七年级下册数学《二元一次方程组解法》
七年级数学下册 10.2 二元一次方程的解法 加减消元法 青岛版

x y
3 2
参考小丽的思路,怎样解 下面的二元一次方程组呢?
2x 5y 7① 2x 3 y ②1
分析:
观察方程组中的两个方程,未知数x的系数
相等,都是2.把这两个方程两边分别相减, 就可以消去未知数x,同样得到一个一元一
次方程.
2x 5y 7 ① 2x 3y 1 ②
解:把 ②-①得:8y=-8 y=-1
主要步骤:
变形
用一个未知数的代数式
表示另一个未知数
代入
消去一个元
求解 分别求出两个未知数的值
写解
写出方程组的解
怎样解下面的二元一次 方程组呢?
3x 5y 21 ① 2x 5y -11 ②
5 y和 5y
互为相反数…… 按照小丽的思路,你能消去 一个未知数吗?
3x 5y 21 ① 小丽 2x 5y -11 ②
解方程组
3x 4y 5
3x2y2.5 11
①
3x 2y 5 ②
第八章 二元一次方程组
8.2 消元习题课
分析:乍一看此题很麻烦,但当我们 仔细观察两个方程中同一未知数的系数 关系时,很容易看到,①与②中含有x项 的系数都是3,所以可以直接把②代入① 消去x.
解:。 把②代入①,得
2 y 5 y 5 2 y 5 2 y 2 .5
依据是等式性质.
一.填空题:
x+3y=17
1.已知方程组
两个方程
2x-3y=6
只要两边 分别相加 就可以消去未知数 y
25x-7y=16
2.已知方程组
两个方程
25x+6y=10
只要两边分别相减就可以消去未知数 x
应用新知
问题 如何用加减消元法解下列二元一次方程组?
第二节 二元一次方程组的解法(含答案)...七年级数学 学而思

第二节二元一次方程组的解法1.二元一次方程组的解法基本思路是消元,即通过运用代入法或加减法把二元一次方程组转化为一元一次方程,从而求出方程组的解. (1)代入消元法:通过等量代换,消去方程组中的一个未知数,使二元一次方程组转化为一元一次方程,从而求得一个未知数的值,然后再求出被消去未知数的值,从而确定原方程组的解的方法.代入消元法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数例如y,用含另一个未知数如x的代数式表示出来;②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出x(或y)的值;④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值;⑤把求得的x、y的值用“{”联立起来,就是方程组的解.(2)加减消元法:加减法是消元法的一种,也是解二元一次方程组的基本方法之一.加减法不仅在解二元一次方程组中适用,也是今后解其它方程(组)经常用到的方法.加减消元法解二元一次方程组的一般步骤:①变换系数:方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数;②加减消元:把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求得未知数的值;④回代:将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值;⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,需要把求得的x,y的值用“{”联立起来.2.特殊方程组的解法对于具有某些特点的二元一次方程组,如果仍按常规方法不仅运算量大,而且容易出错,则可根据题目的特点,利用整体思想来采用特殊方法简化方程组,接着再采用代入或加减消元法解出相应x,y的值即可.(1)系数轮换法:适用方程组类型:如果把方程组中的每一个未知数依次轮换后,虽然每个方程都变了,但是整个方程组仍不变,步骤:解题时,把各方程相加,即可得到x+ y=常数的形式,把各方程相减,即可得到x- y=常数的形式,这两个新的方程组成的方程组就是原方程组化简后的结果,便可以采用加减或代入消元法求得未知数的值.(2)换元法:适用方程组类型:方程组项数较多、系数较为复杂,而且会有相同的部分或者是互为相反数的部分多次出现;步骤:解题时,把方程中相同的部分或者是互为相反数的部分看成是一个整体,用另一个字母来替换,从而简化原先项数多、系数复杂的方程组,再采用常规的加减或者代入消元法来求得未知数的值.(3)倒数法:适合方程组类型:方程中出现分母是和的形式,分子是积的形式⋅+yx xy步骤:解题时,采用倒数法变换成分子是和、分母是积的形式,xyyx +然后进行拆分,利用加减或者代入或者换元法来解出x ,y 的值.1.代入消元方法的选择①运用代入法时,将一个方程变形后,必须代入另一个 方程,否则就会 得出“0=0”的形式,求不出未知数的值;②当方程组中有一个方程的一个未知数的系数是1或一1时,用代入法较简便. 2.加减消元方法的选择①一般选择系数绝对值最小的未知数消元;②当某一未知数的系数互为相反数时,用加法消元;当某一未知数的系数相 等时,用减法消元;③某一未知数系数成倍数关系时,直接使其系数互为相反数或相等,再用 加减消元求解;④当相同的未知数的系数都不相同时,找出某一个未知数的系数的最小公倍数,同时对两个方程进行变形,转化为系数的绝对值相同的方程,再用加减消元求解,例1.如果关于x ,y 的方程组⎩⎨⎧-=-=+223a y x y x 的解是负数,则a 的取值范围是( )54.<<-a A 5.>a B 4.-<a C D .无解检测1.(浙江绍兴期末)已知关于x ,y 的方程组⎩⎨⎧-=-=-,52253a y x ay x 若x ,y 的值互为相反数,则a 的值为( )5.-A 5.B 20.-C 20.D例2.(四川南江县期末)已知,0)112(|32|2=+++--y x y x 则( )⎩⎨⎧==12.y x A ⎩⎨⎧-==30.y x B ⎩⎨⎧-=-=51.y x C ⎩⎨⎧-=-=72.y x D检测2.