第24章 圆的复习 课件(1)
合集下载
第24章圆的复习课件(1)PPT

2018年8月20日10时41分 版权所有
4、如图,A、B、C三点在圆上,若∠ABC=400, 则∠AOC= 。(05年大连)
5.如图,AB是⊙O的直径,BD是 ⊙O的弦,延长BD到点C,使 DC=BD,连接AC交⊙O与点F. (1)AB与AC的大小有什么关 系?为什么? (2)按角的大小分类, 请你判断 △ABC属于哪一类三角形, 并说明理由.(05宜昌)
练习 90 1.如图,则∠1+∠2=__
°
1
.
2
2.圆周上A,B,C三点将圆周 分成1:2:3的三段弧AB,BC,CA,则△ABC 的三个内角∠A,∠B,∠C 30° 60° 90° 的度数依次为________
3. 在⊙O中,弦AB所对的圆心角∠AOB=100°,则 500或1300 (05年上海) 弦AB所对的圆周角为____________.
O
r
●
O
相交 1、直线和圆相交
d ┐ 相切
d
┐ 相离
d < r; d = r; d > r.
2、直线和圆相切 3、直线和圆相离
切线的判定定理
定理 经过半径的外端,并且垂直于这条半径的直线是 圆的切线.
∵OA是⊙O的半径, 且CD⊥OA, ∴ CD是⊙O的切线.
C
●
O
A
D
切线的判定与性质
D
A
●
B
O ①∠AOB=∠A′O′B′
可推出
┏ A′ D′ B′ 如由条件: ③AB=A′B′
②AB=A′B′
⌒ ⌒
④ OD=O′D′
三、圆周角定理及推论
D
B
●
C E O
C BA
4、如图,A、B、C三点在圆上,若∠ABC=400, 则∠AOC= 。(05年大连)
5.如图,AB是⊙O的直径,BD是 ⊙O的弦,延长BD到点C,使 DC=BD,连接AC交⊙O与点F. (1)AB与AC的大小有什么关 系?为什么? (2)按角的大小分类, 请你判断 △ABC属于哪一类三角形, 并说明理由.(05宜昌)
练习 90 1.如图,则∠1+∠2=__
°
1
.
2
2.圆周上A,B,C三点将圆周 分成1:2:3的三段弧AB,BC,CA,则△ABC 的三个内角∠A,∠B,∠C 30° 60° 90° 的度数依次为________
3. 在⊙O中,弦AB所对的圆心角∠AOB=100°,则 500或1300 (05年上海) 弦AB所对的圆周角为____________.
O
r
●
O
相交 1、直线和圆相交
d ┐ 相切
d
┐ 相离
d < r; d = r; d > r.
2、直线和圆相切 3、直线和圆相离
切线的判定定理
定理 经过半径的外端,并且垂直于这条半径的直线是 圆的切线.
∵OA是⊙O的半径, 且CD⊥OA, ∴ CD是⊙O的切线.
C
●
O
A
D
切线的判定与性质
D
A
●
B
O ①∠AOB=∠A′O′B′
可推出
┏ A′ D′ B′ 如由条件: ③AB=A′B′
②AB=A′B′
⌒ ⌒
④ OD=O′D′
三、圆周角定理及推论
D
B
●
C E O
C BA
第二十四章《圆》复习课件

.r
O
S = nπr2
360
2024/10/13
或
S
=
1
2
lr
4.圆柱的展开图:
A
D
h Br C
S侧 =2πr h S全=2πr h+2 π r2
2024/10/13
5.圆锥的展开图:
a h
r S侧 =πr a S全=πr a+ π r2
2024/10/13
a 侧面
底面
常见的基本图形及结论:
AC
本 第1部分 圆的基本性质
章 第2部分 与圆有关的位置关系
安
排 第3部分 正多边形和圆
复 习
第4部分
弧长和面积的计算
内 容
第5部分
有关作图
2024/10/13
一.圆的基本概念: 1.圆的定义:到定点的距离等于定长的点的 集合叫做圆. 2.有关概念: (1)弦、直径(圆中最长的弦)
(2)弧、优弧、劣弧、等弧
∴ OA⊥ l l
切线长定理:
从圆外一点引圆的两条切线,它们 的切线长相等;这点与圆心的连线平分 这两条切线的夹角。
.A
. O . B
2024/10/13
∵PA、PB为⊙O的切线 ∴PA=PB, P ∠APO= ∠BPO
三角形的外接圆与内切圆:
A.
