --=的解是3,则a 的值是( ) A .4B .-4C .5D .-537.2200620082004-⨯的计算结果为( ) A .1B .-1C .4D .-438.要反映宁波市一周内每天的最高气温的变化情况,宜采用( ) A .条形统计图B .扇形统计图C .折线统计图D .以上都可以39.某几何体的三视图如图所示,则该几何体是( )A . 圆柱B . 球C .圆锥D .长方体40.α、β都是钝角,甲、乙、丙、丁计算1()6αβ+的结果依次为50°、26°、72°、90°,其中有正确的结果,则计算正确的是( ) A .甲B .乙C .丙D .丁41.下列说法错误的是 ( ) A .(-3)2的平方根是±3B .绝对值等于它的相反数的数一定是负数C .单项式235x y z 与322zy x -是同类项D .近似数3.14×103有三个有效数字42.一个两位数,个位数字是十位数字的两倍,十位数字为x ,那么这个两位数是( ) A .3xB .12xC .21xD .21x+243.小南给计算机编制了按如图所示工作程序.如果现在输入的数是3,那么输出的数是( )输入 -6 ×9 输出 A .-27B .81C .297D .-29744.如果三角形的一个外角是锐角,那么这个三角形是( ) A .锐角三角形B .钝角三角形C .直角三角形D .以上三种都可能45.下列图形中,能说明∠1>∠2的是( )46.观察下面图案,能通过右边图案平移得到的图案是()47.下列图形绕某点旋转后,不能与原来图形重合的是(旋转度数不超过180°)()48.以下四幅图形中有三幅图案是可以相互旋转得到的,另外的一幅是()49.如图所示是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋50.如图是某公司近三年的资金投放总额与利润统计示意图,根据图中的信息判断:①2001年的利润率比2000年的高2%;②2002年的利润率比2001年的利润率高8%;③这三年的平均利润率为14%;④这三年中2002年的利润率最高.以上判断正确的结论有( ) A .1个B .2个C .3个D .4个51.如图,Rt △ACB 中,∠C= 90°,以A 、B 分别为圆心,lcm 为半径画圆,则图中阴影部分面积是( ) A .14π B .1:8πC .38πD .12π52.如图所示,是由一些相同的小立方体构成的几何体的三视图,这些相同小立方体的个数是( )A .3个B .4个C .5个D .6个53.若一组数据11,12,13,x 的极差为6,则x 的值是( ) A .17B .18C .19D .17或754.为了了解本校初三年级学生的体能情况,随机抽查了其中30名学生,测试1分钟仰卧起坐的次数,并将其绘制成如图所示的频数分布直方图.那么仰卧起坐次数在25~30次的频率是( )A.0.4 B.0.3 C.0.2 D.0.155.下面四个语句:①内错角相等;②OC 是∠AOB 的角平分线吗?③两条直线互相垂直,则所成的角等于直角;④π不是有理数.其中是真命题的个数为( ) A .1个B .2个C .3个D .4个56.如图,等腰梯形ABCD 中,AD BC BD DC ∥,⊥,点E 是BC 边的中点,ED AB ∥,则BCD ∠等于( )A .30B .70C .75D .6057.在对2006个数据进行整理的频数分布表中,各组频数之和与频率之和分别等于( ) A .2006,1B .2 006,2 006C .1,2 006D .1,158.下列图形中,不能单独镶嵌成平面图形的是( ) A . 正三角形B . 正方形C . 正五边形D . 正六边形59.a 的取值范围( ) A . 3a <B .3a ≤C .3a >D .3a ≥D 60.反比例函数ky x=与二次函数2y kx =(k ≠0)画在同一个坐标系里,正确的是( )A .B .C .D .61.下列四个函数:①2y x =+;②6y x=;③23y x =;④2(26)y x x =--≤≤,四个函数图象中是中心对称图形,且对称中心是原点的共有( ) A .1 个B .2 个C .3 个D .4 个62.下列图形中,是中心对称图形而不是轴对称图形的是( ) A .平行四边形B .正三角形C .正方形D .线段AB63.如图, 已知CD 为⊙O 的直径,过点D 的弦DE 平行于半径OA,若∠D 的度数是50o ,则∠C 的度数是( ) A .50oB . 40oC . 30oD .25o64.60°”时,先假设这个三角形中( )A B C .有一个内角大于60° D .每一个内角都大于60°65.下列各线段中,能成比例的是( ) A .3,6,7,9B .2,5,6,8C .3,6,9,18D .1,2,3,466.(针孔成像问题)根据图中尺寸(AB ∥AB'),那么物像长y (A'B'的长)与物长x (AB 的长)之间函数关系的图象大致是( ) 67.若正比例函数2y x =-与反比例函数ky x=的图象交于点A ,且A 点的横坐标是1-,则此反比例函数的解析式为( )A .12y x=B .12y x =-C .2y x=D .2y x=-68.反比例函数的图象在第一象限内经过点A ,过点A 分别向x 轴,y 轴引垂线,垂足分别为P Q ,,已知四边形APOQ 的面积为4,那么这个反比例函数的解析式为( ) A .4y x=B .4x y =C .4y x =D .2y x=把Rt △ABC 各边的长度都扩大3倍得Rt △A ˊB ˊC ˊ,那么锐角A 、A ˊ的余弦值的关系为( ) A .cosA =cosA ˊB .cosA =3cosA ˊC .3cosA =cosA ˊD .不能确定70.小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为( ) A .21B .π63C .π93D .π3371.已知⊙O 的半径为 5 cm ,如果一条直线和圆心0的距离为 5 cm ,那么这条直线和⊙O 的位置关系是( ) A .相交B .相切C . 相离D . 相交或相离72.边长分别为3,4,5的三角形的内切圆半径与外接圆半径的比为( ) A .1∶5B .2∶5C .3∶5D .4∶573.一个正方体的木块在太阳光下的影子不可能是( ) A .正方形B .长方形C .一条线段D .三角形74.下列光源的光线所形成的投影不能称为中心投影的是( ) A .探照灯B .太阳C .路灯D .台灯75.抛物线y=(x -1)2+1的顶点坐标是( ) A .(1,1)B .(-1,1)C .(1,-1)D .(-1,-1)76.已知正比例函数y=ax (a 为常数,且a≠0),y 随x 的增大而减小,则一次函数y ax a =-+的图象不经过( )A .第一象限B .第二象限C .第三象限D . 第四象限77.甲、乙、丙、丁四位数选手各l0次射击成绩的平均数都是8环,众数和方差如下表,则这四个人中水平发挥最稳定的是( )A .甲B .乙C .丙D .丁78.在方差的计算公式222222123451[(10)(10)(10)(10)(10)]5S x x x x x =-+-+-+-+-中,数字5和10分别表示的意义是( )A .数据的个数和方差B .平均数和数据的个数C .数据组的方差和平均数D .数据的个数和平均数79.某种商品的进价为 800 元,出售时标价为1200 元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至少可打( ) A .6 折 B .7 折 C .8 折D .9 折80.二次函数21(2)32y x =--的二次项系数、一次项系数、常数项分别为( ) A . 12,-2,-3B .12,-2,-1C .12,4,-3D .12,-4,`181.已知0a <,且不等式组x a x b >⎧⎨>⎩的解是x a >,则不等式组x ax b <⎧⎨->⎩的解是( ) A . b x a -<<B .x b >或x a <C .x a <D . 无解82.将点M (-3,-5)向上平移7个单位得到点N 的坐标为( ) A .(-3,2)B .(-2,-l2)C (4,-5)D .(-10,-5)83.在平面直角坐标系中,将点A (1,2)的横坐标乘以-1,纵坐标不变,得到点A ′,则点A 与点A ′的关系是( ) A .关于x 轴对称 B .关于y 轴对称C .关于原点对称D .将点A 向x 轴负方向平移一个单位得点A ′84.王京从点O 出发.先向西走40米,再向南走30米,到达点M.如果点M 的位置用(-40,-30)表示,从点M 继续向东走50米,再向北走50米,到达点N ,那么点N 的坐标是( ) A . (-l0,10)B . (10,-l0)C .(10,-20)D . (10,20)85.下列函数:①18y x =;②18y x =-;③22y x =;④2y x=.其中是一次函数的个数为( ) A . 0个 B .1个 C . 2个 D .3个 86.下列不在函数y=-2x+3的图象上的点是 ( ) A .(-5,13)B .(0.5,2)C .(3,0)D .(1,1)87.下列条件,不能识别四边形是平行四边形的条件的是( ) A .两组对边分别平行 B .两组对边分别相等C .一组对边平行,另一组对边相等D .一组对边平行且相等88.星期日晚饭后,小燕的的爷爷老杨从家里出去散步.如图描述了他散步过程中离家的距离s (米)与散步所用时间t (分)之间的函数关系.依据图象.下面的描述符合老杨散步情景的是( )A .从家出发,到了某个地方遇到了邻居老张,聊了一会就回家了B .从家出发,到了某个地方遇到了邻居老张,聊了一会后,继续向前走了一段,然后回家了C .从家出发,一直散步(没有停留),然后回家了D .从家出发,散了一会儿步,又去了超市,27分钟后才开始返回89.在同一时刻的阳光下,小强的影子比小明的影子长,那么在同一路灯下( )A .小强与小明一样长B .小强比小明长C .小强比小明短D .无法判断谁的影子长90.如图所示,直角△ABC 中,∠ACB=90°,DE 过点C 且平行于AB ,若∠BCE=35°, 则∠A 的度数为 ( )A .35°B .45°C .55°D .65°91.如图,学校的保管室里,有一架5 m 长的梯子斜靠在墙上,此时梯子与地面所成的角为45°.如果梯子底端0固定不动,顶端靠到对面墙上,此时梯子与地面所成的角为60°,则此保管室的宽度AB 为( )A .51)2mB .52mC .D .51)2m92.如图,AB ∥CD ,如果∠l 是∠2的2倍,那么∠1等于( )A .60°B .90°C .120°D .150°93.x 的取值是( )A .0B .4C .2D .不存在94.计算:3÷6的结果是( )A .12B .62C .32D .2 95.关于x 的一元二次方程22(3)60a x x a a -++--=的一个根是 0,则a 的值为( )A .2-B .3C .-2 或 3D .-1或 696.若代数式237x -的值为 5,则x 为( )A . 1x = 或2x =B .2x =-C .1x =±D .2x =±97. 三角形两边的长分别是 8 和 6,第三边的长是方程212200x x -+=的一个实数根,则三角形的周长是( )A . 24B . 24 和 26C . 16D . 2298.为解决药价偏高给老百姓带来的求医难的问题,国家决定对某药品分两次降价.若设每次降价的百分率为x ,该药品的原价是m 元,降价后的价格是y 元,则可列方程为( )A .y=2m (1-x )B .y=2m (1+x )C .y=m (1-x )2D .y=m (1+x )299.下列语句不是命题的个数是( )(1)大于90°的角都是钝角;(2)请借给我一枝钢笔;(3)小于零的数是负数;(4)如果a=0,那么ab=0.A .0个B .1个C .2个D .3个100.下列函数中,y 的值随x 的值增大而增大的函数是( )A .2y x =-B .21y x =-+C .2y x =-D .2y x =--【参考答案】***试卷处理标记,请不要删除一、选择题1.B2.A3.D4.C5.B6.A8.A 9.C 10.A 11.D 12.C 13.C 14.D 15.C 16.C 17.B 18.B 19.C 20.D 21.B 22.C 23.D 24.A 25.B 26.B 27.C 28.D 29.D 30.B 31.B 32.B 33.A 34.B 35.A 36.A 37.C 38.C 39.A 40.A42.B 43.D 44.B 45.D 46.C 47.B 48.B 49.B 50.B 51.A 52.B 53.D 54.A 55.B 56.D 57.A 58.C 59.D 60.A 61.A 62.A 63.D 64.B 65.C 66.C 67.D 68.A 69.A 70.C 71.B 72.B 73.C 74.B76.B 77.B 78.D 79.B 80.B 81.D 82.A 83.B 84.D 85.C 86.C 87.C 88.B 89.D 90.C 91.A 92.C 93.B 94.B 95.A 96.D 97.A 98.C 99.B 100.C。

2019年中考数学模拟试卷含答案(九)

2019年中考数学模拟试卷含答案(九)
并证明你的结论;
( 3) 问题解决: 如图 3, AB∥ CF , AE 与 BC 交于点 E , BE : EC 2:3 , 点 D 在线段 AE 上 , 且 ∠EDF =∠BAE , 试判断 AB , DF , CF 之间的数量关系 , 并证明你的结论 .
25.( 本小题满分 12 分) 我们知道 , 经过原点的抛物线可以用
------------1--.-在----1- , 1, 3 , 2 这四个数中 , 互为相反数的是

号 生 考
________________ 名 姓
_____________ ________________
()
A . 1与 1
B. 1与 2
2. 如图 , a∥b , ∠1
-------------------- o
( 1) a
,b
; ( 结果保留整数 )
( 2) 求空气质量等级为“优”在扇形统计图中所占的圆心角的度数;
( 结果精确到 1o )
( 3) 据了解 , 2017 年 1—5 月贵阳市空气质量优良天数为 142 天 , 优良率为 94% , 与
2016 年全年的优良率相比 , 2017 年前五个月贵阳市空气质量的优良率是提高还是降

A . 20
C. 70o
o
70
,

∠2
等于
C. 3 与 2
()
o
B . 35 D . 110o
D. 1与 2
3. 生态文明贵阳国际论坛作为我国目前唯一以生态文明为主题的国家级国际性论坛
,现
已被纳入国家“一带一路”总体规划 . 持续四届的成功举办 , 已相继吸引近 7 000 名各
--------------------