(山东滨州期末)已知,0|72|)12(2=-++--y x y x 则=-y x 3( )3.A 1.B 6.-C 8.D例3.(湖北黄冈期末)若y x h y xb a ba -+--332243是同类项,则b a -的值是( )0.A 1.B 2.C 3.D检测3.若y x nm +243与n m y x -5是同类项,则m .n 的值分别是( ) 3,2.A 1,2.B 0,2.C 2,1.D例4.(湖南衡阳县一模)解方程组:⎩⎨⎧=+=+,604320122016604120162012y x y x 则yx yx -+值是3.A 3.-B 6.C 6.-D检测4.(1)(江苏海门市期末)如果实数x ,y 满足方程组⎩⎨⎧=+=+,4222y x y x 那么=+y x(2)(安徽泗县校级模拟)关于x ,y 的二元一次方程组⎩⎨⎧-=+-=+22132y x k y x 的解满足y x +,1=则k=例5.(河北古冶区一模)已知a ,b 满足方程组⎩⎨⎧=-=+,283b a b a 则=+b a2.A3.B4.C5.D检测5.(1)(河北模拟)已知e 、f 满足方程组⎩⎨⎧=-=--,6223e f f e 则f e +2的值为( )2.A 4.B 6.C 8.D(2)(广东广州中考)已知a .b 满足方程组⎩⎨⎧=-=+,43125b a b a 则b a +的值为第二节 二元一次方程组的解法(建议用时:35分钟)实战演练1.用加减法解方程组⎩⎨⎧-=-=+15y x y x 中,消x 用 法,消y 用 法( )A.加,加 B .加,减 C .减,加 D .减,减2.若用代入法解方程组⎩⎨⎧+==,12332y x yx 以下各式代入正确的是( )1)32(23.+=x x A 1)32(23.+=y x B1)23(23.+=x x C 1623.+⋅=x x x D3.若,0|52||12|=--+--y x y x 则x+y 的值为( )4.A5.B6.C7.D4.已知:|32|++y x 与2)2(y x +互为相反数,则=-y x ( )7.A 5.B 3.C 1.D5.(山东临清市期末)已知方程组⎩⎨⎧=+=-my x y x 24中x ,y 相加为0,则m 的值为( )2.A 2.-B 0.C 4.D6.(河北石家庄校级模拟)若方程组⎩⎨⎧=++=+my x m y x 32253的解x 与y 互为相反数,则m 的值为( )2.-A 0.B 2.C 4.D7.若方程组⎩⎨⎧=+=+16156653y x y x &的解也是方程103=+ky x 的解,则( )6.=k A 10.=k B 9.=k C 101.=k D 8.若3243y x b a +与ba y x -634的和是单项式,则=+b a ( ) 3.-A 0.B 3.C 6.D9.按如图8 -2—1所示的运算程序,能使输出结果为3的x ,y 的值是( )128--2,5.-==y x A ⋅-==3,3.y x B 2,.4.=-=y x C 9,3.-=-=y x D10.(山东临沂中考)已知x ,y 满足方程组⎩⎨⎧=+=+,4252y x y x 则y x -的值为( )⎩⎨⎧==12.11y x 是方程组⎩⎨⎧=-=+04by ax by ax 的解,那么=+-))((b a b a 12.已知方程组⎩⎨⎧-=+=-123225m y x my x 的解x ,y 互为相反数,则m=13.(江苏常州期末)若关于x ,y ,的二元一次方程组⎩⎨⎧=+-=+22132y x a y x 的解满足x+ y=l ,则a 的值为14.三个同学对问题“若方程组⎪⎩⎪⎨⎧=+=+222111c y b x a c y b x a 的解是⎩⎨⎧==,43y x 求方程组⎪⎩⎪⎨⎧=+=+222111523523c y b x a c y b x a 的解.”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”,参考他们的讨论,你认为这个题目的解应该是 .15.(“信利杯”竞赛题)已知:a ,b ,c 三个数满足,31=+b a ab ,41=+c b bc ,51=+a c ca 则ca bc ab abc++的值为 16.(重庆校级自主招生)解方程组:⎩⎨⎧=+=+200320042005200620052004y x y x17.解方程组:⎪⎩⎪⎨⎧-=-=-+-421621y x y x18.已知方程组⎩⎨⎧+=---=+ay x ay x 317的解中,x 为非正数,y 为负数.(1)求a 的取值范围; (2)化简.|2||3|++-a a19.(江苏张家港市期末)已知关于x ,y 的方程组⎩⎨⎧+=+=+12242m y x my x (实数m 是常数).(1)若x+y=1,求实数m 的值;(2)若,51≤-≤-y x 求m 的取值范围; (3)在(2)的条件下,化简:.|32||2|-++m m20.(黑龙江讷河市校级期末)已知二元一次方程组⎩⎨⎧+=-+=+1593a y x a y x 的解x ,y 均是正数.(1)求a 的取值范围; (2)化简.|4||54|--+a a拓展创新21.解方程组:⎩⎨⎧==+44y -3x 23y x 2拓展1.解方程组:⎪⎪⎩⎪⎪⎨⎧=-=+443232y x y x 拓展2.解方程组:⎪⎪⎩⎪⎪⎨⎧=-=+41432132x y xy x y xy极限挑战22.(全国初中数学竞赛)若,0634=--z y x ),0(072=/=-+xyz z y x 则式子222222103225z y x z y x ---+的值等于( )21.-A219.-B 15.-C 13.-D课堂答案培优答案。
人教版数学七年级下册8.2-消元——二元一次方程组的解法(第1课时)

复习回顾:
判断下列各方程是否为二元一次方程:
① 2x32y√
② 1 1×
x y
③ 6ab 3ab× ④ x y y 2×
x
⑤ 2R2r6√
复习回顾:
判断下列各方程组是否为二元一次方程组:
√ ①
2x y
3
y
4
z
3 7
×
x
3y
7
0.