A
B. O.
.
C
B
.
O C
三角形的外心就是三角形各边垂直平分线的交点.
三角形的内心就是三角形各角平分线的交点.
不在同一直线上的三点确定一个圆.
2024/10/13
特别的:
等边三角形的外心与内心重合. 内切圆半径与外接圆半径的比是1:2.
最新第24章-圆-精品复习课课件教学讲义ppt课件

∠BAC=
1 ∠BOC
2
B
圆周角的性质(2)
在同圆或等圆中,同弧或等弧所对的所有的 圆周角相等.相等的圆周角所对的弧相等.
D
E
∵∠ADB与∠AEB 、∠ACB 是
C 同弧所对的圆周角
O
∴∠ADB=∠AEB =∠ACB
A
B
圆周角的性质:
性质 3:半圆或直径所对的圆周角都 相等,都等于900(直角). 性质4: 900的圆周角所对的弦是圆的直径.
过D点作DF ^AC
于F点,然后证明
F
DF等于圆D的半
径BD
如图,AB在⊙O的直径,点D在AB的延长 线上,且BD=OB,点C在⊙O上,∠CAB=30°.
(1)CD是⊙O的切线吗?说明你的理由; (2)AC=_____,请给出合理的解释.
C
只要连接OC, A 而后证明OC
O
B
D
垂直CD
2.AB是⊙O的弦,C是⊙O外一点,BC是 ⊙O的切线,AB交过C点的直径于点D, OA⊥CD,试判断△BCD的形状,并
的都在_连__结__着__两_点__的__线__段_ 的垂直平分线 上.
3.过三点的圆有___0_或__1________个
4.如何作过不在同一直线上的三点的圆(或三 角形的外接圆、找外心、破镜重圆、到三个村 庄距离相等)
∵AB是⊙O的直径
C
∴ ∠ACB=900
பைடு நூலகம்
A
O
B
15
3.6
作圆的直径与找90度的圆周 角也是圆里常用的辅助线
A
B
•
O C
D
1. 在⊙O中,弦AB所对的圆心角∠AOB=100°,则
弦AB所对的圆周角为__5__0_0或___1_3_0_0_.(05年上海)
1 ∠BOC
2
B
圆周角的性质(2)
在同圆或等圆中,同弧或等弧所对的所有的 圆周角相等.相等的圆周角所对的弧相等.
D
E
∵∠ADB与∠AEB 、∠ACB 是
C 同弧所对的圆周角
O
∴∠ADB=∠AEB =∠ACB
A
B
圆周角的性质:
性质 3:半圆或直径所对的圆周角都 相等,都等于900(直角). 性质4: 900的圆周角所对的弦是圆的直径.
过D点作DF ^AC
于F点,然后证明
F
DF等于圆D的半
径BD
如图,AB在⊙O的直径,点D在AB的延长 线上,且BD=OB,点C在⊙O上,∠CAB=30°.
(1)CD是⊙O的切线吗?说明你的理由; (2)AC=_____,请给出合理的解释.
C
只要连接OC, A 而后证明OC
O
B
D
垂直CD
2.AB是⊙O的弦,C是⊙O外一点,BC是 ⊙O的切线,AB交过C点的直径于点D, OA⊥CD,试判断△BCD的形状,并
的都在_连__结__着__两_点__的__线__段_ 的垂直平分线 上.
3.过三点的圆有___0_或__1________个
4.如何作过不在同一直线上的三点的圆(或三 角形的外接圆、找外心、破镜重圆、到三个村 庄距离相等)
∵AB是⊙O的直径
C
∴ ∠ACB=900
பைடு நூலகம்
A
O
B
15
3.6
作圆的直径与找90度的圆周 角也是圆里常用的辅助线
A
B
•
O C
D
1. 在⊙O中,弦AB所对的圆心角∠AOB=100°,则
弦AB所对的圆周角为__5__0_0或___1_3_0_0_.(05年上海)
第24章圆复习课件

O
A
B
2:已知ABC三点在圆O上,连接ABCO, 如果∠ AOC=140 °,求∠ B的度数. D 解:在优弧AC上定一点D,连结AD、 CD. ∵ ∠ AOC=140 ° O A ∴ ∠ D=70 ° ∴ ∠ B=180 ° -70 ° =110 °
B
C
3.平面上一点P到圆O上一点的距离最长为 2或4cm 6cm,最短为2cm,则圆O的半径为_______.