2019年最新版初三中考数学模拟试卷及答案6126763

2019年最新版初三中考数学模拟试卷及答案6126763

中考数学模拟试卷及答案解析学校:__________ 考号:__________题号 一 总分 得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息 评卷人 得分一、选择题1.等腰三角形的周长为l8 cm ,其中一边长为8 cm ,那么它的底边长为( ) A .2 cmB .8 cmC .2 cm 或8 cmD .以上都不对2.已知关于x 的不等式2x 3m ->-的解的解如图所示,则m 的值等于( ) A .2B .1C . -1D .03.下列计算正确的是( )A .23(31)3a a a a --=--B .222()a b a b -=-C .2(23)(23)94a a a ---=-D .235()a a =4.2222)(4)(12)(9b a b a b a ++-+-因式分解的结果是( ) A .2)5(b a -B .2)5(b a +C .)23)(23(b a b a +-D .2)25(b a -5.如图,123,,∠∠∠的大小关系为( ) A .213>>∠∠∠B .132>>∠∠∠C .321>>∠∠∠D .123>>∠∠∠6.如图,每个小正方形网格的边长都为1,右上角的圆柱体是由左下角的圆柱体经过平移得到的.下列说法错误..的是( ) A .先沿水平方向向右平移4个单位长度,再向上沿垂直的方向平移4个单位长度,然后再沿水平方向向右平移3个单位长度B .先沿水平方向向右平移7个单位长度,再向上沿垂直的方向平移4个单位长度C .先向上沿垂直的方向平移4个单位长度,再沿水平方向向右平移7个单位长度D .直接沿正方形网格的对角线方向移动7个单位长度7.一个正方形的边长增加了cm 2,面积相应增加了232cm ,则这个正方形的边长为( ) A .6cmB .5cmC .8cmD .7cm8.在下列条件中,不能说明△ABC ≌△A ′B ′C ′的是( ) A .∠A=∠A ′,∠B=∠B ′,AC=A ′C ′ B .∠A=∠A ′,AB=A ′B ′,BC=B ′C ′ C .∠B=∠B ′,BC=B ′C ′、AB=A ′B ′ D .AB=A ′B ′,BC=B ′C ′,AC=A ′C ′9.用科学记数法表示0.000 0907,并保留两个有效数字,得( ) A . 49.110-⨯B .59.110-⨯C .59.010-⨯D .59.0710-⨯10.若22440a ab b -+=,则代数式23a ba b-+的值是( ) A .1B . 35C .45D .无法确定11.如图,∠1=∠3,则图中直线平行的是( ) A .AB ∥CDB .CD ∥EFC .AB ∥EFD .AB ∥CD ∥EF12.多项式21m -和2(1)m -的公因式是( ) A .21m -B .2(1)m -C .1m +D .1m -13.如图,小明从点A 处出发,沿北偏东60°方向行走至点 B 处,又沿北偏西20°方向行走至点 C 处,此时把方向调整到与出发时一致,则调整的方向应是( )A.右转 80°B.左转 80°C.右转 100°D.左转 100°14.在下列多项式的乘法中,可以用平方差公式计算的是()A.(1)(1)x x++B.11()()22a b b a+-C.()()a b a b-+-D.22()()x y x y-+15.将两个完全一样的有一个角为30°的直角三角形拼成如图所示的图形,其中两条长直角边在同一直线上,则图中等腰三角形的个数有()A.4个B.3个C.2个D.1个16.以下四组木棒中,可以做成一个直角三角形的是()A.7 cm,12 cm,15 cm B.8cm,12cm,15cmC.12 cm,15 cm,17 cm D.8 cm,15 cm,17 cm17.在等腰直角三角形ABC中,AB=AC=2, D为腰AB的中点,过点D作DE⊥AB交BC 边于点E,则BE等于()A. 1 B.22C.2D.218.如图表示的是组合在一起的模块,则它的俯视图是()A.B.C.D.19.有甲、乙两种小麦,测得每种小麦各10株的高度后,计算出样本方差分别为211 S=甲,2 3.4S=乙,由此可以估计()A.甲比乙长势整齐B.乙比甲长势整齐C.甲、乙整齐程度相同D.甲、乙两种整齐程度不能比20.由x y<得到ax ay>的条件是()A.0a≥B.0a≤C.0a>D.0a<21.如图,已知AB=AC,BE=CE,延长AE交BC于D,则图中全等三角形的对数共有()A.1对B.2对C.3对D.4对22.方程①2290x -=;②2110x x-=;③29xy x +=;④276x x +=中,是一元二次方程的个数有( ) A .1个B .2个C .3个D .4个23.一种牛奶包装盒标明“净重300g,蛋白质含量≥2.9%” .那么其蛋白质含量为( ) A .2.9%及以上 B .8.7gC .8.7g 及以上D .不足8.7g24.如图,8×8方格纸的两条对称轴EF ,MN 相交于点0,对图a 分别作下列变换:①先以直线MN 为对称轴作轴对称图形,再向上平移4格;②先以点0为中心旋转180°,再向右平移1格;③先以直线EF 为对称轴作轴对称图形,再向右平移4格,其中能将图a 变换成图b 的是( ) A .①②B .①③C .②③D .③25.已知:如图,∠A0B 的两边 0A 、0B 均为平面反光镜,∠A0B=40.在0B 上有一点P,从P 点射出一束光线经0A 上的Q 点反射后,反射光线QR 恰好与0B 平行,则∠QPB 的度数是( ) A .60°B .80°C .100 °D .120°26.方程2x+1=0的解是( ) A .12B . 12-C . 2D .-227.一个点从数轴上的原点出发,先向右移动 2个单位长度,再向左移动 3 个单位长度到 达P 点,则P 点表示的数是( )A .2B .1C .-2D .-128.计算11(3)()333⨯-÷-⨯等于( ) A .1B .9C .-3D . 2729.当 a=-3,b= 0,c=-4,d=9时,(a-b )×(c+d )的值是( ) A .10B .13C .-14D .-1530.用科学记数法表示430000是( ) A .43×104B . 4.3×l05C .4.3×104D .4.3×10631.已知240mx y ++,且x 、y 互为相反数,则m 的值为( ) A . 4B .-4C . 2D .-232.若25x a b 与30.2y a b -是同类项,则 x 、y 的值分别是( ) A .3x =±,2y =±B .3x =,2y =C .3x =-,2y =-D .3x =,2y =-33.若k 为自然数,25k p p x y +与3312k x y +-是同类项,则满足条件的k 的值有( ) A .1 个B .2 个C .3个D .无数个34.若3-=b a ,则a b -的值是( ) A .3B .3-C .0D .635.已知3x =,2y =,0x y ⋅<,则x y +的值为( ) A .5或-5B .1或-1C .5或1D .-5或-136.下列方程中,是一元一次方程的为( ) A .x+y=1B .2210x x -+=C .21x= D .x=037.若有m 人,a 天可完成某项工作,则(m n +)人完成此项工作的天数是( ) A .a m +B .amm n+ C .am n+ D .m nam+ 38.一个水池有甲、乙两个水龙头,单独开甲龙头,4 h 可把空水池灌满;单独开乙龙头,6 h 可把空水池灌满.灌满水池的23要同时开甲、乙两龙头的时间是( ) A .83hB .43hC .4 hD .85h39.将直线2y x =向右平移 2个单位所得的直线的解析式是( ) A .22y x =+ B .22y x =-C .2(2)y x =-D .2(2)y x =+40.若方程233mx x -=+的解满足10x -=,则m 的值是( ) A .-6B . -8C .-6或-12D .任何数41.已知2+=的解,则a值是()x ax=是关于x的方程30A. -6 B. -3 C.-4 D. -542.近几年来我国国民生产总值增长率的变化情况统计图如图所示,从图中看,下列结论中正确的是()A.1995~2000年国民生产总值的年增长率逐渐降低B.2000年国民生产总值的年增长率逐渐降低C.这 7年中每年的国民生产总值不断增长D.这7年中每年的国民生产总值有增有减43.以下图形中,不是立体图形的是()A.正方体B.圆C.棱柱D.圆锥44.如图,以下四个图形中,∠1和∠2是对顶角的共有()A.0个B.l个C.2个D.3个45.A、B是平面上两点,AB=10 cm,P为平面上一点,若PA+PB=20 cm,则P点()A.只能在直线AB外 B.只能在直线AB上C.不能在直线AB上 D.不能在线段AB上46.三角形的三边长都是整数,并且唯一的最长边是5,则这样的三角形共有()A 1个 B.2个 C.3个 D.4个47.将如图所示的图案绕其中心旋转n°时与原图案完全重合,那么n的最小值是() A.60 B.90 C.120 D.18048.下列基本图形中,经过平移、旋转或轴对称变换后,不能得到最右边图的是()49.一道含有 A ,B ,C ,D 四个选项,某同学不会做,随手写了 A ,B ,C ,D 四个签,抽签决定选项,他恰好选对的概率是( ) A .12B .14C .1D .1350. 小明和小莉都出生于1998年12月份,他们的出生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期之和是22,那么小莉的出生日期是( ) A .15号B . 16号C .17号D .18号51.⊙O 的半径为6,⊙O 的一条弦AB 长为33 ,以3为半径的同心圆与AB 的位置关系是( ) A .相离B .相切C .相交D .无法确定52.如果不等式组731x x x n +<-⎧⎨>⎩的解集是4x >,那么n 的取值范围是( )A .4n ≥B .4n ≤C .4n =D .64n <53.如图,一块等边三角形的木板,边长为 1,现将木板沿水平线翻滚(如图),那么B 点从开始至结束所走过的路程长度为( )A .32π B .43πC .4D .322π+54.如图,已知 AB ⊥CD ,垂足为 0,以 0为圆心的三个同心圆中,最大一个圆的半径为22㎝,则以下图形中和图上阴影部分面积相等的是( )A 2cm 的圆 B 2的圆 C 2cm 的圆 D .半径是12cm 的圆55.圆锥的母线长为5cm ,高线长是4cm,则圆锥的底面积是( )A .3πcm 2B .9πcm 2C .16πcm 2D .25πcm 256.如图,A 、B 、C三点在⊙O 上,且∠AOB=80°,则∠ACB 等于( ) A .100°B .80°C .50°D .40°57.若73a b a b +=-,则ab 的值是( )A .73B .52C .25D .25-58.已知△ABC ∽△A 1B 1C 1,且△A 1B 1C 1∽△A 2B 2C 2,下列关于△ABC 与△A 2B 2C 2 关 系的结论正确的是( ) A .全等B .面积相等C .相似D .面积不相等59.如图,梯形 ABCD 中,AB ∥CD ,AC 与BD 交于0,下列结论正确的是( ) A .△AOD ∽△BOC B .△ACD ∽△BDC C . △ABD ∽△BACD . △AOB ∽△COD60.已知BC ∥DE ,则下列说法不正确的是( ) C . A. 两个三角形是位似图形 B .点A 是两个三角形的位似中心 C . AE :AD 是位似比 D . 点B 与点 D ,点 C 与点E 是对应位似点61.如图,点C 把线段AB 分成两条线段AC 和BC ,如果AC BCAB AC=,那么称线段AB 被点C 黄金分割,AC 与AB 的比叫做黄金比,其比值是( )A .512B .352-C 51+ D 35+ 62.如图,AB 是⊙O 的直径,CD ⊥AB 于E ,则下列结论:①BC= BD ;②AC= AD ;③ CE= DE ;④B = BE ·BA. 其中正确的有( )A BCA .1 个B .2 个C .3个D .4个63.如果α、β都是锐角,下面式子中正确的是( ) A .sin (α+β)=sin α+sin β B .cos (α+β)=21时,则α+β=600C .若α≥β时,则cos α≥cos βD .若cos α>sin β,则α+β>90064.对于抛物线21(5)33y x =--+,下列说法正确的是( ) A .开口向下,顶点坐标(53), B .开口向上,顶点坐标(53), C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-,65.如图,已知一坡面的坡度1:3i =,则坡角α为( )A .15B .20C .30D .4566. 文具盒中有 3 枝圆珠笔,2 枝铅笔, 1 枝钢笔,任取一枝,则是圆珠笔的概率是( ) A .12B .16C .13D .2367.如图,为了确定一条小河的宽度BC ,可在点C 左侧的岸边选择一点A ,使得AC ⊥BC ,若测得AC=a ,∠CAB=θ,则BC=( ) A .asinθB .acos θC .atan θD .θtan a68.如图,两圆有多种位置关系,图中不存在...的位置关系是( ) A .相交B .相切C .外离D .内含如图是一个正方体纸盒的平面展开图,每一个正方形内部都有一个单项式.当折成正方体后,“?”所表示的单项式与对面正方形上的单项式是同类项,则“?”所表示的单项式是( ) A .bB .cC .dD .e由6个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是( )A.主视图的面积最大B.左视图的面积最大.C.俯视图的面积最大D.三个视图的面积一样大71.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像 CD 的长()A.16cm B.13cm C.12cm D.1 cm72.一个四边形被灯光投影到屏幕上的影子()A.与原四边形全等 B.与原四边形相似C.与原四边形不一定相似 D.与原四边形各角对应相等73.如图,沿 AC 方向开山修路,为了加快施工进度,要在小山的另一边同时施工,从 AC 上的一点B,取ABD= 145°,BD= 500 米,D= 55°. 要使A、C、E成一直线,那么开挖点 E离点D的距离是()A.0500sin55米 B.500cos55o米 C.500tan55o米 D.500cot55o米74.由几个相同的小正方体搭成的几何体的视图如图所示,则搭成这个几何体的小正方体的个数是()A.4 个B.5 个C.6 个D.7 个75.如图,已知AB∥CD,AD与BC相交于点P,AB=4,CD=7,AD=10,则AP的长等于()A.4011B.407C.7011D.70476.如图,在等腰梯形ABCD中,AD∥BC,∠C=60°,则∠1=()A.30°B.45°C.60°D.80°77.样本数据3,6,a,4,2的平均数是5,则这个样本的方差是()A .8B .5C . 3D .2278.为筹备班级的迎春联欢会,班长对全班学生爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( )A .中位数B .平均数C .众数D .加权平均数79.下列不等式组的解,在数轴上表示为如图所示的是( ) A .1020x x ->⎧⎨+≤⎩ B .1020x x -≤⎧⎨+<⎩ C .1020x x +≥⎧⎨-<⎩ D .1020x x +>⎧⎨-≤⎩ 80.使式子4x -有意义且取得最小值的x 的取值是( )A .0B .4C .2D .不存在81.下列计算正确的是( )A .164=±B .32221-=C .2464÷=D .2632=⋅ 82.若x x x x -⋅-=--32)3)(2(成立,则x 的取值范围为( )A .x ≥2B .x ≤3C .2≤x ≤3D .2<x <383. 方程220x px q ++=有两个不相等的实根,则p ,q 满足的关系式是( )A .240p q ->B .20p q -≥C .240p q -≥D .20p q ->84.在□ABCD 中,对角线AC 与BD 相交于点0,那么能通过绕点0旋转达到重合的三角形有 ( )A .2对B .3对C 4对D .5对85.如图,△BDC 是将长方形纸片ABCD 沿对角线BD 折叠得到的,图中(包括实线、虚线在内)共有全等三角形( )A .3对B .4对C .5对D .6对86.下列语句中,属于命题的是 ( )A .直线AB 与CD 垂直吗B 过线段AB 的中点C 画AB 的垂线C .同旁内角不互补,两直线不平行D .连结A ,B 两点87.如图,A 、B 、C 是⊙O 上的三点,若∠BOC=2∠BOA ,则∠CAB 是∠ACB 的( )A.2 倍B.4 倍C.12D. 1倍88.平行四边形中一边的长为10cm,那么它的两条对角线的长度可能是()A.4cm和6cm B.20cm和30cm C.6cm和8cm D.8cm和12cm 89.如图,河旁有一座小山,从山顶A处测得河对岸点C的俯角为30,测得岸边点D的俯角为45,C D B,,在同一水平线上,又知河宽CD为50米,则山高AB是()A.50米 B.25米 C.25(31)米D.75米90.下列命题错误..的是()A.等腰梯形的两底平行且相等B.等腰梯形的两条对角线相等C.等腰梯形在同一底上的两个角相等D.等腰梯形是轴对称图形91.如图,将一张等腰直角三角形纸片沿中位线DE剪开后,可以拼成的四边形是()A.矩形或等腰梯形B.矩形或平行四边形C.平行四边形或等腰梯形D.矩形或等腰梯形或平行四边形92.如图,已知矩形ABCD 中,E,F分别是AP,RP 的中点,当 P在BC上从B 向C移动而R不动时,那么下列结论正确的是()A.线段EF的长不断增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定93.在美丽的南湖广场中心地带整修工程中,计划采用同一种正多边形地板砖铺设地面,在下面的地板砖:①正方形;②正五边形;③正六边形;④正八边形,能够铺满地面的地板砖的种数有()A.1种B.2种C.3种D.4种94.如图,直角坐标系中,△ABC的三个顶点都在小正方形的顶点上,则△ABC的面积为A .3 5B .3 5 +5C . 5D .595.用配方法解方程2420x x -+=,下列配方正确的是( )A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -= 96.下列说法正确的是( )A .汽车沿一条公路从A 地驶往B 地,所需的时间 t 与平均速度v 成正比例B .圆的面积S 与圆的半径R 成反比例C .当矩形的周长为定值时,矩形的长与宽成反比例D .当电器两端的电压V 为 220 V 时,电器的功率 P (W )与电阻 R (Ω)成反比例(功 电压的平方功率=电阻) 97.抛物线223y x x =++与坐标轴的交点个数是( )A .0 个B .1 个C .2个D .3 个 98.把抛物线226y x =-+平移后所得的新抛物线在 x 轴上截得的线段长为 2,则原抛物线应( )A . 向上平移 4 个单位B .向下平移4个单位C . 向左平移 4 个单位D .向右平移4 个单位99.抛物线y=(x -1)2+1的顶点坐标是( )A .(1,1)B .(-1,1)C .(1,-1)D .(-1,-1) 100.证明下列结论不能运用公理“同位角相等,两直线平行”的是 ( )A .同旁内角互补,两直线平行B .内错角相等,两直线平行C .对顶角相等D .平行于同一直线的两条直线平行【参考答案】***试卷处理标记,请不要删除一、选择题1.C2.B4.A 5.D 6.D 7.D 8.B 9.B 10.B 11.C 12.D 13.A 14.B 15.B 16.D 17.C 18.A 19.B 20.D 21.C 22.B 23.C 24.D 25.B 26.B 27.D 28.B 29.D 30.B 31.A 32.B 33.D 34.A 35.B 36.D38.D 39.C 40.C 41.A 42.C 43.B 44.B 45.D 46.D 47.C 48.C 49.B 50.D 51.A 52.B 53.B 54.B 55.B 56.D 57.B 58.C 59.D 60.C 61.A 62.D 63.B 64.A 65.C 66.A 67.C 68.A 69.D 70.C72.C 73.B 74.B 75.A 76.C 77.A 78.C 79.D 80.B 81.D 82.C 83.D 84.A 85.D 86.C 87.A 88.B 89.C 90.A 91.D 92.C 93.B 94.D 95.A 96.D 97.B 98.B 99.A 100.C。