解方程组即可得出x,y的值.
【答案】 -3 —130
巩固提高:
4、若方程 5x2m n4y3m 2n9是关于 x, y的二
元一次方程,求m , n的值.
解:根据题意得
2m n 1, 3m 2n 1.
解得 m 3 , n 1 . 77
巩固提高:
5、下列是用代入法解方程组
②
m
m
n
8
1
③3ab 4 Nhomakorabeaa
5
8
1
9
×
√ ⑤
5 p
p q
q 1
8 2
④
m m 2
1 2n
4n
9 5
×
复习回顾:
用含x的式子表示 y :
(1)x2y30 (2)2x5y21
y x3 2
y 2x 21 5
(3)0.5xy7
y0.5x7
知识新授:
今有鸡兔同笼 上有三十五头 下有九十四足 问鸡兔各几头
x y 3 ①
【例2】解方程组
3
x
8
y
14
②
分析:方程①中x的系数是1,用含y的式子表示x,比较简便.
二元一次方程组的解法-代入消元法(课件)七年级数学下册(人教版)

把y=20代入③,得 x=28
所以这个方程组的解是
x 28
y 20
答:篮球队有28支、排球队有20支参赛.
=1−
1.用代入法解方程组
时,代入正确的是(
)
− 2 = 4
C
A.x-2-x=4
B.x-2-2x=4
2.用代入法解方程组
2
A.3x=2×
3
所以原方程组的解是
y 105
转化
x+(x+10)=200
x=95
y=105
求方程组解的过程叫做解方程组.
将未知数的个数由多化少、逐一解决的思想方法,叫做消元思想.
把二元一次方程组中一个方程的一个未知数用含另一未知数的式子表示出
来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.
这种方法叫做代入消元法,简称代入法.
代入消元法解二元一次方程组的一般步骤:
第一步:在已知方程组的两个方程中选择一个适当的方程,将它的某个未
知数用含有另一个未知数的式子表示出来;
第二步:把此式子代入没有变形的另一个方程中,可得一个一元一次方程;
第三步:解这个一元一次方程,得到一个未知数的值;
第四步:回代求出另一个未知数的值;
y 3x 1 0
解:由② ,得 y=3x+1
①
②
③
把③代入①,得 2x+3x+1=0
解这个方程,得 x=1
把x=1代入③,得 y=4
x 1
所以这个方程组的解是
y 4
本题还有其它
做法吗?
例2.用代入法解方程组
二元一次方程组的解法(教师版)2021-2022学年七年级数学下册同步精品讲义(人教版)

第17课二元一次方程组的解法目标导航课程标准1. 理解消元的思想;2. 会用代入法解二元一次方程组.3. 掌握加减消元法解二元一次方程组的方法;4. 能熟练、正确、灵活掌握代入法和加减法解二元一次方程组;5.会对一些特殊的方程组进行特殊的求解.知识精讲知识点01 消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程.知识点02 代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.注意:(1)代入消元法的关键是先把系数较简单的方程变形为用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的.(2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便;(3)若方程组中所有方程里的未知数的系数都不是1或-1,选系数的绝对值较小的方程变形比较简便.代入消元法的一般步骤:(1)转化:从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(2)代入:把(1)中所得的方程代入另一个方程,消去一个未知数.(3)求解:解所得到的一元一次方程,求得一个未知数的值.(4)回代、写解:把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.(5)检验: 把方程组的解代回方程组检验,当满足每个方程时才是方程组的解。
知识点03 加减消元法解二元一次方程组两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法. 注意: 用加减消元法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)将这个求得的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,并把求得的两个未知数的值用“大括号”联立起来,就是方程组的解.知识点04 选择适当的方法解二元一次方程组解二元一次方程组的基本思想(一般思路)是消元,消元的方法有两种:代入消元和加减消元,通过适当练习做到巧妙选择,快速消元.考法01 用代入法解二元一次方程组【典例1】用代入法解方程组:【分析】比较两个方程未知数的系数,发现①中x 的系数较小,所以先把方程①中x 用y 表示出来,代入②,这样会使计算比较简便.【答案与解析】解:由①得 ③ 将③代入② ,解得. 237338x y x y +=⎧⎨-=⎩①②732y x -=733382y y -⨯-=13y =能力拓展将代入③,得x =3 所以原方程组的解为. 【点睛】代入法是解二元一次方程组的一种重要方法,也是同学们最先学习到的解二元一次方程组的方法,用代入法解二元一次方程组的步骤可概括为:一“变”、二“消”、三“解”、四“代”、五“写”.【即学即练】m 取什么数值时,方程组的解(1)是正数;(2)当m 取什么整数时,方程组的解是正整数?并求它的所有正整数解.【答案】(1)m 是大于-4 的数时,原方程组的解为正数;(2)m=-3,-2,0,.【典例2】对于某些数学问题,灵活运用整体思想,可以化难为易.