∴CD⊥OA.
C
A
切线的性质定理出可理解为
如果一条直线满足以下三个性质中的任意两个,那么
第三个也成立。①经过切点、②垂直于切线、③经过圆心。 如 ① ② ① ③ ② ③ ③
② ①
1、两个同心圆的半径分别为3 cm和4 cm,大圆的 弦BC与小圆相切,则BC=_____ cm; 2、如图2,在以O为圆心的两个同心圆 中,大圆的弦AB是小圆的切线,P为切点, 设AB=12,则两圆构成圆环面积为_____; 3、下列四个命题中正确的是( ).
A
●
A
●
O C B
┐
O
●
O C
B
C
B
锐角三角形的外心位于三角形内, 直角三角形的外心位于直角三角形斜边中点, 钝角三角形的外心位于三角形外.
切线长定理及其推论:
从圆外一点向圆所引的两条切线长 相等;并且这一点和圆心的连线平分 两条切线的夹角. P
A
1 2
∵PA,PB切⊙O于A,B
●
O
∴PA=PB ∠1=∠2
D
A
●
B
O ①∠AOB=∠A′O′B′
可推出
┏ A′ D′ B′ 如由条件: ③AB=A′B′
②AB=A′B′
【公开课【人教版九年级数学上册 第24章 圆复习课【课件】(共14张PPT)

又∠BAC=30°,AB=2, BC 1 AB 1,
2
在Rt△ABC中,由勾股定理得:
由(1)知,∠PAC= ∠PCA = ∠P= 60 °
小结
1、经过本节课的学习,你 通有过哪本些节课收的获学?习,你
有哪些收获?
2、本节课主要运用什么方 说说法,来让解大决家分一享些一简下单。的实际
问题?
M
∴PA=PB,∠APO=∠BPO
A
O
P
B
例2、如图,已知AB为⊙O的直径,PA、PC为⊙O的切线,
A、C为切点, ∠BAC=30°. (1)求∠P的大小 (2)若AB=2,求PA的长(结果保留根号)
解:提(示1):∵利P用A、切P线C为长⊙定O的理切求线解
∴PA=PC, PA⊥ AB
∴∠PAC= ∠PCA,∠PAB=90°
B
又∠BAC=30°,
∴∠PAC= ∠PAB- ∠BAC =60 ° ∴∠P= 180°-2 ∠PAC- =60 °
例2、如图,已知AB为⊙O的直径,PA、PC为⊙O的切线,
A、C为切点, ∠BAC=30°. (2)若AB=2,求PA的长(结果保留根号)
解:(2)连接BC,
∵ AB为⊙O的直径
B
∴∠ACB= 90°
例1、某居民小区一处圆形下水管道破裂,维修人员准
备更换一段新管道,如图所示,污水水面宽度为60cm, 水面到管道顶部距离为10cm,则修理人员应准备多大内 径的管道?(内径指内部直径)
C
提示:作弦AB的垂直平 A 分线,连接OA,构建直 角三角形求解。
DB 0
解:如图,连接OA,作OD⊥ AB 于点D, 交弧AB于点C.设半径为r,即OA=OC=r. C
2
在Rt△ABC中,由勾股定理得:
由(1)知,∠PAC= ∠PCA = ∠P= 60 °
小结
1、经过本节课的学习,你 通有过哪本些节课收的获学?习,你
有哪些收获?
2、本节课主要运用什么方 说说法,来让解大决家分一享些一简下单。的实际
问题?
M
∴PA=PB,∠APO=∠BPO
A
O
P
B
例2、如图,已知AB为⊙O的直径,PA、PC为⊙O的切线,
A、C为切点, ∠BAC=30°. (1)求∠P的大小 (2)若AB=2,求PA的长(结果保留根号)
解:提(示1):∵利P用A、切P线C为长⊙定O的理切求线解
∴PA=PC, PA⊥ AB
∴∠PAC= ∠PCA,∠PAB=90°
B
又∠BAC=30°,
∴∠PAC= ∠PAB- ∠BAC =60 ° ∴∠P= 180°-2 ∠PAC- =60 °
例2、如图,已知AB为⊙O的直径,PA、PC为⊙O的切线,
A、C为切点, ∠BAC=30°. (2)若AB=2,求PA的长(结果保留根号)
解:(2)连接BC,
∵ AB为⊙O的直径
B
∴∠ACB= 90°
例1、某居民小区一处圆形下水管道破裂,维修人员准
备更换一段新管道,如图所示,污水水面宽度为60cm, 水面到管道顶部距离为10cm,则修理人员应准备多大内 径的管道?(内径指内部直径)
C
提示:作弦AB的垂直平 A 分线,连接OA,构建直 角三角形求解。
DB 0
解:如图,连接OA,作OD⊥ AB 于点D, 交弧AB于点C.设半径为r,即OA=OC=r. C
第24章圆的复习课件

②
② ③
2016年5月23日11时15 分
①
欢迎046班的同学们!注意听课, 积极思考呵!