2019年最新版初三中考数学模拟试卷及答案7277595

2019年最新版初三中考数学模拟试卷及答案7277595

中考数学模拟试卷及答案解析学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.计算326(3)m m ÷-正确的结果是( )A .3m -B .2m -C .2mD .3m2.设221P y y =++,21Q y =+,如果P Q >,那么必有( )A .0y >B .0y <C .0y ≥D .0y ≤3.掷一枚均匀的骰子,骰子停止转动后朝上一面的点数出现以下情况的概率最小的是( )A .偶数B .奇数C .比5小的数D .数6 4.下面计算中,能用平方差公式的是( ) A .)1)(1(--+a aB .))((c b c b +---C .)21)(21(-+y xD .)2)(2(n m n m +-5.下图中,正确画出△ABC 的 AC 边上的高的是 ( )A .B .C .D .6.下列计算正确的是( )A .(2a )3=6a 3B .a 2·a =a 2C .a 3+a 3=a 6D .(a 3)2=a 67.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB 的依据是( ) A .SSS B .SAS C .ASA D .AAS8.如图,OAB △绕点O 逆时针旋转80到OCD △的位置,已知45AOB ∠=,则AOD ∠等于( )A .55B .45C .40D .359.如图,将两根钢条AA ′、BB ′的中点O 连在一起,使AA ′、BB ′可以绕着点O 自由转动,就做成了一个测量工件,则A ′B ′的长等于内槽宽AB ,那么判定△OAB ≌△OA ′B ′的理由是( )A .边角边B .角边角C .边边边D .角角边 10.若))(3(152n x x mx x ++=-+,则m 的值为 ( )A .5-B .5C .2-D .211. 有一种足球是由 32块黑白相间的牛皮缝制而成的(如图),黑皮可看作正五边形,白皮可看作正六边形,设白皮有x 块,黑皮有y 块,则列出的方程组是( )A .323x y x y +=⎧⎨=⎩B .3235x y x y +=⎧⎨=⎩C .3253x y x y +=⎧⎨=⎩D .326x y x y+=⎧⎨=⎩12.下列多项式中,不能用提取公因式法分解因式的是( )A .()()p q p q p q -++B .2()2()p q p q +-+C .2()()p q q p ---D .3()p q p q +--13.如图,已知 AE=CF ,BE =DF.要证△ABE ≌△CDF ,还需添加的一个条件是( )A . ∠BAC=∠ACDB . ∠ABE=∠CDFC .∠DAC=∠BCAD . ∠AEB=∠CFD14.如图①,有 6 张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图③摆放,从中任意翻开一张是汉字“自”的概率是( )A .12B .13C .23D .1615.如图,在边长为a 的正方形上剪去一个边长为b 的小正方形(a b >),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是( )A .22()()a b a b a b -=-+B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .2()a ab a a b -=-16.下列各图中,正确画出△ABC的AC边上的高的是()A.B.C.D.17.如图,直线a、b被直线c所截,则么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠518.下列图形中,∠l与∠2不是同位角的是()A.B.C.D.19.已知等腰三角形的顶角为l00°,则该三角形两腰的垂直平分线的交点位于()A.三角形内部B.三角形的边上C.三角形外部D.无法确定20.如图,两条垂直相交的道路上,一辆自行车和一辆摩托车相遇后又分别向北、向东驶去.如果自行车的速度为2.5 m/s,摩托车的速度为10 m/s,那么10 s后,两车大约相距()A.55 m B.l03 m C.125 m D.153 m21.满足下列条件的△ABC,不是直角三角形的是()A.222b a c=-B.∠C=∠A一∠BC.∠A:∠B:∠C=3:4:5 D.a:b: c=12:13:522.下列条件中,不能判定两个直角三角形全等的是()A.一条直角边和一个锐角分别相等B.两条直角边对应相等C.斜边和一条直角边对应相等D.斜边和一个锐角对应相等23.如图表示的是组合在一起的模块,则它的俯视图是()A.B.C.D.24.白云商店购进某种商品的进价是每件8元,销售价是每件l0元(销售价与进价的差价2元就是卖出一件商品所获得的利润).现为了扩大销售量,把每件的销售价降低2%出售,但要求卖出一件商品所获得的利润是降价前所获得的利润的90%,则x应等于()A.1 B.1.8 C.2 D.1025.在△ABC中,如果∠A—∠B= 90°,那么△ABC是()A.直角三角形 B.钝角三角形 C.锐角三角形 D.锐角三角形或钝角三角形26.甲、乙两人参加某体育项目训练,为了便于研究,把最近五次训练成绩分别用实线和虚线连结,如图所示,下面结论错误的是()A.乙的第二次成绩与第五次成绩相同B第三次测试甲的成绩与乙的成绩相同C.第四次测试甲的成绩比乙的成绩多2分D.五次测试甲的成绩都比乙的成绩高27.已知样本数据:21,23,25,27,28,25,24,30,29,24,22,24,26,26,29,26,28,25,27,23.在列频率分布表时,若取组距为2,则落在24.5~26.5这组的频率是()A.O.3 B.0.4 C.0.5 D.0.628.下列说法:④如果“a、b、c为一组勾股数,那么4a、4b、4c仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是l2、25、21,那么此三角必是直角三角形;④一个等腰直角三角形的三边是a ,b ,c (a>b=c ),那么a 2 :b 2:c 2=2:1:1.其中正确的是( )A .①②B .①③C .①④D .②④29.一个数的绝对值是最小的正整数,那么这个数是( )A .0B .-1C .1D .1±30. 下列各式中,等号不成立的是( )A .|5|5-=B .|4||4|--=-C .|3|3-=D .|2|2--=31.一个数的绝对值是正数,则这个数是( )A .不等于0 的有理数B .正数C .任何有理数D .非负数32.计算11(3)()333⨯-÷-⨯等于( )A .1B .9C .-3D . 27 33.下列计算结果为负数的是( )A .3-B .3--||C .2(3)-D .3(3)--34.下列命题中①带根号的数是无理数;②无理数是开不尽方的数;③无论x 取什么值,④绝对值最小的实数是零.正确的命题有( )A .1 个B .2 个C .3 个D . 4 个35.在实数范围内,下列说法中正确的是( )A . 若x y =,则x y =B . 若x y >,则22x y >C .若2x =,则x y =D x y =36.若25x a b 与30.2y a b -是同类项,则 x 、y 的值分别是( )A .3x =±,2y =±B .3x =,2y =C .3x =-,2y =-D .3x =,2y =- 37.当25x >时,分式|25|52x x --的值是( ) A .-1 B .0 C .1 D .2338.按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为656,则满足条件的x 的不同值最多有 ( )A.2个B.3个C.4个D.5个39.小明和爸爸妈妈三人玩跷跷板,爸爸坐在跷跷板的一端,小明和妈妈一同坐在跷跷板的另一端,他们都不用力时,爸爸那端着地,已知爸爸的体重为 70 kg,妈妈的体重为 50 kg,那么小明的体重可能是()A.l8kg B.22 kg C.28 kg D.30 kg40.用扇形统计圆统计全县50万人口的民族构成比例,其中表示少数民族的扇形的圆心角为 90°,则在这个县中,少数民族有()A.12.5万人B.13万人C.9万人D.10万人41.下列物体的形状,类似于圆柱的个数是()①篮球②书本③标枪头④罐头⑤水管A.1个B.2个C.3个D.4个42.钝角减去锐角所得的差是()A.锐角B.直角C.钝角D.都有可能43.如图,∠1=15°,∠AOC=90°,B、O、D三点在一直线上,则∠l的余角的补角是()A.15°B.75°C.105°D.165°44.4条直线相交于同一点,对顶角的对数是()A.6对B.8对C.10对D.12对45.数轴上表示-2.2的点在()A.-1与-2之间B.-3与-2之间C. 2与3之间D.1 与2之间46.一个两位数,若十位上的数字为x,个位上的数字比十位上的数字小1,则这个两位数为()A.21x-B.111x-C.1110x-29x+47.如图所示,把三个相同的宽为l cm、长为2 cm的长方形拼成一个长为3 cm、宽为2 cm的长方形ABGH,分别以B,C两点为圆心,2 cm长为半径画弧AE和弧DG,则阴影部分的面积是()A.34πcm2 B.32πcm2 C.2cm2 D.(4)2π-cm248.下列事件中,确定事件的个数是( )①下周日是晴天;③人没有氧气就会窒息而死;③三角形的面积=12底×高;④掷一 枚硬币,正面朝上.A .1 个B .2 个C .3 个D .4 个49.一个三角形的三边长分别是5,6,7,另一个三角形和它是相似图形,其最长边长为10.5,则另一个三角形的周长是( )A .18B .23C .27D .2950.一根长为3.8 m 的铁丝被分成两段,各围成一个正方形和长方形,已知正方形的边长比长方形的长少0.1 m ,长方形的长和宽之比为2:1,则正方形和长方形的面积分别是 ( )A .2.5 m 2和1.8 m 2B .0.25 m 2和0.18 m 2C .1.6 m 2和2 m 2D .0.16 m 2 和0.2 m 251.已知OA 垂直于直线l 于点A ,OA =3,⊙O 的半径为2,若将直线l 沿AO 方向平移,使直线l 与⊙O 相切,则平移距离可以是( )A .1B .5C .2D .1或552.与如图所示的三视图相对应的几何体是( )A .B .C .D .53.函数1y x=-的图象与坐标轴交点个数是( ) A .2 个B .1个C . 0个D .无法确定 54.抛物线2255y x x =++与坐标轴的交点个数是( )A .O 个B .1个C . 2个D .3 个55.一种花边是由如图的弓形组成的,弧ACB 的半径为 5,弦 AB=8,则弓高 CD 为( )A .2B .52C .3D .16356.下列图形中的角是圆周角的是( )57.如图,A 、B 、C 是⊙O 上三点,∠AOB= 50°,则∠ACB= ( )A .25°B .50°C .30°D .100°58. 如图,四边形 EFGD 是△ABC 的内接矩形,已知高线 AH 长 8 ㎝,底边 BC 长 10cm ,设 DG=x (cm ) , DE=y ( cm ) ,那么y 与x 的函数关系式为( )A .45y x =B .54y x =C .485y x =-D .584y x =-59.如图,已知点 P 是△ABC 的边 AB 上一点,且满足△APC ∽△ACB ,则下列的比例式:①AP AC PC CB =;②AC AB AP AC=;③PC AC PB AP =;④AC PC AB PB =.其中正确的比例式的序号是( ) A . ①② B .③④ C .①②③ D . ②③④60.已知3x =4y ,则yx =( ) A .34 B .43 C .43- D .以上都不对61.如果三角形的每条边都扩大为原来的5倍,那么三角形的每个角( )A.扩大为原来的5倍B.扩大为原来的10倍C.都扩大为原来的25倍D.与原来相等62.菱形的两条对角线的长分别是6和8 ,则这个菱形的周长是( )A .24B .20C .10D .5B 63.如图:点A 、B 、C 都在⊙O 上,且点C 在弦AB 所对的优弧上,若72AOB ∠=︒,则ACB ∠的度数是( )A .18°B .30°C .36°D .72°64.如图,在菱形ABCD 中,E 、F 、G 、H 分别是菱形四边的中点,连结EG 与FH 交于点O ,则图中的菱形共有( )A .4个B .5个C .6个D .7个65.O 于D ,E ,F ,若∠A=50°,则∠DEF=( )A .65B .50°C .130°D .80°66.C 落在 AB 上的点E 处,已知 BC=12,∠ )A .6B .4C .3D .267.在 Rt △ABC 中,∠C= 90°,若2cos 3A =,则sinA 的值为( ) A .35BCD 68.在 Rt △ABC 中,∠C=90°,a 、b 、c 分别为BC 、AC 、AB 所对的边,a=,b= )A .tan A =B . c =.∠B=60° D .cos sin 1A B +=69.一个飞镖盘由两个同心圆 (如图所示)组成,两圆的半径之比为 1:2,任意投掷一个飞镣,击中B 区的概率是击中A 区概率的( )A .2 倍B . 3 倍C . 4 倍D .6 倍70.从 1、2、3、4、5 中任取两个不同的数字,构成一个两位数大于 50 的概率为( )A .45 B .35 C .15 D .2571.如图,两个转盘进行“配紫色”游戏,配得紫色的概率是( )A .14B .17C .18D .11672.下列成语所描述的事件是必然事件的是( ) A .水中捞月B .拔苗助长C .守株待兔D .瓮中捉鳖 73.已钝角三角形三边长分别为 a 、b 、c (a>b> c ),外接圆半径和内切圆半径分别为 R 、r , 则能盖住这个三角形的圆形纸片的最小半径是( )A .RB .rC .2a D .2c 74.如图,PA 切⊙O 于A ,PO 交⊙O 于B ,若PA=6,PB=4,则⊙O 的半径是( ) A .52 B .56 C .2 D .575.在下列四个函数的图象中,函数y 的值随x 值的增大而减少的是( )76.下列四句话中不是定义的是( )A .三角形的任何两边之和大于第三边B .三条线段首尾顺次连结而成的图形叫做三角形C .从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离D .有一个角是直角的三角形叫做直角三角形77.如图,直线12x y =与23y x =-+相交于点A ,若12y y <,那么( ) A .2x > B .2x < C .1x > D .1x <78.在①正方形;②矩形;③菱形;④平行四边形中,能找到一点,使这一点到各边距离相等的图形是( )A .①②B .②③C .①③D .③④79.在平面直角坐标系中,点P 的坐标为(0,-3),则点P 在( )A .x 轴上B .y 轴上C .坐标原点D .第一象限80.如图,已知一次函数y kx b =+的图象,当x<0时,y 的取值范围是 ( )A .y>0B .y<OC .-2<y<OD .y<-281.若等腰三角形底角为72°,则顶角为( )A .108°B .72°C .54°D .36°82.小明向大家介绍自己家的位置,其表述正确的是( )A .在学校的正南方向B .在正南方向300米处C .距学校300米处D .在学校正南方向300米处83.计算22(2(2-的结果是( )A .0B .-C .12D . 84. 将方程2440y y ++=的左边配成完全平方后得( )A .2(4)0y +=B .2(4)0y -=C .2(2)0y +=D .2(2)0y -=85. 下列各方程中,无解的是( )A 1-B .3(2)10x -+=C .210x -=D .21x x =- 86. 已知222y y +-的值为 3,则2421y y ++的值为( )A .1OB .11C .10 或 11D .3 或 1187.已知在正方形网格中,每个小方格都是边长为 1 的正方形,A ,B 两点在小方格的顶点上,位置如图所示,点 C 也在小方格的顶点上,且以A ,B ,C 为顶点的三角形面积为1,则点C 的个数为( )A .3个B .4个C . 5个D .6个88.三角形的两边长分别为3和6,第三边的长是方程x 2-6x +8=0的一个根,则这个三角形的周长是( )A .9B .11C .13D .11或1389.若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有 ( )A .5桶B .6桶C .9桶D .12桶90.下列语句中,正确的是 ( )A .面积相等的两个三角形是全等三角形B .三边对应相等的两个三角形全等C .全等的两个三角形是轴对称图形D .以上说法都不对91.将两个全等的三角形按不同的形式拼成的各种四边形中,平行四边形最多有( )A .4个B .3个C .2个D .1个 92.下列各命题的逆命题不成立的是( )A .两直线平行,内错角相等B .若两个数的绝对值相等,则这两个数也相等C .全等三角形的对应边相等D .如果a b =,那么22a b =93.已知样本10,8,6,10,8,13,11,10,12,7,9,8,12,9,11,12,9,10,11,10,那么在频数分布表中,频率为0.2的组是( )A .5.5~11.5B .7.5~9.5C .9.5~11.5D .11.5~13.594.如图,在□ABCD 中,对角线AC 、BD 交于点O ,则图中全等三角形的对数有( )A .2B .4C .6D .895.已知O 为□ABCD 对角线的交点,且△AOB 的面积为1,则□ABCD 的面积为( )A .1B .2C .3D .496.如图,点0为□ABCD 的两条对角线的交点,E ,F 分别为 OA ,OC 的中点,则图中全等三角形有( )A . 3对B . 4对C .6对D .7对97.直角梯形的一腰长为l0 cm ,这条腰与底所成的角为30°,则它的另一腰长为 ( )A .2.5 cmB .5 cmC .10 cmD .15 cm98.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若OA =2,则BD 的长为( )A .4B .3C .2D .199.如图,将矩形ABCD 纸片沿对角线BD 折叠,使点C 落在C '处,BC '交AD 于E ,若∠DBC=22.5°,则在不添加任何辅助线的情况下,图中45°的角(虚线也视为角的边)有( )A .6个B .5个C .4个D .3个100.把方程)2(5)2(-=+x x x 化成一般式,则a 、b 、c 的值分别是( )A .10,3,1-B .10,7,1-C .12,5,1-D .2,3,1【参考答案】***试卷处理标记,请不要删除一、选择题1.B2.A3.D4.B5.C6.D7.A8.D9.A10.C11.B12.A13.D14.A15.A16.C17.C18.C19.C20.B21.C23.A 24.C 25.B 26.D 27.A 28.C 29.D 30.D 31.A 32.B 33.B 34.B 35.D 36.B 37.C 38.C 39.A 40.A 41.B 42.D 43.C 44.D 45.B 46.B 47.C 48.B 49.C 50.B 51.D 52.A 53.C 54.B 55.A57.A 58.C 59.A 60.A 61.D 62.B 63.C 64.B 65.A 66.B 67.D 68.D 69.B 70.C 71.C 72.D 73.A 74.A 75.C 76.A 77.B 78.C 79.B 80.D 81.D 82.D 83.B 84.C 85.A 86.B 87.D 88.C 89.B91.B 92.D 93.D 94.B 95.D 96.D 97.B 98.A 99.B 100.A。