在解二元一次方程组时,就可以运用整体代入法:如解方程组:解:把②代入①得,x+2×1=3,解得x=1.把x=1代入②得,y=0.所以方程组的解为 请用同样的方法解方程组:.【分析】仿照已知整体代入法求出方程组的解即可.【答案与解析】解:由①得,2x ﹣y=2③,把③代入②得,1+2y=9,解得:y=4,把y=4代入③得,x=3,则方程组的解为【点睛】本题体现了整体思想在解二元一次方程组时的优越性,利用整体思想可简化计算.【即学即练】解方程组(1)(2)【答案】 13y =313x y =⎧⎪⎨=⎪⎩2320,2352y 9.7x y x y --=⎧⎪-+⎨+=⎪⎩45:4:3x y x y -=⎧⎨=⎩①②解: 将①代入②:, 得 y=4,将y=4代入①:2x -12=2得 x=7,∴原方程组的解是. (2) 解:由②,设x=4,y=3代入①:4-4·3=54-12=5-8=5∴,, ∴原方程组的解为. 考法02 方程组解的应用【典例3】如果方程组359x y x y +=⎧⎨-=⎩的解是方程3x+my=8的一个解,则m=( ) A .1B .2C .3D .4 【分析】求出方程组的解得到x 与y 的值,代入已知方程即可求出m 的值. 【答案】B .【解析】解:, 由①得y=3-x ③将③代入②得:6x=12,解得:x=2,将x=2代入②得:10﹣y=9,解得:y=1,将x=2,y=1代入3x+my=8中得:6+m=8,解得:m=2. 232235297x y x y y -=⎧⎪⎨-++=⎪⎩①②25297y ++=74x y =⎧⎨=⎩45:4:3x y x y -=⎧⎨=⎩①②k k k k k k k 58k =-542x k ==-1538y k ==-52158x y ⎧=-⎪⎪⎨⎪=-⎪⎩【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.【典例4】已知和方程组的解相同,求的值.【分析】两个方程组有相同的解,这个解是2x+5y =-6和3x-5y =16的解.由于这两个方程的系数都已知,故可联立在一起,求出x 、y 的值.再将x 、y 的值代入ax-by =-4,bx+ay =-8中建立关于a 、b 的方程组即可求出a 、b 的值.【答案与解析】解:依题意联立方程组①+③得5x =10,解得x =2.把x =2代入①得:2×2+5y =-6,解得y =-2,所以, 又联立方程组,则有, 解得. 所以(2a+b)2011=-1.【点睛】求方程(组)中的系数,需建立关于系数的方程(组)来求解,本例中利用解相同,将方程组重新组合换位联立是解答本题的关键.【即学即练】小明和小文解一个二元一次组322cx y ax by -=-⎧⎨+=⎩小明正确解得11x y =⎧⎨=-⎩小文因抄错了c ,解得26x y =⎧⎨=-⎩已知小文除抄错了c 外没有发生其他错误,求a+b+c 的值.【答案】解:把代入cx ﹣3y=﹣2,得c+3=﹣2,解得:c=﹣5,把与分别代入ax+by=2,得,解得:, 2564x y ax by +=-⎧⎨-=-⎩①②35168x y bx ay -=⎧⎨+=-⎩③④2011(2)a b +2563516①x y x y +=-⎧⎨-=⎩③22x y =⎧⎨=-⎩48ax by bx ay -=-⎧⎨+=-⎩224228a b a b +=-⎧⎨-+=-⎩13a b =⎧⎨=-⎩则a+b+c=2+﹣5=3﹣5=﹣2.考法03 加减法解二元一次方程组【典例5】用加减消元法解方程组3465923x y x y ++== 【分析】先将原方程写成方程组的形式后,再求解.【答案与解析】 解:此式可化为:349(1)2659(2)3x y x y +⎧=⎪⎪⎨+⎪=⎪⎩ 由(1):3x+4y=18 (1)由(2):6x+5y=27 (2)(1)×2:6x+8y=36 (3)(3)-(2):3y=9y=3代入(1):3x+12=183x=6x=2∴23x y =⎧⎨=⎩【点睛】先将每个式子化至最简,即形如ax+by=c 的形式再消元.【即学即练】方程组201020092008200820072006x y x y -=⎧⎨-=⎩的解为: . 【答案】12x y =-⎧⎨=-⎩【典例6】若关于x 、y 的二元一次方程组1615ax my bx ny -=⎧⎨+=⎩的解为71x y =⎧⎨=-⎩,求关于x 、y 的方程组(2)()16(2)()15a x y m x yb x y n x y +--=⎧⎨++-=⎩的解. 【分析】如果用一般方法来解答此题,很难达到目标,观察发现,两方程的系数相同,只是未知数的呈现方式不同,如果我们把2x +y ,x -y 看作一个整体,则两个方程同解.【答案与解析】解:方程组的解仅仅与未知数的系数有关,与未知数选用什么字母无关,因此把(2x +y )与(x -y )分别看成一个整体当作未知数,可得27,1.x y x y +=⎧⎨-=-⎩ 解得:23x y =⎧⎨=⎩【点睛】本例采用了类比的方法,利用了消元的思想,消元的方法有:代入消元法与加减消元法.【即学即练】三个同学对问题“若方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是: .【答案】解:由方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,得1112223434a b c a b c +=⎧⎨+=⎩, 上式可写成111222352105352105a b c a b c ⨯+⨯=⎧⎨⨯+⨯=⎩,与111222325325a x b y c a x b y c +=⎧⎨+=⎩比较, 可得:510x y =⎧⎨=⎩. 考法04 用适当方法解二元一次方程组【典例7】解方程组36101610x y x y x y x y +-⎧+=⎪⎪⎨+-⎪-=-⎪⎩ 【分析】解决本题有多种方法:加减法或代入法,或整体代入法,整体代入法最简单.