1、两个同心圆的半径分别为3 cm和4 cm,大圆的 弦BC与小圆相切,则BC=_____ cm;
2、如图2,在以O为圆心的两个同心圆
中,大圆的弦AB是小圆的切线,P为切点,
设AB=12,则两圆构成圆环面积为_____;
10、切线长定理 :________________________。 11、三角形内切圆的半径、内切圆的面积、三边长的关系:
AB AC BC AD 2
2016年5月23日11时15 分 欢迎046班的同学们!注意听课, 积极思考呵!
填空、 1、 在同圆或等圆中,如果圆心角相等,那么它所对的 弧 ____,所对的弦____;
圆内接四边形的性质:
(1)对角互补;(2)任意一个外角都等于它的内
对角
2016年5月23日11时15 分 欢迎046班的同学们!注意听课, 积极思考呵!
1、⊙ O的半径为R,圆心到点A的距离为d,且R、d分 别是方程 x2-6x+ 8=0的两根,则点A与⊙O的位置关系是 ( )
A.点 A在⊙ O内部 B.点 A在⊙O上
A
P O
B
3、下列四个命题中正确的是(
).
①与圆有公共点的直线是该圆的切线 ; ②垂直于圆的 半径的直线是该圆的切线 ; ③到圆心的距离等于半径 的直线是该圆的切线 ;④过圆直径的端点,垂直于此 直径的直线是该圆的切线.
A.①②
B.②③
C.③④
D.①④
2016年5月23日11时15分
欢迎046班的同学们!注意听课,积极思考呵!
例⊙O 的半径为10cm,弦AB∥CD,
人教版初中数学第24章 圆 复习课件 (共26张PPT)

九年级数学上(RJ) 教学课件
第二十四章
复习课
知识网络 专题复习
圆课Βιβλιοθήκη 小结课后训练知识网络
圆的有 关性质
圆的定义及其相关概念 轴对称性 圆的对称性 中心对称性
圆周角
点在圆外:d>r; 点在圆上:d=r; 点在圆内:d<r. 相离:d>r; 相切:d=r; 相交:d<r. 转化
垂径定理
弧、弦、圆心 角的关系定理
r 2 d 2 ( )2 2
O A D
8mm B
.
配套训练 1.如图a,点C是扇形OAB上的AB的任意一点,OA=2,连接
AC,BC,过点O作OE ⊥AC,OF ⊥BC,垂足分别为E,F,连接EF,则 2 EF的长度等于 .
(
(
2.如图b,AB是⊙O的直径,且AB=2,C,D是同一半圆上的两点,并且
方法总结 (1)证切线时添加辅助线的解题方法有两种: ①有公共点, 连半径,证垂直; ②无公共点,作垂直,证半径;有切线时添加辅助 线的解题方法是:见切点,连半径,得垂直;
(2)设了未知数,通常利用勾股定理建立方程.
配套训练(多解题)如图,直线AB,CD相交于点O, ∠AOD=30 °, 半径为1cm的⊙P的圆心在射线OA上,且与点O的距离为6cm,如果 ⊙P以1cm/s的速度沿由A向B的方向移动,那么 4或8 直线CD相切. A P 思路点拨 根本题应分为两种情况:(1)D ⊙P在直线AB下面与直线CD相切;(2) ⊙P在直线AB上面与直线CD相切. 秒钟后⊙P与 C P1 E P2 B
专题五 直线与圆的位置关系
例5 如图, O为正方形对角线上一点,以点O 为圆心,OA长为半径的 ⊙O与BC相切于点M. (1)求证:CD与⊙O相切; (2)若正方形ABCD的边长为1,求⊙O的半径. (1)证明:过点O作ON⊥CD于N.连接OM A D
第二十四章
复习课
知识网络 专题复习
圆课Βιβλιοθήκη 小结课后训练知识网络
圆的有 关性质
圆的定义及其相关概念 轴对称性 圆的对称性 中心对称性
圆周角
点在圆外:d>r; 点在圆上:d=r; 点在圆内:d<r. 相离:d>r; 相切:d=r; 相交:d<r. 转化
垂径定理
弧、弦、圆心 角的关系定理
r 2 d 2 ( )2 2
O A D
8mm B
.