2019届九年级数学 中考模拟试卷含解析

2019届九年级数学 中考模拟试卷含解析

2019届浙教版九年级中考数学模拟试卷含解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)a、b、c为非零有理数,它们的积必为正数的是()A.a>0,b、c同号B.b>0,a、c异号C.c>0,a、b异号D.a、b、c同号2.(3分)如图,某居民楼由相同户型的若干个楼房组成,该楼的三视图如图所示,试问该楼最多能建楼房个数是()A.8 B.9C.10 D.113.(3分)已知5+的整数部分为a,5﹣的小数部分为b,则a+b的值为()A.10 B.2C.﹣12 D.12﹣4.(3分)若7名同学的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的中位数是()A.43 B.44 C.45D.475.(3分)如图,PA,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠PAO=∠PBO=90° B.OP平分∠APBC.PA=PB D.∠AOB=6.(3分)已知|b﹣4|+(a﹣1)2=0,则的平方根是()A.B.C.D.7.(3分)已知△ABC(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形ABCD是平行四边形的依据是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形8.(3分)如图,半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴交⊙A 于点B(点B在点A的右侧),当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为()A.y=(x﹣4)2﹣1 B.y=(x﹣3)2C.y=(x﹣2)2﹣1 D.y=(x﹣3)2﹣29.(3分)如图,E、F是正方形ABCD边AD上的两个动点且AE=DF,连接CF交BD于点G,连接BE交AG于点H.若正方形ABCD的边长为2,则线段DH长度的最小值为()A.﹣1 B.C.D.10.(3分)如图,在平面直角坐标系中,过点O的直线AB交反比例函数y=的图象于点A,B,点C在反比例函数y=(x>0)的图象上,连结CA,CB,当CA=CB且cos∠CAB=时,k1k2应满足的数量关系是()A.k2=2k1B.k2=﹣2k1C.k2=4k1D.k2=﹣4k1二.填空题(共6小题,满分24分,每小题4分)11.(4分)分解因式:16m2﹣4=.12.(4分)要使分式有意义,则字母x的取值X围是.13.(4分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.14.(4分)反比例函数y=(2m﹣1)x|m|﹣2,当x>0时,y随x的增大而增大,则m=.15.(4分)在平面直角坐标系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a ﹣4,a+3),C为该直角坐标系内的一点,连结AB,OC,若AB∥OC且AB=OC,则点C 的坐标为.16.(4分)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=.三.解答题(共8小题,满分66分)17.(6分)(1)解不等式组:并在数轴上表示其解集.(2)计算:++.18.(6分)先化简,再求值:(x+y)(x﹣y)﹣(x﹣y)2﹣y(x﹣2y),其中x=2018,y=19.(6分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且满足tan∠ACB=;(2)在图中画出平行四边形ABDE,使点D和点E均在小正方形的顶点上,且面积为8,连接CE,请直接写出线段CE的长.20.(8分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.21.(8分)截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是,所对应的圆心角是度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?22.(10分)如图,河流的两岸PQ、MN互相平行,河岸MN上有一排间隔为50米的电线杆C、D、E、…,某人在河岸PQ的A处测得∠DBQ=45°,求河流的宽度(结果精确到0.1米).参考值:;.23.(10分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.24.(12分)甲骑自行车从M地出发沿一条公路匀速前往N地,乙骑自行车从N地出发沿同一条公路匀速前往M地,已知乙比甲晚出发0.5小时且先到达目的地.设甲行驶的时间为t(h),甲乙两人之间的路程为y(km),y与t的函数关系如图1所示,请解决以下问题:(1)写出图1中点C表示的实际意义并求线段BC所在直线的函数表达式.(2)①求点D的纵坐标.②求M,N两地之间的距离.(3)设乙离M地的路程为s乙(km),请直接写出s乙与时间t(h)的函数表达式,并在图2所给的直角坐标系中画出它的图象.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)a、b、c为非零有理数,它们的积必为正数的是()A.a>0,b、c同号B.b>0,a、c异号C.c>0,a、b异号D.a、b、c同号【分析】根据题意,利用有理数的乘法法则判断即可.【解答】解:a,b,c为非零有理数,它们的积必为正数的是a>0,b与c同号.故选:A.【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.2.(3分)如图,某居民楼由相同户型的若干个楼房组成,该楼的三视图如图所示,试问该楼最多能建楼房个数是()A.8 B.9 C.10 D.11【分析】根据已知中三视图,由正视图和侧视图可判断该楼的层数,进而解答即可.【解答】解:由主视图和左视图发现该楼一共有三层,房子的最多间数见俯视图:2+2+2+3+1=10,故选:C.【点评】此题考查了由三视图判断几何体的知识,解题的关键是根据主视图和左视图中小长方形的层数确定楼的层数.3.(3分)已知5+的整数部分为a,5﹣的小数部分为b,则a+b的值为()A.10 B.2C.﹣12 D.12﹣【分析】首先得出的取值X围,进而分别得出a,b的值进而得出答案.【解答】解:∵3<<4,∴8<5+<9,1<5﹣<2,∴5+的整数部分为a=8,5﹣的小数部分为b:5﹣﹣1=4﹣,∴a+b=12﹣.故选:D.【点评】此题主要考查了估算无理数的大小,正确得出无理数接近的整数是解题关键.4.(3分)若7名同学的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的中位数是()A.43 B.44 C.45 D.47【分析】先将题中的数据按照从小到大的顺序排列,然后根据中位数的概念求解即可.【解答】解:把这些数从小到大排列为:40,42,43,45,47,47,58,最中间的数是45,故这组数据的中位数是45.故选:C.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(3分)如图,PA,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠PAO=∠PBO=90° B.OP平分∠APBC.PA=PB D.∠AOB=【分析】根据切线的性质、切线长定理判断即可.【解答】解:∵PA,PB分别与⊙O相切于点A,B,∴∠PAO=∠PBO=90°,OP平分∠APB,PA=PB,则A、B、C正确,不符合题意;∠AOB的度数与的度数相等,D错误,符合题意;故选:D.【点评】本题考查的是切线的性质,掌握切线长定理是解题的关键.6.(3分)已知|b﹣4|+(a﹣1)2=0,则的平方根是()A.B.C. D.【分析】根据非负数的性质列式求出a、b的值,再代入代数式求出,然后根据平方根的定义解答即可.【解答】解:根据题意得,b﹣4=0,a﹣1=0,解得a=1,b=4,所以,=,∵(±)2=,∴的平方根是±.故选:A.【点评】本题考查了平方根的定义,非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.7.(3分)已知△ABC(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形ABCD是平行四边形的依据是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形【分析】根据平行四边形的判定和作图依据进行判断即可.【解答】解:由图可知先作AC的垂直平分线,再连接AC的中点O与B点,并延长使BO=OD,可得:AO=OC,BO=OD,进而得出四边形ABCD是平行四边形,故选:D.【点评】本题考查了复杂的尺规作图,解题的关键是根据平行四边形的判定解答.8.(3分)如图,半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴交⊙A 于点B(点B在点A的右侧),当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为()A.y=(x﹣4)2﹣1 B.y=(x﹣3)2C.y=(x﹣2)2﹣1 D.y=(x﹣3)2﹣2【分析】根据题意和平移的特点,可以求得点BB随之运动得到的图象的函数表达式,从而可以解答本题.【解答】解:∵半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴,∴当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为:y=(x﹣3﹣1)2﹣1=(x﹣4)2﹣1,故选:A.【点评】本题考查二次函数图象上点的坐标特征、平移的性质,解答本题的关键是明确点B 是点A向右平移一个单位长度的对应点.9.(3分)如图,E、F是正方形ABCD边AD上的两个动点且AE=DF,连接CF交BD于点G,连接BE交AG于点H.若正方形ABCD的边长为2,则线段DH长度的最小值为()A.﹣1 B.C.D.【分析】延长AG交CD于M,如图1,可证△ADG≌△DGC可得∠GCD=∠DAM,再证△ADM ≌△DFC可得DF=DM=AE,可证△ABE≌△ADM,可得H是以AB为直径的圆上一点,取AB 中点O,连接OD,OH,根据三角形的三边关系可得不等式,可解得DH长度的最小值.【解答】解:延长AG交CD于M,如图1∵ABCD是正方形∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC∵AD=CD,∠ADB=∠BDC,DG=DG∴△ADG≌△DGC∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC∴△ADM≌△CDF∴FD=DM且AE=DF∴AE=DM且AB=AD,∠ADM=∠BAD=90°∴△ABE≌△ADM∴∠DAM=∠ABE∵∠DAM+∠BAM=90°∴∠BAM+∠ABE=90°,即∠AHB=90°∴点H是以AB为直径的圆上一点.如图2,取AB中点O,连接OD,OH∵AB=AD=2,O是AB中点,∴AO=1=OH,在Rt△AOD中,OD==∵DH≥OD﹣OH∴DH≥﹣1∴DH的最小值为﹣1故选:A.【点评】本题考查正方形的性质,全等三角形的判定和性质,勾股定理,关键是证点H是以AB为直径的圆上一点.10.(3分)如图,在平面直角坐标系中,过点O的直线AB交反比例函数y=的图象于点A,B,点C在反比例函数y=(x>0)的图象上,连结CA,CB,当CA=CB且cos∠CAB=时,k1k2应满足的数量关系是()A.k2=2k1B.k2=﹣2k1C.k2=4k1D.k2=﹣4k1【分析】如图连接OC,作AH⊥x轴于H,CJ⊥x轴于J.只要证明△AOH∽△OCJ,可得=()2,推出=,由此即可解决问题;【解答】解:如图连接OC,作AH⊥x轴于H,CJ⊥x轴于J.∵CA=CB,OA=OB,∴CO⊥AB,∵cos∠CAB==,设AO=k,AC=5k,则OC=2k,∴OC=2OA,∵∠AHO=∠CJO=∠AOC=90°,∴∠AOH+∠COJ=90°,∠COJ+∠OCJ=90°,∴∠AOH=∠OCJ,∴△AOH∽△OCJ,∴=()2,∴=,∴k2=﹣4k1,故选:D.【点评】本题考查反比例函数图象上的点的特征,解直角三角形、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.二.填空题(共6小题,满分24分,每小题4分)11.(4分)分解因式:16m2﹣4= 4(2m+1)(2m﹣1).【分析】原式提取4,再利用平方差公式分解即可.【解答】解:原式=4(4m2﹣1)=4(2m+1)(2m﹣1),故答案为:4(2m+1)(2m﹣1)【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.(4分)要使分式有意义,则字母x的取值X围是x≠﹣3 .【分析】根据分母不能为零,可得答案.【解答】解:由题意,得x+3≠0,解得x≠=﹣3,故答案为:x≠﹣3.【点评】本题考查了分是有意义的条件,利用分母不能为零得出不等式是解题关键.13.(4分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵红灯亮30秒,黄灯亮3秒,绿灯亮42秒,∴P(红灯亮)==,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.(4分)反比例函数y=(2m﹣1)x|m|﹣2,当x>0时,y随x的增大而增大,则m= ﹣1 .【分析】根据反比例函数的一般形式,可以得到x的次数是﹣1;根据当x>0时,y随x的增大而增大,可以得到比例系数是负数,即可求得.【解答】解:根据题意得:,解得:m=﹣1.故答案为﹣1【点评】本题考查了反比例函数的一般形式以及反比例函数的性质,正确理解函数的性质是关键.15.