【答案与解析】 解:设,610x y x y m n +-==,则 原方程组可化为31m n m n +=⎧⎨-=-⎩①② 解得12m n =⎧⎨=⎩即16210x y x y +⎧=⎪⎪⎨-⎪=⎪⎩ ,所以620x y x y +=⎧⎨-=⎩ 解得137x y =⎧⎨=-⎩所以原方程组的解为137x y =⎧⎨=-⎩. 【点睛】解一个方程组的方法一般有多种方法,我们要根据方程组的特点选择最简便的求解方法.【即学即练】【答案】解:去分母,整理化简得,9112061925x y x y +=⎧⎨+=⎩①②, ②×3-①×2得,3535y =,即1y =,将1y =代入①得,99x =,即1x =,所以原方程组的解为11x y =⎧⎨=⎩.【典例8】试求方程组27526x y x y ⎧-=--⎪⎨-=-⎪⎩的解. 【答案与解析】 解:27526x y x y ⎧-=--⎪⎨-=-⎪⎩①② ①-②,整理得513y y -=- ③ ∵50y -≥,∴13-y ≥0,即y ≤13,当513y ≤≤时,③可化为513y y -=-,解得9y =;当5y ≤时,③可化为513y y -=-,无解.将9y =代入②,得23x -=,解得15x =-或.综上可得,原方程组的解为:19x y =-⎧⎨=⎩或59x y =⎧⎨=⎩.【点睛】解含有绝对值的方程组,一般先转化为含绝对值的一元一次方程,再分类讨论求出解.【即学即练】若二元一次方程组37231x y x y -=⎧⎨+=⎩和y=kx+9有相同解,求(k+1)2的值.【答案】解:方程组,①×3+②得:11x=22,解得:x=2,将x=2代入①得:6﹣y=7,解得:y=﹣1,∴方程组的解为, 将代入y=kx+9得:k=﹣5, 则当k=﹣5时,(k+1)2=16.题组A 基础过关练1.用加减法解方程组235327x y x y -=⎧⎨-=⎩①②下列解法错误的是( ) A .①×3-②×2,消去xB .①×2-②×3,消去yC .①×(-3)+②×2,消去xD .①×2-②×(-3),消去y 【答案】D【解析】【详解】本题考查了加减法解二元一次方程组用加减法解二元一次方程组时,必须使同一未知数的系数相等或者互为相反数.如果系数相等,那么相减消元;如果系数互为相反数,那么相加消元.A 、32⨯-⨯①②,可消去x ,故不合题意;B 、23⨯-⨯①②,可消去y ,故不合题意;C 、(3)2⨯-+⨯①②,可消去x ,故不合题意;D 、2(3)⨯-⨯-①②,得,不能消去y ,符合题意. 故选D . 分层提分2.用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩①②时,下列方法中无法消元的是()A.①×2﹣②B.②×(﹣3)﹣①C.①×(﹣2)+②D.①﹣②×3【答案】D【解析】【分析】根据各选项分别计算,即可解答.【详解】方程组利用加减消元法变形即可.解:A、①×2﹣②可以消元x,不符合题意;B、②×(﹣3)﹣①可以消元y,不符合题意;C、①×(﹣2)+②可以消元x,不符合题意;D、①﹣②×3无法消元,符合题意.故选:D.【点睛】本题考查了加减消元法解二元一次方程组,只有当两个二元一次方程未知数的系数相同或相反时才可以用加减法消元,系数相同相减消元,系数相反相加消元.3.解方程组231367x yx y+=⎧⎨-=⎩①②,用加减法消去y,需要()A.①×2﹣②B.①×3﹣②×2C.①×2+②D.①×3+②×2【答案】C【解析】【分析】先把的系数化成绝对值相等的方程,再相加即可.【详解】解:①×2得:4x+6y=2③,③+②得:7x=9,即用减法消去y,需要①×2+②,故选C.【点睛】本题考查了解二元一次方程组的应用,主要考查学生的理解能力和计算能力.4.用加减法将方程组2311255x yx y-=⎧⎨+=-⎩中的未知数x消去后,得到的方程是().A.26y= B.816y=C.26y-=D.816y-=【答案】D【解析】【分析】方程组两方程相减消去x即可得到结果.【详解】解:2311? 255?x yx y-=⎧⎨+=-⎩①②②-①得:8y=-16,即-8y=16,故选D.【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.利用加减消元法解方程组2510{536x yx y+=-=,①②,下列做法正确的是()A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×2【答案】D【解析】【详解】由已知可得,消元的方法有两种,分别为:(1)要消去y,可以将①×3+②×5;(2)要消去x,可以将①×(-5)+②×2.故选D6.用代入消元法解方程组3+4=225x yx y⎧⎨-=⎩①②使得代入后化简比较容易的变形是()A.由①得243yx-=B.由①得234xy-=C.由②得52yx+=D.由②得y=2x-5【答案】D【解析】【分析】根据代入消元法解二元一次方程组的步骤可知变形②更简单.【详解】解:观察方程①②可知,②中的系数为-1,比其它未知数的系数更为简单,所只要将②变形为y=2x-5③,再把③代入①即可求出方程组的解.故应选D.【点睛】本题考查了用代入消元法解二元一次方程组,理解代入消元法解方程组时化简系数较简单的方程是解题的关键.7.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4B.4C.﹣2D.2【答案】B【解析】【详解】试题解析:512{34a ba b+=-=①②,①+②:4a+4b=16则a+b=4,故选B.考点:解二元一次方程组.8.已知=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,则2m n-的算术平方根为()A.