配套训练 1.如图a,点C是扇形OAB上的AB的任意一点,OA=2,连接
AC,BC,过点O作OE ⊥AC,OF ⊥BC,垂足分别为E,F,连接EF,则 2 EF的长度等于 .
(
(
2.如图b,AB是⊙O的直径,且AB=2,C,D是同一半圆上的两点,并且
方法总结 (1)证切线时添加辅助线的解题方法有两种: ①有公共点, 连半径,证垂直; ②无公共点,作垂直,证半径;有切线时添加辅助 线的解题方法是:见切点,连半径,得垂直;
(2)设了未知数,通常利用勾股定理建立方程.
配套训练(多解题)如图,直线AB,CD相交于点O, ∠AOD=30 °, 半径为1cm的⊙P的圆心在射线OA上,且与点O的距离为6cm,如果 ⊙P以1cm/s的速度沿由A向B的方向移动,那么 4或8 直线CD相切. A P 思路点拨 根本题应分为两种情况:(1)D ⊙P在直线AB下面与直线CD相切;(2) ⊙P在直线AB上面与直线CD相切. 秒钟后⊙P与 C P1 E P2 B
专题五 直线与圆的位置关系
例5 如图, O为正方形对角线上一点,以点O 为圆心,OA长为半径的 ⊙O与BC相切于点M. (1)求证:CD与⊙O相切; (2)若正方形ABCD的边长为1,求⊙O的半径. (1)证明:过点O作ON⊥CD于N.连接OM A D
第24章圆期末复习圆的基本性质PPT课件(沪科版)

2
O E1C D
BO⊥AD
8.如图,AB是⊙O的直径,AC,BC分别
与⊙O相交于点D,E,连接DE,现给出两个命题:
①若AC=AB,则DE=CE;②若∠C=45°,记
△CDE的面积为S1,四边形DABE的面积为S2,则
S1=S2,那么( D ).
C
A.①是真命题 ②是假命题
B.①是假命题 ②是真命题 D
并交BO、AO的延长线于点C、D,连接CD,交
⊙O于点E、F,过圆心O作OM⊥CD于点M.
求证: (2)CE=DF.
(2) ∵△ACO≌△BDO, A
B O
∴OC=OD,
∵OM⊥CD, C E M F
D
∴CM=DM, EM=FM,
∴CM-EM=DM-FM.
∴CE=DF.
D
5.如图,AB是⊙O的直径,C、D是⊙O上 的两点,分别连接AC、BC、CD、OD,若 ∠DOB=140°,则∠ACD= ( A).
A.20° B. 30° C. 40° D.70° C
A
O
B
D
6.如图,⊙O的直径CD过弦EF的中点G, 连接 CF,∠C=30°,CF= 2 ,3 则OG的长是( A).
沪科版
第24章 圆 期末复习(2)
圆的基本性质
复习要点
1.圆 (1)平面上到定点的 距离 等于定长的所有 点 组成
的图形叫做圆; 定点称为圆心, 定长 称为半径. (2)圆是轴对称图形,其对称轴是任意一条过 圆心的
直线;圆又是中心对称图形,对称中心是 圆心 . (3)不在同一条直线上的 三个点确定一个圆.
AB=AC, ∠ BAC=36°,在AB上取点D(不与点
A,B重合),连接BD,AD,则∠BAD+
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d
┐ 相离
1、直线和圆相交 2、直线和圆相切 3、直线和圆相离
d < r; d = r; d > r.
切线的判定定理
• 定理 经过半径的外端,并且垂直于这条半径的 直线是圆的切线. 如图 ∵OA是⊙O的半径, 且CD⊥OA, ∴ CD是⊙O的切线.
C
●
O
A
D
(1)定义
(2)圆心到直线的距离d=圆的半径r (3)切线的判定定理:经过半径的外端, 并且垂直于这条半径的直线是圆的切线.