(4分)在平面直角坐标系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a ﹣4,a+3),C为该直角坐标系内的一点,连结AB,OC,若AB∥OC且AB=OC,则点C 的坐标为(﹣4,3)或(4,﹣3).【分析】设点C的坐标为(x,y),由AB∥OC、AB=OC以及点A、B的坐标,即可求出点C的坐标.【解答】解:依照题意画出图形,如图所示.设点C的坐标为(x,y),∵AB∥OC且AB=OC,∴或,解得:或,∴点C的坐标为(﹣4,3)或(4,﹣3).故答案为:(﹣4,3)或(4,﹣3).【点评】本题考查了平行线的性质以及两点间的距离公式,依照题意画出图形,利用数形结合解决问题是解题的关键.16.(4分)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD= 3+2.【分析】设AD=x,则AB=x+2,利用折叠的性质得DF=AD,EA=EF,∠DFE=∠A=90°,则可判断四边形AEFD为正方形,所以AE=AD=x,再根据折叠的性质得DH=DC=x+2,则AH=AE﹣HE=x﹣1,然后根据勾股定理得到x2+(x﹣1)2=(x+2)2,再解方程求出x即可.【解答】解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,∴AH=AE﹣HE=x﹣1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x﹣1)2=(x+2)2,整理得x 2﹣6x﹣3=0,解得x1=3+2,x2=3﹣2(舍去),即AD的长为3+2.故答案为3+2.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.三.解答题(共8小题,满分66分)17.(6分)(1)解不等式组:并在数轴上表示其解集.(2)计算:++.【分析】(1)分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来;(2)根据分式的加减法的法则计算即可.【解答】解:(1)解不等式2x<5,得:x<,解不等式3(x+2)≥x+4,得:x≥﹣1,∴不等式组的解集为:﹣1≤x<,将不等式解集表示在数轴上如图:,(2)++=﹣+==.【点评】本题考查的是分式的加减法,解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(6分)先化简,再求值:(x+y)(x﹣y)﹣(x﹣y)2﹣y(x﹣2y),其中x=2018,y=【分析】根据平方差公式、完全平方公式和单项式乘多项式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:原式=x2﹣y2﹣(x2﹣2xy+y2)﹣xy+2y2=x2﹣y2﹣x2+2xy﹣y2﹣xy+2y2=xy,当x=2018,y=时,原式=2018×=1.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的方法.19.(6分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且满足tan∠ACB=;(2)在图中画出平行四边形ABDE,使点D和点E均在小正方形的顶点上,且面积为8,连接CE,请直接写出线段CE的长.【分析】(1)根据等腰三角形的定义和正切函数的定义确定点C位置,据此连接三顶点即可得;(2)根据平行四边形的定义作图可得.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,▱ABCD即为所求,CE==.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握等腰三角形、平行四边形及正切函数的定义、勾股定理.20.(8分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.【分析】(1)根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得证;(2)由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.【解答】(1)证明:∵CE∥DB,BE∥DC,∴四边形DBEC为平行四边形.又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,∴CD=BD=AC,∴平行四边形DBEC是菱形;(2)∵点D,F分别是AC,AB的中点,AD=3,DF=1,∴DF是△ABC的中位线,AC=2AD=6,S△BCD=S△ABC∴BC=2DF=2.又∵∠ABC=90°,∴AB===4.∵平行四边形DBEC是菱形,∴S 四边形DBEC=2S△BCD=S△ABC=AB•BC=×4×2=4.【点评】考查了菱形的判定与性质,三角形中位线定理,直角三角形斜边上的中线以及勾股定理,熟练掌握相关的定理与性质即可解题,难度中等.21.(8分)截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是200 ;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是15% ,所对应的圆心角是54 度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?【分析】(1)由30除以其所占的比例,即可求出样本容量;(2)用样本容量减去A、C、D、E的数据,即可求出喜欢给别人评论的人数,再补全条形统计图即可;(3)观察扇形统计图,用1减去其它各部分所占比例,即可求出“学生”所占比例,再用其乘360°即可得出结论;(4)利用总体×学生所占比例×喜欢给别人评论的人数÷样本容量,即可求出结论.【解答】解:(1)由题意可得:30÷15%=200.故答案为:200;(2)200﹣70﹣40﹣10=50(人),补全条形统计图,如图所示.(3)1﹣40%﹣32%﹣13%=15%,15%×360°=54°.故答案为:15%;54.(4)200000×15%×=10500(人).答:其中喜欢“给别人点赞”的学生大约有10500人.【点评】本题考查了条形统计图、全面调查和抽样调查、总体、个体、样本、样本容量、用样本估计总体以及扇形统计图,解题的关键是:(1)用喜欢“转发内容”的人数÷其所占样本容量的比例求出样本容量;(2)用样本容量减去A、C、D、E的数据,求出喜欢给别人评论的人数;(3)根据扇形统计图,列式计算;(4)根据数量关系,列式计算.22.(10分)如图,河流的两岸PQ、MN互相平行,河岸MN上有一排间隔为50米的电线杆C、D、E、…,某人在河岸PQ的A处测得∠DBQ=45°,求河流的宽度(结果精确到0.1米).参考值:;.【分析】应合理应用∠CAQ的度数,CD的长度,所以过点D作CA的平行线得到平行四边形.过点D向对边引垂线,得到直角三角形,进而利用三角函数值求得河宽.【解答】解:过D作DH∥CA交PQ于H,过D作DG⊥PQ,垂足为G,(4分)∵PQ∥MN,DH∥CA∴四边形CAHD是平行四边形.∴AH=CD=50,∠DHQ=∠CAQ=30°(5分)在Rt△DBG中,∵∠DBG=∠BDG=45°,∴BG=DG,设BG=DG=x,在Rt△DHG中,得HG=x,(6分)又BH=AB﹣AH=110﹣50=60,∴60+x=x,∴x=30+30≈82.0(米).答:河流的宽为82.0米.(7分)【点评】本题考查解直角三角形的应用.难点是作出辅助线,利用三角函数求解.23.(10分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.【分析】(1)连接OA,证明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明△CDF∽△AOF,根据相似三角形的性质得到CD=CE,根据等腰三角形的性质证明.【解答】(1)证明:连接OA,由圆周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,∵BD是直径,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切线;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=6.在Rt△ABD中,AB=6,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)证明:由(2)知,OA是△BDE的中位线,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴==,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,∴CH=HE=CE,∴CD=CH,∴CD=DH.【点评】本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.24.(12分)甲骑自行车从M地出发沿一条公路匀速前往N地,乙骑自行车从N地出发沿同一条公路匀速前往M地,已知乙比甲晚出发0.5小时且先到达目的地.设甲行驶的时间为t(h),甲乙两人之间的路程为y(km),y与t的函数关系如图1所示,请解决以下问题:(1)写出图1中点C表示的实际意义并求线段BC所在直线的函数表达式.(2)①求点D的纵坐标.②求M,N两地之间的距离.(3)设乙离M地的路程为s乙(km),请直接写出s乙与时间t(h)的函数表达式,并在图2所给的直角坐标系中画出它的图象.【分析】(1)根据图象坐标求出BC解析式;(2)①根据(1)中函数关系式,求点D坐标;②根据图象求出甲乙两车速度,计算MN距离;(3)由②中乙的速度列出s乙与时间t(h)的函数表达式,并画图象.【解答】解:(1)根据图象,点C表示甲行驶1.5小时时,甲乙两车相遇.设直线BC的函数解析式为:y=kt+b把B(0.5,60),D(1.5,0)解得∴BC解析式为:y=﹣60t+90(2)①把t=2.25代入y=﹣60t+90y=﹣60×2.25+90=45∴点D坐标为(2.25,45)②设甲的速度为akm/h,乙的速度为bkm/h由题意得∴∴MN之间距离为:3.5×20=70km(3)乙离M地的路程为s乙=70﹣40t【点评】本题为一次函数实际应用问题,考查一次函数图象的实际意义,待定系数法求函数关系式和二元一次方程组.。

2019中考数学模拟试题含答案(精选5套)

2019中考数学模拟试题含答案(精选5套)

2019年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. ) 1. 2 sin 60°的值等于( ) A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在( )A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为( )A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整圆弧 角 扇形菱形等腰梯形A. B. C. D.(第9题图)(第11题图)(第7题图)个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 .15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单 位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角 边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22nm m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x +1. ……②(第17题图)(第18题图)°痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°.小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF = 1米,从E 处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N.(第23题图)(1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.2018年初三适应性检测参考答案与评分意见一、选择题(第24题图)(第26题图)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2018年中考数学模拟试题(二)姓名---------座号---------成绩-----------一、选择题1、 数1,5,0,2-中最大的数是( ) A 、1- B 、5 C 、0 D 、22、9的立方根是( )A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=( )A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是( ) A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是( )A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( ) A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( ) A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形8、不等式组302x x +>⎧⎨-≥-⎩的整数解有( )A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是( )A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( )A 、5B 、2.4C 、2.5D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2019年最新版初三中考数学模拟试卷及答案6869257