±2B2C.2D.4【解析】【详解】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根.【分析】∵=2{=1x y 是二元一次方程组+=8{ =1mx ny nx my -的解,∴2+=8{2=1m n n m -,解得=3{=2m n . 2=232=4=2m n -⨯-.即2m n -的算术平方根为2.故选C .9.若|321|20x y x y --++-=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩【答案】D【解析】【详解】 分析:先根据非负数的性质列出关于x 、y 的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y 的值即可. 详解:∵32120x y x y --+-=,∴321020x y x y --⎧⎨+-⎩== 将方程组变形为32=1=2x y x y -⎧⎨+⎩①②, ①+②×2得,5x=5,解得x=1,把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩. 故选D .点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.10.以方程组21x y x y +=⎧⎨-=⎩的解为坐标的点(x ,y )在平面直角坐标系中的位置是( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【分析】先求出方程组的解,然后即可判断点的位置.【详解】解:解方程组21x y x y +=⎧⎨-=⎩,得 1.50.5x y =⎧⎨=⎩, ∴点(1.5,0.5)在第一象限.故选:A .【点睛】本题考查了二元一次方程组的解法和坐标系中点的坐标特点,属于基本题型,熟练掌握上述基础知识是解题关键.11.若方程组31331x y a x y a+=+⎧⎨+=-⎩的解满足x +y =0,则a 的值为( ) A .﹣1B .1C .0D .无法确定 【答案】A【解析】【详解】试题解析:方程组两方程相加得:4(x+y )=2+2a ,即x+y=12(1+a ),由x+y=0,得到12(1+a )=0,解得:a=-1.故选A . 12.在解方程组2278ax by cx y +=⎧⎨+=⎩,时,甲同学正确解得32x y =⎧⎨=⎩,乙同学把c 看错了,而得到26x y =-⎧⎨=⎩,那么a ,b ,c 的值为( )A .2a =-,4b =,5c =B .4a =,5b =,2c =-C .5a =,4b =,2c =D .不能确定 【答案】B【解析】【分析】【详解】解:由甲同学的解正确,可知3c+2×7=8,解得2,c =-且3222a b +=①,由于乙看错c ,所以2622a b -+=②,解由①②构成的方程组可得:4,5a b =⎧⎨=⎩故选B .题组B 能力提升练13.已知23x y +=,用含x 的代数式表示y =________.【答案】y=3-2x【解析】【详解】23x y +=移项得:y=3-2x.故答案是:y=3-2x .14.已知x 、y 满足方程组2524x y x y +=⎧⎨+=⎩,则x y -的值为___. 【答案】1【解析】【分析】首先根据方程组的解的定义正确求出方程组的解,然后计算出x -y 或直接让两个方程相减求解.【详解】方法一:解方程组2524x y x y +=⎧⎨+=⎩, 解得:21x y =⎧⎨=⎩, ∴x -y=1;方法二:两个方程相减,得.x -y=1,【点睛】本题考查了解二元一次方程组,熟练掌握解二元一次方程组的基本方法是解题的关键,同时注意此题中的整体思想.15.如果方程组45x by ax =⎧⎨+=⎩的解与方程组32y bx ay =⎧⎨+=⎩的解相同,则a+b 的值为______. 【答案】1【解析】【分析】根据题意,把43x y =⎧⎨=⎩代入方程组52by ax bx ay +=⎧⎨+=⎩,得到一个关于a ,b 的方程组,将方程组的两个方程左右两边分别相加,整理即可得出a+b 的值.【详解】解:根据题意把43x y =⎧⎨=⎩代入方程组52by ax bx ay +=⎧⎨+=⎩,得 345432b a b a +⎧⎨+⎩=①=②, ①+②,得:7(a+b )=7,则a+b=1,故答案为:1.【点睛】此题主要考查了二元一次方程组的解的定义以及加减消元法解方程组.一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.注意两个方程组有相同的解时,往往需要将两个方程组进行重组解题.16.若方程组x y 73x 5y 3+=⎧⎨-=-⎩,则()()3x y 3x 5y +--的值是_____. 【答案】24.【解析】【分析】把x y 3x 5y +-、分别看作一个整体,代入进行计算即可得解.解:∵x y 73x 5y 3+=⎧⎨-=-⎩, ∴()()()3x y 3x 5y 37324+--=⨯--=.故答案为:24.17.已知关于x 、y 的方程221255x y a x y a +=+⎧⎨+=-⎩的解满足3x y +=-,则a 的值为__________________. 【答案】5【解析】【分析】①+②可得x+y=2-a ,然后列出关于a 的方程求解即可.【详解】解:221255x y a x y a +=+⎧⎨+=-⎩①②, ①+②,得3x+3y=6-3a ,∴x+y=2-a ,∵3x y +=-,∴2-a=-3,∴a=5.故答案为:5.【点睛】本题考查了二元一次方程组的特殊解法,在求二元一次方程组中两个未知数的和或差的时候,有时可以采用把两个方程直接相加或相减的方法,而不必求出两个未知数的具体值.18.已知x 2{y 1==是二元一次方程组mx ny 7{nx my 1+=-=的解,则m+3n 的立方根为 . 