C
A
┗
●
B
O
M
●
由 ① CD是直径 ③ AM=BM
②CD⊥AB,
可推得
⌒ ⌒ ④AC=BC,
⌒ ⌒ ⑤AD=BD.
D
C
(1)直径 (过圆心的线);(2)垂直弦; (3) 平分弦 ; (4)平分劣弧;
A
M└
●
B O
(5)平分优弧.
知二得三
注意: “ 直径平分弦则垂直弦.” 这句话对吗?
(错 )
D
例⊙O的半径为10cm,弦AB∥CD,
∴CD⊥OA.
C
A
切线的性质定理出可理解为
如果一条直线满足以下三个性质中的任意两个,那么
第三个也成立。①经过切点、②垂直于切线、③经过圆心。 如 ① ② ① ③ ② ③ ③
② ①
1、两个同心圆的半径分别为3 cm和4 cm,大圆的 弦BC与小圆相切,则BC=_____ cm; 2、如图2,在以O为圆心的两个同心圆 中,大圆的弦AB是小圆的切线,P为切点, 设AB=12,则两圆构成圆环面积为_____; 3、下列四个命题中正确的是( ).
D
A
●
B
O ①∠AOB=∠A′O′B′
可推出
┏ A′ D′ B′ 如由条件: ③AB=A′B′
②AB=A′B′
⌒ ⌒
④ OD=O′D′
三、圆周角定理及推论
D
B
●
C E O
C BA
O
O
A C
●
●
B
A
定理: 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这弧 所对的圆心角的一半. 推论:直径所对的圆周角是 直角 . 90°的圆周角所对的弦是 直径 . 判断: (1) 相等的圆心角所对的弧相等. (×) (2)相等的圆周角所对的弧相等. (3) 等弧所对的圆周角相等. (×) (√)
E
┓பைடு நூலகம்
1
B
E
C
B
C
• 1.如图:圆O中弦AB等于半径R,则这条弦所对的 60度 30或150度 圆心角是___,圆周角是______.
O
A
B
2:已知ABC三点在圆O上,连接ABCO, 如果∠ AOC=140 °,求∠ B的度数. D 解:在优弧AC上定一点D,连结AD、 CD. ∵ ∠ AOC=140 ° O A ∴ ∠ D=70 ° ∴ ∠ B=180 ° -70 ° =110 °
A P B O
①与圆有公共点的直线是该圆的切线 ; ②垂直于圆的 半径的直线是该圆的切线 ; ③到圆心的距离等于半径 的直线是该圆的切线 ;④过圆直径的端点,垂直于此 直径的直线是该圆的切线.
A.①② B.②③ C.③④ D.①④
一、判断。 1、三角形的外心到三角形各边的距离相等; ( × ) 2、直角三角形的外心是斜边的中点. ( √ ) 二、填空: 1、直角三角形的两条直角边分别是5cm和12cm,则它的外接圆 半径 6.5cm ,内切圆半径 2cm ; 2、等边三角形外接圆半径与内切圆半径之比 2:1 . 三、选择题: 下列命题正确的是( C ) A、三角形外心到三边距离相等 B、三角形的内心不一定在三角形的内部 C、等边三角形的内心、外心重合 D、三角形一定有一个外切圆 四、一个三角形,它的周长为30cm,它的内切圆半径 30cm 为2cm,则这个三角形的面积为______.
3、圆内接四边形ABCD中,∠A∶∠B∶∠C∶∠D可 以是( )
A、1∶2∶3∶4 B、1∶3∶2∶4
C、4∶2∶3∶1
D、4∶2∶1∶3
练:有两个同心圆,半径分别为R和r, P是圆环内一点,则OP的取值 r<OP<R 范围是_____.
O
P
五.直线与圆的位置关系
r r
●
●
O ┐d
O
r
●
O
相交
d ┐ 相切
--圆、与圆有关的位置关系(1)
圆的相关概念(略)
一、垂径定理
1.定理 垂直于弦的直径平分弦,并且平分 弦所的两条弧. C
A
M└
●
B O
若 ① CD是直径 ② CD⊥AB
③AM=BM,
可推得
⌒ ⌒ ④AC=BC,
⌒ ⌒ ⑤AD=BD.
D
重视:模型“垂径定理直角三角形”
2、垂径定理的逆定理
平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧.