2019年最新版初三中考数学模拟试卷及答案6869257

中考数学模拟试卷及答案解析学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.已知方程3233x x x=---有增根,则这个增根一定是( ) A .2x =B .3x =C .4x =D .5x =2.底面是n 边形的直棱柱棱的条数共有( ) A .2n +B .2nC .3nD .n3.某班买电影票 55 张,共用了 85 元,其中甲种票每张2元,乙种票每张1元,设甲、乙两种票分别买了 x 张和y 张,则可列出方程组为( ) A . 55285x y x y +=⎧⎨+=⎩B . 55201085x y x y +=⎧⎨+=⎩ C . 25585x y x y +=⎧⎨+=⎩D . 55285x y x y +=⎧⎨+=⎩4. 用代数式表示“x 的相反数的 4 次幂的 3 次方”,答案是( ) A .43()x -B . 43[()]x -C . 34[()]x -D .34()x -5.下列多项式的运算中正确的是( ) A .222()x y x y -=-B .22(2)(22)24a b a b a b ----C . 11(1)(1)1222l a b ab +-=-D .2(1)(2)2x x x x +-=--6.下列各组多项式中,没有公因式的一组是( ) A .ax bx -与by ay -B .268xy y +与43y x --C .ab ac -与ab bc -D .3()a b y -与2()b a x -7.下列多项式中,不能用提取公因式法分解因式的是( )A .()()p q p q p q -++B .2()2()p q p q +-+C .2()()p q q p ---D .3()p q p q +-- 8. 在△ABC 中,∠A =30°,∠B =50°,则∠C 的外角=( ) A .60°B .80°C .100°D .120°9.某市气象预报称:“明天本市的降水概率为70%”,这句话指的是( ) A .明天本市70%的时间下雨,30%的时间不下雨 B .明天本市70%的地区下雨,30%的地区不下雨 C .明天本市一定下雨D .明天本市下雨的可能性是70%10.若220a b a b x y -+--=是二元一次方程,那么a 、b 的值分别是( ) A .1,0B .0,-1C .2,1D .2,-311.如图,AD 、AE 分别是△ABC 的高和角平分线,∠DAE=20°,∠B=65°,则∠C 等于( ) A .25°B .30°C .35°D .40°12.如图所示,A ,B 是数轴上的两点,C 是AB 的中点,则0C 等于( )A .34OBB .1()2OB OA -C .1()2OA OB +D .以上都不对13. 用加减法解方程组2333211x y x y +=⎧⎨-=⎩时,有下列四种变形,其中正确的是( )A .4639611x y x y +=⎧⎨-=⎩B .6396222x y x y +=⎧⎨-=⎩C .4669633x y x y +=⎧⎨-=⎩D .6936411x y x y +=⎧⎨-=⎩14.如图所示,在4×4的正方形网格中,∠l ,∠2,∠3的大小关系是( ) A .∠l>∠2>∠3 B .∠1=∠2>∠3 C .∠l<∠2=∠3D .∠l=∠2=∠315.如图放置着含30°的两个全等的直角三角形ABC 和EBD ,现将△EBD 沿BD 翻折到△E ′BD 的位置,DE ′与AC 相交于点F ,则∠AFD 等于( ) A .45°B .30°C .20°D .15°16.用小数表示2310-⨯的结果是( )A .-0.03B . -0.003C . 0.03D . 0.00317.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明△A ′0′B ′≌△AOB 的依据是( ) A .SSSB .SASC .ASAD .AAS18. 在同一平面内,作已知直线 l 的平行线,且到l 的距离为7 cm ,这样的平行线最多可 以作( ) A .1 条B .2 条C .3 条D . 无数条19.如图,若∠1=∠2, 则( ) A .AC ∥DEB .AC ∥EFC .CD ∥EFD . 以上都不是20.等腰三角形是轴对称图形,它的对称轴是( ) A .过顶点的直线 B .底边上的高所在的直线 C .顶角平分线所在的直线 D .腰上的高所在的直线21.如图所示,在△ABC 中,AB=AC ,∠B=14∠BAC ,AD ⊥AB 垂足为A ,AD=1,则BD=( ) A .1B .3C .2D .322.将直角三角形的三边都扩大3倍后,得到的三角形是( ) A .直角三角形B .锐角三角形C .钝角三角形D .无法确定23.如图,在等边ABC △中,9AC =,点O 在AC 上,且3AO =,点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋转60得到线段OD .要使点D 恰好落在BC 上,则AP 的长是( )A.4 B.5 C.6 D.824.将五个数1017,1219,1523,2033,3049按从大到小的顺序排列,那么排在中间的一个数应是()A.3049B.1523C.2033D.121925.4个红球、3个白球、2个黑球放入一个不透明的袋子里,从中摸出8个球,恰好红球、白球、黑球都摸到,这件事情()A.可能发生B.不可能发生C.很可能发生D.必然发生26.一个水池有甲、乙两个水龙头,单独开甲龙头,4 h可把空水池灌满;单独开乙龙头,6 h可把空水池灌满.灌满水池的23要同时开甲、乙两龙头的时间是()A.83h B.43h C.4 h D.85h27.下列语句中正确的是()A.自然数是正数B.0 是自然数C.带“-”号的数是负数D.一个数不是正数就是负数28.若0a b+=,则ab的值是()A.-1 B.0 C.无意义D.-1 或无意义29.光年是天文学中的距离单位,1 光年大约是9 500 000 000 000千米,用科学记数法可表示为()A.1095010⨯千米B.119510⨯千米C.129.510⨯千米D.130.9510⨯千米30.下列说法正确的有()①-2 是4 的一个平方根③16 的平方根是-4③-4 是-8 的平方根④8 的平方根是4±⑤任何非负数的平方根必有两个A.1 个B. 2 个C.3个D.4个31.下列运算中,正确的是()A.235÷63=+3=C.5-1=2D.2 +=B.22332.已知245100++++=,且x、y互为相反数,则m的值为()mx y xA. 4 B.-4 C. 2 D.-233.下列式子中正确的是()A.x-(y-z)=x-y-z B.-(x-y+z) =x-y-zC.x+2y-2z=x-2(y+z) D.-a+c+d-b=-(a+b)+(c+d)34.下列计算中,正确的是()A.23-+=C.222ab ba+=B.770a b ab-=-D.23545x y xy x y+=x x x 35.以x=-3为解的方程是()A.3x-7=2 B.5x-2=-x C.6x+8=-26 D.x+7=4x+16 36.如果M是3次多项式,N是3次多项式,则M+N一定是()A.6次多项式B.次数不高于 3的整式C.3次多项式D.次数不低于 3的多项式37.下列对于旋转的判断中,正确的是()A.图形旋转时,图形的形状发生了改变B.图形旋转时,图形的大小发生了改变C.图形旋转时,图形的位置发生了改变D.图形旋转时,图形的形状、大小和位置都发生了改变38.如果关于m的方程 2m+b=m-1 的解是-4,那么b的值是()A.3 B.5 C. -3 D.-539.数据5,3,2,1,4的平均数是()A.2 B.3 C.4 D.540.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有()A.2个B.3个C.4个D.5个41.方程345x-=的解为()A .3x =-B .13x =C .13x =-D .3x =42.翔翔、帆帆两人赛跑,翔翔每秒钟跑7米,帆帆每秒钟跑6.5米,翔翔让帆帆先跑5米,设x 秒后,翔翔追上帆帆,则下列四个方程中,错误的是( ) A . 7 6.55x x =+B . 75 6.5x -=C .(7 6.5)5x -=D .6.575x =-43.图(1)、图 (2)分别是2005~2008年我国某省初中在校生人数和初中学校数目统计图,由图可知,2005~2008年,该省初中( )A .在校生人数逐年增加,学校数也逐年增加B .在校生人数逐年增加,学校数逐年减少C .在校生人数逐年减少,学校数也逐年减少D .在校生人数逐华减少,学校数逐年增加44.如图,∠1=15°,∠AOC=90°,B 、O 、D 三点在一直线上,则∠l 的余角的补角是( ) A .15°B .75°C .105°D .165°45.下列图形中,恰好能与左边图形拼成一个矩形的是( )A .B .C .D .46.下列四个图中,能用∠ 1、∠AOB 、∠O 三种方法表示同一个角的是( )A .B .C .D .47.据国家商务部消息,2005年一季度,我国进口总额达2952亿美元.用科学记数法表示这个数是( )A .2.952×102亿美元B .0.2952×103亿美元C .2.952×103亿美元D .0.2952×104亿美元48.如图为某班学生上学方式统计图,从图中所提供的信息正确的是 ( )A .班共有学生50人B .该班乘车上学的学生人数超过半数C .该班骑车上学的人数不到全班人数的20%D .该班步行与其它方式上学的人数和超过半数49.用四舍五入法得到的近似数0.002030的有效数字有 ( ) A .6个B .4个C .3个D .2个50.解方程中,移项的依据是( ) A .加法交换律B .乘法分配律C .等式性质1D .等式性质 251.如图,直线2=y x 与双曲线xky =的图象的一个交点坐标为(2,4).则它们的另一个交点坐标是( ) A .(-2,-4)B .(-2,4)C .(-4,-2)D .(2,-4)52.如图表示的是组合在一起的模块,则它的俯视图是( )A .B .C .D .53.下列每张方格纸上都画有一个圆,只用不带刻度的直尺就能确定圆心位置的是( )A .B .C .D .54.能判定△ABC 相似于△′B ′C ′的条件是( )A . AB : A ′B ′ =AC : A ′C ′B .AB :AC=A ′B ′:A ′C ′,且∠A=∠C ′ C .AB :A ′B ′= BC :A ′C ′,且∠B=∠A ′D .AB :A ′B ′=AC :A ′C ′,且∠B=∠B ′ 55.下列图形不相似的是( ) A . 所有的圆B .所有的正方形C . 所有的等边三角形D . 所有的菱形56.下面两个三角形一定相似的是( ) A .两个等腰三角形 B .两个直角三角形 C .两个钝角三角形 D .两个等边三角形57.已知△ABC 的三边长分别为6 cm ,7.5 cm ,9 cm ,△DEF 的一边长为4 cm ,当△DEF 的另两边长是下列哪一组时,这两个三角形相似( ) A .2 cm ,3 cmB .4 cm ,5 cmC .5 cm ,6 cmD .6 cm ,7 cm58.如图,点C 把线段AB 分成两条线段AC 和BC ,如果AC BCAB AC=,那么称线段AB 被点C 黄金分割,AC 与AB 的比叫做黄金比,其比值是( )A .512-B .352-C .51+ D .352+ 59.如图,在△ABC 中,点D 在AB 上,点E 在AC 上,若∠ADE=∠C ,且AB=5,AC=4,AD=x ,AE=y ,则y 与x 的关系式是( )A .x y 5=B .x y 54=C .x y 45=D .x y 209=60.下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同一个圆中,相等的圆周角所对的弦相等;④三个点确定一个圆. 其中正确命题的个数为( )A .1 个B .2 个C .3 个D .4 个61.若正比例函数2y x =-与反比例函数ky x=的图象交于点A ,且A 点的横坐标是1-,则此反比例函数的解析式为( )A .12y x =B .12y x =-C .2y x=D .2y x=-62.二次函数2(1)2y x =-+的最小值是( )A BCA .2-B .2C .1-D .163.烟花厂为扬州烟花三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度(m)h 与飞行时间(s)t 的关系式是252012h t t =-++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .3sB .4sC .5sD .6s64. 已知函y =3x 2-6x +k (k 为常数)的图象经过点A (0.85,y 1),B (1.1,y 2),C ( 2 ,y 3),则有( ) A . y 1<y 2<y 3B . y 1>y 2>y 3C . y 3>y 1>y 2D . y 1>y 3>y 265.在ABC ∆中,︒=∠90C ,AB=15,sinA=13,则BC 等于( ) A .45 B .5 C .15 D .14566. 某人沿着倾斜角为α的斜坡前进了c 米,则他上升的高度为( )A . csin αB .ctan αC . ccos αD .tan cα67.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x y ,),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( ) A .118 B .112 C .19 D .1668.已知等腰三角形底边长为 10 cm ,周长为36 cm ,那么底角的余弦等于( ) A .513B .1213C .1013D .51269.布袋中装有 3个红球和 2个白球,从中任抽两球,恰好有 1 个红球、 1 个白球的概率是( ) A .35B .30l C .12D .1470.如图,PB 为⊙O 的切线,B 为切点,连结PO 交⊙O 于点A ,PA=2,PO=5,则PB 的长为(• )A .4BC .D .71.如图,在平面直角坐标系中,点A 在第一象限,⊙A 与 x 轴相切于B ,与y 轴交于C (0,1),D (0,4)两点,则点A 的坐标是 ( ) A .35(,)22B .3(,2)2C .5(2,)2D .53(,)2272.2008年8月8日,五环会旗将在“鸟巢”高高飘扬,会旗上的五环(如图)间的位置关系有()A.相交或相切B.相交或内含C.相交或相离D.相切或相离73.若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有()A.5桶 B.6桶 C.9桶D.12桶74.如图,D、E、F分别是等边△ABC的边AB、BC、CA的中点,现沿着虚线折起,使A、B、C三点重合,折起后得到的空间图形是()A.正方体B.圆锥C.棱柱D.棱锥75.已知(x1,y1),(x2,y2),(x3,y3)是反比例函数y=2x的图像上的三个点,0>y1>y2>y3,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x3>x1>x2C.x1>x2>x3D.x1>x3>x276.下列语句是命题的为()A.试判断下列语句是否是命题B.作∠A的平分线ABC.异号两数相加和为0D.请不要选择D77.要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,40是()A.个体B.总体 C.样本容量 D.总体的一个样本78.若4a<,则关于x的不等式(4)4a x a->-的解集是()A.1x>-B.1x<-C.1x>D.1x<79.已知a、b为常数,若0ax b+>的解集是13x<,则0bx a-<的解集是()A.3x>-B.3x<-C.3x>D.3x<80.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后3个顶点的坐标是()A.(2,3),(3,4),(1,7)B.(-2,3),(4,3),(1,7)C.(-2,3),(3,4),(1,7)D.(2,-3),(3,3),(1,7)81.当x=3时,函数y=px-1与函数y=x+p的值相等,则p的值为()A .1B .2C .3D .482.无论m 取何实数,直线y=x-2m 与y=-2x+3的交点不可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限83.在下列图形中,折叠后可围成正方体的是( )A .B .C .D .84.下列说法中,错误的是( ) A .等腰三角形两腰上的中线相等B .等腰三角形顶角平分线上的任一点到底边两端点的距离相等C .等腰三角形的中线与高重合D .等腰三角形两腰上的高相等 85.4(4)a a a a -=- ) A .4a ≥B .0a ≥C .04a ≤≤D .a 为一切实数86.计算(2232128)3 ) A .63B . 66C 6D . 6287.在同圆或等圆中,已知下列四个命题: ①不相等的圆心角所对的弧不相等; ②较长弦的弦心距较短; ⑤相等的弧所对的弦相等;④弧扩大2倍,则所对的弦也就扩大 2 倍. 其中正确命题的个数为( ) A .1 个B .2 个C .3 个D .4 个88.2963a a a -+=-,则a 与3的大小关系是( ) A .3a <B .3a ≤C .3a >D .3a ≥89.如图,在直角坐标系中,⊙O 的半径为1,则直线2y x =-+与⊙O 的位置关系是( )A .相离B .相交C .相切D .以上三种情形都有可能90.已知平行四边形的一条边长为l4,下列各组数中能作为它的两条对角线长的是( ) A .10与16B .10与17C .20与22D .10与1891.如图,在△ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AD 与BE 相交于点F ,若BF =AC ,则∠ABC 的大小是 ( ) A .40°B .45°C .50°D .60°92.下面四个语句:①内错角相等; ②OC 是∠AOB 的角平分线吗?③π不是有理数.其中是真命题的个数为( ) A .1个B .2个C .3个D .4个93.平行四边形的两条对角线分别为6和10,则其中一条边x 的取值范围为( ) A .4<x <6B .2<x <8C .0<x <10D .0<x <694.已知△ABC 的周长为1,连结△ABC 的三边中点构成第2个三角形,再连结第2•个三角形的三边中点构成第3个三角形,依此类推,第2006个三角形的周长是( ) A .12005B .12006C .200512 D .20061295.下面几组条件中,能判断一个四边形是平行四边形的是( ) A .一组对边相等 B .两条对角线互相平分 C .一组对边平行D .两条对角线互相垂直96.下列三角形纸片,能沿直线剪一刀得到等腰梯形的是( )97.顺次连结菱形的各边中点所得到的四边形是 ( ) A .平行四边形 B .菱形 C .矩形 D .正方形 98.用反证法证明“a b <”时,一般应先假设( ) A .a b >B .a b <C .a b =D .a b ≥99.抛物线2y ax bx c =++的图象如图所示,则不等式0bx a +>的解是( ) A .ax b>-B .a x b >C .ax b<-D .a x b<100.若01=++-y x x ,则20052006y x +的值为( )A .0B .1C .-1D . 2【参考答案】***试卷处理标记,请不要删除一、选择题1.B2.C3.A4.B解析: B .5.D6.C7.A8.B9.D10.C11.A12.C13.C14.B15.B16.C17.A18.B19.C20.C21.C22.A23.C24.A25.D26.D27.B28.D29.C30.A32.A 33.D 34.B 35.D 36.B 37.C 38.A 39.B 40.C 41.D 42.B 43.B 44.C 45.C 46.D 47.C 48.C 49.B 50.C 51.A 52.A 53.B 54.C 55.D 56.D 57.C 58.A 59.C 60.C 61.D 62.B 63.B 64.C66.A 67.B 68.A 69.A 70.A 71.C 72.C 73.B 74.D 75.A 76.C 77.C 78.B 79.B 80.C 81.B 82.C 83.C 84.C 85.A 86.B 87.C 88.B 89.C 90.C 91.B 92.A 93.B 94.C 95.B 96.B 97.C 98.D100.A。