【答案】2【解析】【详解】把x 2{y 1==代入方程组mx ny 7{nx my 1+=-=,得:2m n 7{2n m 1+=-=,解得13m 5{9n 5==, ∴139m 3n 3855+=+⨯=33m 3n 82+=, 故答案为2.19.若单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,则m -7n 的算术平方根是_________.【答案】4【解析】【详解】试题分析:根据同类项定义由单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,可以得到关于m 、n 的二元一次方程4=m ﹣n ,2m+n=2,解得:m=2,n=﹣2,因此可求得m ﹣7n=16,即m ﹣7n 的算术平方根==4,故答案为 4.考点:1、算术平方根;2、同类项;3、解二元一次方程组 20.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是_______. 【答案】3212a b ⎧=⎪⎪⎨⎪=-⎪⎩【解析】【分析】方法一:利用关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩可得m 、n 的数值,代入关于a 、b 的方程组即可求解;方法二:根据方程组的特点可得方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是12a b a b +=⎧⎨-=⎩,再利用加减消元法即可求出a,b .【详解】详解:∵关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,∴将解12xy=⎧⎨=⎩代入方程组3526x myx ny-=⎧⎨+=⎩可得m=﹣1,n=2∴关于a、b的二元一次方程组()()()()3=526a b m a ba b n a b⎧+--⎪⎨++-=⎪⎩整理为:42546a ba+=⎧⎨=⎩解得:3212 ab⎧=⎪⎪⎨⎪=-⎪⎩方法二:∵关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩∴方程组3()()=52()()6a b m a ba b n a b+--⎧⎨++-=⎩的解是12a ba b+=⎧⎨-=⎩解12a ba b+=⎧⎨-=⎩得3212ab⎧=⎪⎪⎨⎪=-⎪⎩故答案为:3212ab⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.21.若方程组2313{3530.9a ba b-=+=的解是8.3{1.2,ab==则方程组的解为________【答案】6.32.2 xy==⎧⎨⎩【解析】【详解】试题分析:根据整体思想,可设a=x+2,b=y-1,可发现两个方程组相同,因此可知x+2=8.3,y-1=1.2,解得x=6.3,y=2.2,即方程组的解为:6.3{2.2xy==.题组C 培优拔尖练22.解下列方程组(1)257320x y x y -=⎧⎨-=⎩ (2)33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩ 【答案】(1)55x y ⎧=⎨=⎩;(2)025x y ⎧=⎪⎨=⎪⎩【解析】【分析】本题需要把两个方程组化简后,根据方程的形式选用合适的方法求解.【详解】(1)257320x y x y -=⎧⎨-=⎩, 整理得63157320-=⎧⎨-=⎩x y x y , 两式相减得:5x =,把 5x =代入25x y -=中,得y 5=;所以原方程组的解为:55x y ⎧=⎨=⎩. (2)原方程组变式为51565104x y x y ⎧+=⎨-=-⎩, 两式相减得:25y =, 将25y =代入5156x y +=中,得251565x +⨯=, 解得:0x =. 所以原方程组的解为025x y ⎧=⎪⎨=⎪⎩. 【点睛】本题考查了我二元一次方程组的解法,通过变形选择合适的方法求解是快速解题的关键.23.(1)用代入法解方程组:3759x y x y -=⎧⎨+=-⎩(2)用加减法解方程组:2232(3)31x y x y ⎧+=⎪⎨⎪+-=⎩【答案】(1)1x=21y=22⎧⎪⎪⎨⎪-⎪⎩;(2)x=2y=3⎧⎨⎩.【解析】【分析】(1)由x-y=3得x=3+y,再代入求出x,再求出y;(2)先对原方程组变形,再运用加减消元法解答.【详解】解:(1)3759 x yx y-=⎧⎨+=-⎩①②由①得x=3+y③将③代入②得:y=1 22 -将y=122-代入③得:x=12-所以原方程组的解为:1x=21 y=22⎧⎪⎪⎨⎪-⎪⎩(2)原方程组可化为:3x212 235yx y+=⎧⎨-=-⎩①②①×2得:6x+4y=24③②×3得:6x-9y=-15④③-④得:13y=39,解得:y=3将y=3代入①中得:x=2所以原方程组的解为:x=2 y=3⎧⎨⎩【点睛】本题考查了二元一次方程组得两种解法,其关键在于扎实的计算能力和严谨的思维.24.甲、乙两名同学在解方程组5{213mx yx ny+=-=时,甲解题时看错了m,解得7{22xy==-;乙解题时看错了n,解得3{7xy==-.请你以上两种结果,求出原方程组的正确解.【答案】n = 3, m = 4,2 {3 xy==-【解析】【详解】试题分析:由题意可知722xy⎧=⎪⎨⎪=-⎩是方程213x ny-=的解,由此即可求得n的值;37xy=⎧⎨=-⎩是方程5mx y+=的解,由此看求得m的值;这样即可得到正确的原方程组,再解方程组,即可求得原方程组的正确解;试题解析:由题意可知722xy⎧=⎪⎨⎪=-⎩是方程213x ny-=的解,∴72(2)132n⨯--=,解得n=3;37xy =⎧⎨=-⎩是方程5mx y+=的解,∴375m-=,解得m=4;∴原方程组为:452313x yx y+=⎧⎨-=⎩,解此方程组得23xy=⎧⎨=-⎩,∴m=4,n=3,原方程组的解为:23 xy=⎧⎨=-⎩.