A C E O m B n D
图1
A
O
图2
B
四、点和圆的位置关系
.o .p r
Op<r Op=r Op>r
.o
.p
.o .p
点p在⊙o内 点p在⊙o上 点p在⊙o外
不在同一直线上的三个点确定一个
圆
(这个三角形叫做圆 的内接三角形,这个圆叫做三角形的外接圆,圆心叫 做三角形的外心) 反证法的三个步骤: 1、提出假设 2、由题设出发,引出矛盾 3、由矛盾判定假设不成立,肯定结论正确
O
综合应用垂径定理和勾股定理可求得半径
6.如图:AB是圆O的直径,BD是圆O的弦, BD到C,AC=AB,BD与CD的大小有什么关系?
为什么?
A
补充:
若∠B=70 °,则 40 ° ∠DOE=___.
E
O
C
D
B
7、如图,AB是圆O的直径,圆O过 AC的中点D,DE⊥BC于E. 证明:DE是圆O的切线.
B
C
3.平面上一点P到圆O上一点的距离最长为 2或4cm 6cm,最短为2cm,则圆O的半径为_______.
4.怎样要将一个如图所示的破镜 重圆?
5、 如图,AB是⊙O的任意一条弦,OC⊥AB, 垂足为P,若 CP=7cm,AB=28cm ,你能帮老师求出 这面镜子的半径吗? C
7 14
P
B
A
实质
三角形的外心 三角形三边垂直平分线的交点
三角形的内心
三角形三内角角平分线的交点
性质
到三角形各顶点 的距离相等 到三角形各边的 距离相等
三角形的外心是否一定在三角形的内部?
A
A
●
A
●
O C B
┐
O
●
O C
B
C
B
锐角三角形的外心位于三角形内, 直角三角形的外心位于直角三角形斜边中点, 钝角三角形的外心位于三角形外.
六.圆与圆的位置关系
交点个数
d R r
名称
d , R , r 的关系 d>R+r d=R+r R-r< d < R+ r d=R-r
0
外离
1
外切 相交
2
1
内切
内含 0 同心圆是内含的特殊情况
d<R-r
七.三角形的外接圆和内切圆:
A A
O C B B 三角形外接圆的圆心叫三角形的外心
I
C 三角形内切圆的圆心叫三角形的内心。
A.150°
B.130°
C.120°
D.60°
4、在△ABC中,∠A=70°,若O为△ABC的外心, ∠BOC= ;若O为△ABC的内心,∠BOC= .
C D A B
O
图1
图2
1、两个同心圆的直径分别为5 cm和3 cm,则圆环部分的宽 度为_____ cm;
2、如图1,已知⊙O,AB为直径,AB⊥CD,垂足为E,由 图你还能知道哪些正确的结论?请把它们一一写出 来 ; 3、为改善市区人民生活环境,市建设污水管网工程,某圆 柱型水管的直径为100 cm,截面如图2,若管内污水的面宽 AB=60 cm,则污水的最大深度为 cm; 4、已知、是同圆的两段弧,且=2,则弦AB与CD之间的关 系为( ).A.AB=2CD;B.AB<2CD;C.AB>2CD;D.不能确 定
1、如图1,AB是⊙O的直径,C为圆上一点,弧AC度数为60°, OD⊥BC,D为垂足,且OD=10,则AB=_____,BC=_____; 2、已知、是同圆的两段弧,且弧AB等于2倍弧AC,则弦AB与 CD之间的关系为( ); A.AB=2CD B.AB<2CD C.AB>2CD D.不能确定
3、 如图2,⊙O中弧AB的度数为60°,AC是⊙O的直径,那 么∠BOC等于 ( );
切线的判定定理的两种应用
1、如果已知直线与圆有交点,往往要 作出过这一点的半径,再证明直线垂直 于这条半径即可; 2、如果不明确直线与圆的交点,往往要 作出圆心到直线的垂线段,再证明这条 垂线段等于半径即可.
切线的性质定理
圆的切线垂直于过切点的半径.
∵CD切⊙O于A, OA是⊙O的 半径
●
O D
圆内接四边形的性质:
(1)对角互补;(2)任意一个外角都等于它的内
对角
1、⊙O的半径为R,圆心到点A的距离为d,且R、d分 别是方程x2-6x+8=0的两根,则点A与⊙O的位置关系是 ( ) A.点A在⊙O内部 C.点A在⊙O外部 B.点A在⊙O上 D.点A不在⊙O上
2、M是⊙O内一点,已知过点M的⊙O最长的弦为10 cm,最短的弦长为8 cm,则OM=_____ cm.