2019届浙江省绍兴市中考数学模拟试卷(解析版)

2019届浙江省绍兴市中考数学模拟试卷(解析版)

2019年浙江省绍兴市中考数学模拟试卷一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选,多选,错选,均不给分)1.﹣8的绝对值等于()A.8 B.﹣8 C.D.2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A.3.386×108B.0.3386×109C.33.86×107D.3.386×1093.我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A.1条B.2条C.3条D.4条4.如图是一个正方体,则它的表面展开图可以是()A.B.C.D.5.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.6.如图,BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,则∠BDC的度数是()A.60° B.45° C.35° D.30°7.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A.①,② B.①,④ C.③,④ D.②,③8.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD 的余弦值是()A.B.C.D.9.抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4 B.6 C.8 D.1010.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.84 B.336 C.510 D.1326二、填空题(本大题有6小题,每小题5分,共30分)11.分解因式:a3﹣9a=.12.不等式>+2的解是 .13.如图1,小敏利用课余时间制作了一个脸盆架,图2是它的截面图,垂直放置的脸盆与架子的交点为A ,B ,AB=40cm ,脸盆的最低点C 到AB 的距离为10cm ,则该脸盆的半径为 cm .14.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是 元.15.如图,已知直线l :y=﹣x ,双曲线y=,在l 上取一点A (a ,﹣a )(a >0),过A 作x 轴的垂线交双曲线于点B ,过B 作y 轴的垂线交l 于点C ,过C 作x 轴的垂线交双曲线于点D ,过D 作y 轴的垂线交l 于点E ,此时E 与A 重合,并得到一个正方形ABCD ,若原点O在正方形ABCD 的对角线上且分这条对角线为1:2的两条线段,则a 的值为 .16.如图,矩形ABCD 中,AB=4,BC=2,E 是AB 的中点,直线l 平行于直线EC ,且直线l 与直线EC 之间的距离为2,点F 在矩形ABCD 边上,将矩形ABCD 沿直线EF 折叠,使点A 恰好落在直线l 上,则DF 的长为 .三、解答题(本大题有8小题,第17-20小题每小题8分,第21小题10分,第22、23小题每小题8分,第24小题14分,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:﹣(2﹣)0+()﹣2.(2)解分式方程:+=4.18.为了解七年级学生上学期参加社会实践活动的情况,随机抽查A市七年级部分学生参加社会实践活动天数,并根据抽查结果制作了如下不完整的频数分布表和条形统计图.A市七年级部分学生参加社会实践活动天数的频数分布表根据以上信息,解答下列问题;(1)求出频数分布表中a的值,并补全条形统计图.(2)A市有七年级学生20000人,请你估计该市七年级学生参加社会实践活动不少于5天的人数.19.根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m2)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.20.如图1,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走60m到达C点,测得点B在点C的北偏东60°方向,如图2.(1)求∠CBA的度数.(2)求出这段河的宽(结果精确到1m,备用数据≈1.41,≈1.73).21.课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.22.如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时∠B与∠D是否相等,并说明理由.(2)若固定一根木条AB不动,AB=2cm,量得木条CD=5cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A、C、D能构成周长为30cm的三角形,求出木条AD,BC的长度.23.对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2的单位,这种点的运动称为点A的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5),已知点A的坐标为(1,0).(1)分别写出点A经1次,2次斜平移后得到的点的坐标.(2)如图,点M是直线l上的一点,点A惯有点M的对称点的点B,点B关于直线l的对称轴为点C.①若A、B、C三点不在同一条直线上,判断△ABC是否是直角三角形?请说明理由.②若点B由点A经n次斜平移后得到,且点C的坐标为(7,6),求出点B的坐标及n的值.24.如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.(1)分别求直线l1与x轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).2019年浙江省绍兴市中考数学模拟试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选,多选,错选,均不给分)1.﹣8的绝对值等于()A.8 B.﹣8 C.D.【考点】绝对值.【分析】根据绝对值的定义即可得出结果.【解答】解:﹣8的绝对值为8,故选A.2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A.3.386×108B.0.3386×109C.33.86×107D.3.386×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数字338 600 000用科学记数法可简洁表示为3.386×108.故选:A.3.我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A.1条B.2条C.3条D.4条【考点】轴对称图形.【分析】直接利用轴对称图形的定义分析得出答案.【解答】解:如图所示:其对称轴有2条.故选:B.4.如图是一个正方体,则它的表面展开图可以是()A.B.C.D.【考点】几何体的展开图.【分析】根据含有田字形和凹字形的图形不能折成正方体可判断A、C,D,故此可得到答案.【解答】解:A、含有田字形,不能折成正方体,故A错误;B、能折成正方体,故B正确;C、凹字形,不能折成正方体,故C错误;D、含有田字形,不能折成正方体,故D错误.故选:B.5.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.【考点】概率公式.【分析】直接得出偶数的个数,再利用概率公式求出答案.【解答】解:∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴朝上一面的数字是偶数的概率为:=.故选:C.6.如图,BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,则∠BDC的度数是()A.60° B.45° C.35° D.30°【考点】圆周角定理.【分析】直接根据圆周角定理求解.【解答】解:连结OC,如图,∵=,∴∠BDC=∠AOB=×60°=30°.故选D.7.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A.①,② B.①,④ C.③,④ D.②,③【考点】平行四边形的判定.【分析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【解答】解:∵只有②③两块角的两边互相平行,角的两边的延长线的交点就是平行四边形的顶点,∴带②③两块碎玻璃,就可以确定平行四边形的大小.故选D.8.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD 的余弦值是()A.B.C.D.【考点】解直角三角形.【分析】设BC=x,由含30°角的直角三角形的性质得出AC=2BC=2x,求出AB=BC=x,根据题意得出AD=BC=x,AE=DE=AB=x,作EM⊥AD于M,由等腰三角形的性质得出AM=AD=x,在Rt△AEM中,由三角函数的定义即可得出结果.【解答】解:如图所示:设BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根据题意得:AD=BC=x,AE=DE=AB=x,作EM⊥AD于M,则AM=AD=x,在Rt△AEM中,cos∠EAD===;故选:B.9.抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4 B.6 C.8 D.10【考点】二次函数的性质.【分析】根据抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,可以得到c的取值范围,从而可以解答本题.【解答】解:∵抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,∴解得6≤c≤14,故选A.10.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.84 B.336 C.510 D.1326【考点】用数字表示事件.【分析】类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数×73+百位上的数×72+十位上的数×7+个位上的数.【解答】解:1×73+3×72+2×7+6=510,故选C.二、填空题(本大题有6小题,每小题5分,共30分)11.分解因式:a3﹣9a=a(a+3)(a﹣3).【考点】提公因式法与公式法的综合运用.【分析】本题应先提出公因式a,再运用平方差公式分解.【解答】解:a3﹣9a=a(a2﹣32)=a(a+3)(a﹣3).12.不等式>+2的解是x>﹣3.【考点】解一元一次不等式.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:去分母,得:3(3x+13)>4x+24,去括号,得:9x+39>4x+24,移项,得:9x﹣4x>24﹣39,合并同类项,得:5x>﹣15,系数化为1,得:x>﹣3,故答案为:x>﹣3.13.如图1,小敏利用课余时间制作了一个脸盆架,图2是它的截面图,垂直放置的脸盆与架子的交点为A,B,AB=40cm,脸盆的最低点C到AB的距离为10cm,则该脸盆的半径为25cm.【考点】垂径定理的应用.【分析】设圆的圆心为O,连接OA,OC,OC与AB交于点D,设⊙O半径为R,在RT△AOD 中利用勾股定理即可解决问题.【解答】解;如图,设圆的圆心为O,连接OA,OC,OC与AB交于点D,设⊙O半径为R,∵OC⊥AB,∵AD=DB=AB=20,在RT△AOD中,∵∠ADO=90°,∴OA2=OD2+AD2,∴R2=202+(R﹣10)2,∴R=25.故答案为25.14.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是248或296元.【考点】一元一次方程的应用.【分析】设第一次购书的原价为x元,则第二次购书的原价为3x元.根据x的取值范围分段考虑,根据“付款金额=第一次付款金额+第二次付款金额”即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设第一次购书的原价为x元,则第二次购书的原价为3x元,依题意得:①当0<x≤时,x+3x=229.4,解得:x=57.35(舍去);②当<x≤时,x+×3x=229.4,解得:x=62,此时两次购书原价总和为:4x=4×62=248;③当<x≤100时,x+×3x=229.4,解得:x=74,此时两次购书原价总和为:4x=4×74=296.综上可知:小丽这两次购书原价的总和是248或296元.故答案为:248或296.15.如图,已知直线l:y=﹣x,双曲线y=,在l上取一点A(a,﹣a)(a>0),过A作x 轴的垂线交双曲线于点B,过B作y轴的垂线交l于点C,过C作x轴的垂线交双曲线于点D,过D作y轴的垂线交l于点E,此时E与A重合,并得到一个正方形ABCD,若原点O在正方形ABCD的对角线上且分这条对角线为1:2的两条线段,则a的值为或.【考点】反比例函数与一次函数的交点问题;正方形的性质.【分析】根据点的选取方法找出点B、C、D的坐标,由两点间的距离公式表示出线段OA、OC的长,再根据两线段的关系可得出关于a的一元二次方程,解方程即可得出结论.【解答】解:依照题意画出图形,如图所示.∵点A的坐标为(a,﹣a)(a>0),∴点B(a,)、点C(﹣,)、点D(﹣,﹣a),∴OA==a,OC==.又∵原点O分对角线AC为1:2的两条线段,∴OA=2OC或OC=2OA,即a=2×或=2a,解得:a1=,a2=﹣(舍去),a3=,a4=﹣(舍去).故答案为:或.16.如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l上,则DF的长为2或4﹣2.【考点】矩形的性质;翻折变换(折叠问题).【分析】当直线l在直线CE上方时,连接DE交直线l于M,只要证明△DFM是等腰直角三角形即可利用DF=DM解决问题,当直线l在直线EC下方时,由∠DEF1=∠BEF1=∠DF1E,得到DF1=DE,由此即可解决问题.【解答】解:如图,当直线l在直线CE上方时,连接DE交直线l于M,∵四边形ABCD是矩形,∴∠A=∠B=90°,AD=BC,∵AB=4,AD=BC=2,∴AD=AE=EB=BC=2,∴△ADE、△ECB是等腰直角三角形,∴∠AED=∠BEC=45°,∴∠DEC=90°,∵l∥EC,∴ED⊥l,∴EM=2=AE,∴点A、点M关于直线EF对称,∵∠MDF=∠MFD=45°,∴DM=MF=DE﹣EM=2﹣2,∴DF=DM=4﹣2.当直线l在直线EC下方时,∵∠DEF1=∠BEF1=∠DF1E,∴DF1=DE=2,综上所述DF的长为2或4﹣2.故答案为2或4﹣2.三、解答题(本大题有8小题,第17-20小题每小题8分,第21小题10分,第22、23小题每小题8分,第24小题14分,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:﹣(2﹣)0+()﹣2.(2)解分式方程:+=4.【考点】实数的运算;解分式方程.【分析】(1)本题涉及二次根式化简、零指数幂、负整数指数幂3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)观察可得方程最简公分母为(x﹣1),将方程去分母转化为整式方程即可求解.【解答】解:(1)﹣(2﹣)0+()﹣2=﹣1+4=+3;(2)方程两边同乘(x﹣1),得:x﹣2=4(x﹣1),整理得:﹣3x=﹣2,解得:x=,经检验x=是原方程的解,故原方程的解为x=.18.为了解七年级学生上学期参加社会实践活动的情况,随机抽查A市七年级部分学生参加社会实践活动天数,并根据抽查结果制作了如下不完整的频数分布表和条形统计图.A市七年级部分学生参加社会实践活动天数的频数分布表根据以上信息,解答下列问题;(1)求出频数分布表中a的值,并补全条形统计图.(2)A市有七年级学生20000人,请你估计该市七年级学生参加社会实践活动不少于5天的人数.【考点】条形统计图;用样本估计总体;频数(率)分布表.【分析】(1)利用表格中数据求出总人数,进而利用其频率求出频数即可,再补全条形图;(2)利用样本中不少于5天的人数所占频率,进而估计该市七年级学生参加社会实践活动不少于5天的人数.【解答】解:(1)由题意可得:a=20÷01×0.25=50(人),如图所示:;(2)由题意可得:20000×(0.30+0.25+0.20)=15000(人),答:该市七年级学生参加社会实践活动不少于5天的人数约为15000人.19.根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m2)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.【考点】一次函数的应用.【分析】(1)暂停排水时,游泳池内的水量Q保持不变,图象为平行于横轴的一条线段,由此得出暂停排水需要的时间;由图象可知,该游泳池3个小时排水900(m3),根据速度公式求出排水速度即可;(2)当2≤t≤3.5时,设Q关于t的函数表达式为Q=kt+b,易知图象过点(3.5,0),再求出(2,450)在直线y=kt+b上,然后利用待定系数法求出表达式即可.【解答】解:(1)暂停排水需要的时间为:2﹣1.5=0.5(小时).∵排水数据为:3.5﹣0.5=3(小时),一共排水900m3,∴排水孔排水速度是:900÷3=300m3/h;(2)当2≤t≤3.5时,设Q关于t的函数表达式为Q=kt+b,易知图象过点(3.5,0).∵t=1.5时,排水300×1.5=450,此时Q=900﹣450=450,∴(2,450)在直线Q=kt+b上;把(2,450),(3.5,0)代入Q=kt+b,得,解得,∴Q关于t的函数表达式为Q=﹣300t+1050.20.如图1,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走60m到达C点,测得点B在点C的北偏东60°方向,如图2.(1)求∠CBA的度数.(2)求出这段河的宽(结果精确到1m,备用数据≈1.41,≈1.73).【考点】解直角三角形的应用-方向角问题.【分析】(1)根据三角形的外角的性质、结合题意计算即可;(2)作BD⊥CA交CA的延长线于D,设BD=xm,根据正切的定义用x表示出CD、AD,根据题意列出方程,解方程即可.【解答】解:(1)由题意得,∠BAD=45°,∠BCA=30°,∴∠CBA=∠BAD﹣∠BCA=15°;(2)作BD⊥CA交CA的延长线于D,设BD=xm,∵∠BCA=30°,∴CD==x,∵∠BAD=45°,∴AD=BD=x,则x﹣x=60,解得x=≈82,答:这段河的宽约为82m.21.课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.【考点】二次函数的应用.【分析】(1)根据矩形和正方形的周长进行解答即可;(2)设AB为xcm,利用二次函数的最值解答即可.【解答】解:(1)由已知可得:AD=,则S=1×m2,(2)设AB=xm,则AD=3﹣m,∵,∴,设窗户面积为S,由已知得:,当x=m时,且x=m在的范围内,,∴与课本中的例题比较,现在窗户透光面积的最大值变大.22.如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时∠B与∠D是否相等,并说明理由.(2)若固定一根木条AB不动,AB=2cm,量得木条CD=5cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A、C、D能构成周长为30cm的三角形,求出木条AD,BC的长度.【考点】全等三角形的应用;二元一次方程组的应用;三角形三边关系.【分析】(1)相等.连接AC,根据SSS证明两个三角形全等即可.(2)分两种情形①当点C在点D右侧时,②当点C在点D左侧时,分别列出方程组即可解决问题,注意最后理由三角形三边关系定理,检验是否符合题意.【解答】解:(1)相等.理由:连接AC,在△ACD和△ACB中,,∴△ACD≌△ACB,∴∠B=∠D.(2)设AD=x,BC=y,当点C在点D右侧时,,解得,当点C在点D左侧时,解得,此时AC=17,CD=5,AD=8,5+8<17,∴不合题意,∴AD=13cm,BC=10cm.23.对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2的单位,这种点的运动称为点A的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5),已知点A的坐标为(1,0).(1)分别写出点A经1次,2次斜平移后得到的点的坐标.(2)如图,点M是直线l上的一点,点A惯有点M的对称点的点B,点B关于直线l的对称轴为点C.①若A、B、C三点不在同一条直线上,判断△ABC是否是直角三角形?请说明理由.②若点B由点A经n次斜平移后得到,且点C的坐标为(7,6),求出点B的坐标及n的值.【考点】几何变换综合题.【分析】(1)根据平移的性质得出点A平移的坐标即可;(2)①连接CM,根据中心和轴对称的性质和直角三角形的判定解答即可;②延长BC交x轴于点E,过C点作CF⊥AE于点F,根据待定系数法得出直线的解析式进而解答即可.【解答】解:(1)∵点P(2,3)经1次斜平移后的点的坐标为(3,5),点A的坐标为(1,0),∴点A经1次平移后得到的点的坐标为(2,2),点A经2次平移后得到的点的坐标(3,4);(2)①连接CM,如图1:由中心对称可知,AM=BM,由轴对称可知:BM=CM,∴AM=CM=BM,∴∠MAC=∠ACM,∠MBC=∠MCB,∵∠MAC+∠ACM+∠MBC+∠MCB=180°,∴∠ACM+∠MCB=90°,∴∠ACB=90°,∴△ABC是直角三角形;②延长BC交x轴于点E,过C点作CF⊥AE于点F,如图2:∵A(1,0),C(7,6),∴AF=CF=6,∴△ACF是等腰直角三角形,由①得∠ACE=90°,∴∠AEC=45°,∴E点坐标为(13,0),设直线BE的解析式为y=kx+b,∵C,E点在直线上,可得:,解得:,∴y=﹣x+13,∵点B由点A经n次斜平移得到,∴点B(n+1,2n),由2n=﹣n﹣1+13,解得:n=4,∴B(5,8).24.如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.(1)分别求直线l1与x轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).【考点】四边形综合题.【分析】(1)根据坐标轴上点的坐标特征可求直线l1与x轴,直线l2与AB的交点坐标;(2)分三种情况:①若点A为直角顶点时,点M在第一象限;若点P为直角顶点时,点M在第一象限;③若点M为直角顶点时,点M在第一象限;进行讨论可求点M的坐标;(3)根据矩形的性质可求N点的横坐标x的取值范围.【解答】解:(1)直线l1:当y=0时,2x+3=0,x=﹣则直线l1与x轴坐标为(﹣,0)直线l2:当y=3时,2x﹣3=3,x=3则直线l2与AB的交点坐标为(3,3);(2)①若点A为直角顶点时,点M在第一象限,连结AC,如图1,∠APB>∠ACB>45°,∴△APM不可能是等腰直角三角形,∴点M不存在;②若点P为直角顶点时,点M在第一象限,如图2,过点M作MN⊥CB,交CB的延长线于点N,则Rt△ABP≌Rt△PNM,∴AB=PN=4,MN=BP,设M(x,2x﹣3),则MN=x﹣4,∴2x﹣3=4+3﹣(x﹣4),x=,∴M(,);③若点M为直角顶点时,点M在第一象限,如图3,设M1(x,2x﹣3),过点M1作M1G1⊥OA,交BC于点H1,则Rt△AM1G1≌Rt△PM1H1,∴AG1=M1H1=3﹣(2x﹣3),∴x+3﹣(2x﹣3)=4,x=2∴M1(2,1);设M2(x,2x﹣3),同理可得x+2x﹣3﹣3=4,∴x=,∴M2(,);综上所述,点M的坐标为(,),(2,1),(,);(3)x的取值范围为﹣≤x<0或0<x≤或≤x≤或≤x≤2.2019年7月12日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级毕业生学业水平考试(二)
数学试题
注意事项:
1、本试题分第Ⅰ卷和第II 卷两部分。

第I 卷为选择题,24分;第II 卷为非选择题,96分;满分120分,考试时间120分钟。

2、答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目写在答题卡上,考试结束,试题和答题卡一并收回。

3、第Ⅰ卷每题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑。

如需改动,先用橡皮擦干净,再涂改其他答案。

第I 卷(选择题 共24分)
一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正
确的选项选出来。

每小题选对得3分,选错、不选或选出的答案超过一个均计零分。

1.下列说法正确的是 ( ) A .一个游戏的中奖概率是
10
1
则做10次这样的游戏一定会中奖 B .为了解全国中学生的心理健康情况,应该采用普查的方式
C .一组数据 8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是 8
D .若甲组数据的方差 S 2
= 0.01 ,乙组数据的方差 s 2
= 0 .1 ,则乙组数据比甲组数据稳定
2.如图2,直线y =x +2与双曲线y =
x
m 3
在第二象限有两个交点,那么m 的取值范围在数轴上表示为 ( )
3.小明为今年将要参加中考的好友小李制作了一个(如图3)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是 ( )
(D)(C)(B)(A)-2-1432-2-14
32-2-1432-2-14
320110101
02题图
3题图
4.下列图形4中,∠1一定大于∠2的是 ( )
5.小芳家房屋装修时,选中了一种漂亮的正八边形地砖.建材店老板告诉她,只用一种八边形地砖是不能密铺地面的,便向她推荐了几种形状的地砖.你认为要使地面密铺,小芳应选










( )
6.二次函数2
y ax bx c =++的图象如图所示,则反比例函数a
y x
=与一次函数y bx c =+在
同一坐标系中的大致图象是 ( )
7.如图7,边长都是1的正方形和正三角形,其一边在同一水平线上,三角形沿该水平线自左向右匀速穿过正方形.设穿过的时间为t ,正方形与三角形重合部分的面积为S (空白部

),


S


t









( )
7题图
D
C B A
122
1
214题图
6题图
5题图
8.如图8,△ABC 和△ADE 都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交 CE 于点G ,连结BE. 下列结论中:
① CE=BD; ② △ADC 是等腰直角三角形;③ ∠ADB=∠AEB; ④ CD·AE=EF·CG; 一定正确的结论有 ( ) A .1个 B .2个
C .3个
D .4个
第II 卷(非选择题 共96分)
二、填空题(本大题共有8小题,每小题4分,共32分.不需写出解答过程,请把最后答
案直接填写在答题线相应位置.......
上) 9.若x y 、
为实数,且10x +,则2012

⎪⎭
⎫ ⎝⎛y x 的值是________________.
10.对于非零的两个实数a 、
b ,规定
11
a
b b a
⊗=
-.若1(1)1x ⊗+=,则x 的值为 _______. 11.等腰三角形的两条边长分别为3,6,那么它的周长为 __________________.
12.化简:2222
2369x y x y y
x y x xy y x y
--÷-++++=_________. 13.菱形OABC 在平面直角坐标系中的位置如图13所示,45AOC OC ∠==°
,点B 的坐标为
14.如图14,在直角梯形ABCD 中,AD∥BC,∠ABC=90°,∠C=60°,E
8题图
13题图 14题图
是BC 边的中点,△DEF 是等边三角形,DF 交AB 于点G ,则△BFG 的周长为 __ .
15.如图15,△ABC 的内心在y 轴上,点C 的坐标为(2,0),点B 的坐标为(0,2),直线AC 的解析式为1
12
y x =-,则tanA 的值是 .
16.如图16,从内到外,边长依次为2,4,6,8,…的所有正六边形的中心均在坐标原点,且一组对边与x 轴平行,它们的顶点依次用A 1、A 2、A 3、A 4、A 5、A 6、A 7、A 8、A 9、A 10、A 11、A 12……表示,那么顶点A 62的坐标是 .
三、解答题时应写出必要的文字说明、证明过程或演算步骤) 17.(本题满分6分)
为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如右的调查问卷(单选).在随机调查了奉市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:
根据以上信息解答下列问题:
(1)补全条形统计图,并计算扇形统计图中m= ; (2)该市支持选项B 的司机大约有多少人?
(3)若要从该市支持选项B 的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标
志,则支持该选项的司机小李被选中的概率是多少?
15题图 16题图
17题图
18.(本题满分8分)
在平面直角坐标系中,已知△ABC
三个顶点的坐标分别为
()()()A 12B 34C 29.---,,,,,
(1)画出△ABC,并求出AC 所在直线的解析式。

(2)画出△ABC 绕点A 顺时针旋转90后得到的△A 1B 1C 1,并求出△ABC 在上述旋转过程
中扫过的面积。

19.(本题满分8分)
如图19,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D . (1)求证:AC 平分∠DAB;
(2)过点O 作线段AC 的垂线OE ,垂足为E (要求:尺规作图,保留作图痕迹,不写作法);
18题图
(3)若CD=4,AC=45,求垂线段OE的长.
19题图
20.(本题满分10分)
如图1,在△OAB中,∠OAB=90º,∠AOB=30º,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.
(1)求点B的坐标;
(2)求证:四边形ABCE是平行四边形;
(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.
20题图
21.(本题满分10分)
(1)背景:在图1中,已知线段AB,CD。

其中点分别是E,F。

①若A(-1,0),B(3,0),则E点的坐标为________;
②若C(-2,2),D(-2,-1),则F点的坐标为_________;
(2)探究:在图2中,已知线段AB的端点坐标A(a,b),B(c,d),求出图中AB中点D的
坐标(用含a,b,c,d的代数式表示),并给出求解过程;
归纳:无论线段AB 处于直角坐标系中的哪个位置,当其端点坐标为A (a,b ),B(c,d),AB 中点为D (x,y )时,x=______,y=_________(不必证明)。

运用:在图3中,一次函数y=x-2与反比例函数x
y 3
=的图像交点为A ,B 。

①求出交点A,B 的坐标;
②若以A 、O 、B 、P 为顶点的四边形是平行四边形,请利用上面的结论求出顶点P 的坐标。

22.
如图E x
与边BC 交于点F 。

(1)若△OAE 、△OCF 的而积分别为S 1、S 2.且S 1+S 2=2,求k 的值:
(2)若OA=2.0C=4.问当点E 运动到什么位置时,四边形OAEF 的面积最大.其最
大值为多少?
23.(本题满分12分)
如图23,已知抛物线24
9
y x bx c =-++与x 轴相交于A 、B 两点,其对称轴为直线2x =,且与x 轴交于点D ,AO=1.
(1) 填空:b =_______。

c =_______,点B 的坐标为(_______,_______):
22题图
(2) 若线段BC的垂直平分线EF交BC于点E,交x轴于点F.求FC的长;
(3) 探究:在抛物线的对称轴上是否存在点P,使⊙P与x轴、直线BC都相切?若存在,
请求出点P的坐标;若不存在,请说明理由。

23题图。

相关文档
最新文档