点睛:在本题中“甲、乙两名同学在解方程组5213mx yx ny+=⎧⎨-=⎩时,甲解题时看错了m,解得722xy⎧=⎪⎨⎪=-⎩”这句话的含义是:“722xy⎧=⎪⎨⎪=-⎩”是关于x y、的二元一次方程“213x ny-=”的解.25.阅读探索解方程组(1)2(2)6 2(1)(2)6 a ba b-++=⎧⎨-++=⎩解:设a&#ξΦ02∆;1&#ξΦ03∆;x,b&#ξΦ02B;2&#ξΦ03∆;y,原方程组可变为26 26 x yx y+=⎧⎨+=⎩解方程组得22xy=⎧⎨=⎩,即1222ab-=⎧⎨+=⎩,所以3ab=⎧⎨=⎩.此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组:(1)2(2)4352(1)(2)535a b a b ⎧-++=⎪⎪⎨⎪-++=⎪⎩ (2)能力运用已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为53x y =⎧⎨=⎩,直接写出关于m 、n 的方程组1112225(3)3(2)5(3)3(2)a m b n c a m b n c ++-=⎧⎨++-=⎩的解为_______.【答案】(1)95a b =⎧⎨=-⎩;(2)23m n =-⎧⎨=⎩. 【解析】【分析】(1)设13a -=x ,25b +=y ,可得出关于x 、y 的方程组,即可求出x 、y 的值,进而可求出a 、b 的值;(2)设5(m+3)=x ,3(n -2)=y ,根据已知方程组的解确定出m 、n 的值即可.【详解】(1)设13a -=x ,25b +=y , 原方程组可变形为2425x y x y +=⎧⎨+=⎩, 解得:21x y =⎧⎨=⎩,即123215a b ⎧-=⎪⎪⎨⎪+=⎪⎩, 解得:95a b =⎧⎨=-⎩. (2)设5(m+3)=x ,3(n -2)=y ,原方程组可变形为:111222a x b y c a x b y c +=⎧⎨+=⎩, ∵关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为53x y =⎧⎨=⎩, ∴5(3)53(2)3m n +=⎧⎨-=⎩,解得:23mn=-⎧⎨=⎩.故答案为23 mn=-⎧⎨=⎩【点睛】本题考查解二元一次方程组,正确理解并熟练掌握换元法是解题关键.。
冀教版七年级下册数学第6章 二元一次方程组 用加减消元法解二元一次方程组

2x+y=4, x-y=-1.
①+②,得3x=3,解得x=1, 把x=1代入①,得y=2. 所以方程组的解为
x=1, y=2.
5.【中考·河北】利用加减消元法解方程组下列做法正确的是2(x+5)y=10,①
A.要消去y,可以将①×5+②×2
5x-3y=6,②
冀教版七年级下
第六章 二元一次方程组
6.2二元一次方程组的解法 第2课时用加减消元法解二元一次方
程组
提示:点击 进入习题
1B 2C 3 见习题 4 见习题 5D
6D 7 见习题 8 见习题 9C 10 -4
答案显示
提示:点击 进入习题
11 A 12 见习题 13 见习题 14 见习题 15 见习题
①-②,得2(n-2)=2,解得n=3.
所以方程组的解为
m=3, n=3.
13.关值于.x,y的方程组与关于x,y2a的xx+-方程5byy组==的-4解相6,同,求(a+2b)2024的 3x-5y=16, bx+ay=-8
解: 根据题意得
2x+5y=-6, 3x-5y=16,
解得xy==-2,2.把xy==-2,2代入方程组abxx-+bayy==4-,8,
16 见习题
答案显示
1.【2021·河北石家庄模拟】在解关于x,y的二元一次方程组时,若①-②
AC..都互可等为直于倒接0数消62去xx++未知abyy数==y,9-,则BD6..a和相互①②b等为( 相反) 数 B
2.【易错:两个方程相减消元时,符号出错】【2020·河北保定第十九中学期
末】解方程组时,①-②,得( )
得22ab+-22ba==4-,8.解得ab==3-,1. 所以(a+2b)2 024=[3+2×(-1)]2 024=1.
七年级数学—二元一次方程组的解法

根据市场调查,某种消毒液的大瓶装 (500g)和小瓶装(250g),两种产品的销 2:5 售数量(按瓶计算)的比为 某厂每天 生产这种消毒液22.5吨,这些消毒液应该分 装大、小瓶两种产品各多少瓶?
解:设这些消毒液应该分装x大瓶、y小瓶。 ① 5 x 2 y 根据题意可 ② 列方程组: 500 x 250 y 22500000 5 由 ① 得: y x ③ 2 5 500 x 250 x 22500000 把 ③ 代入 ② 得: 2 x 20000 解得:x=20000
x+4y=13 x=13 - 4y
② ③
把y=2代入① 或②可以吗?
把③代入① ,得 2(13 - 4y)+3y=16 26 –8y +3y =16 -5y= -10 y=2 把y=2代入③ ,得 x=5 ∴原方程组的解是 x=5 y=2
把求出的解 代入原方程 组,可以知 道你解得对 不对。
例2 学以致用
七年级数学下册(人教版)
8.2消元—二元一次方程组的解法
(第1课时)
不如好之者,
好之者不如乐之者。
本节学习目标 :
1、会用代入法解二元一次方程组。 2、初步体会解二元一次方程组的基本思 想——“消元”。 3、通过对方程中未知数特点的观察和分析, 明确解二元一次方程组的主要思路是 “消元”,从而促成未知向已知的转化, 培养观察能力和体会化归的思想。
y 22 x 由①我们可以得到:
再将②中的y换为 22 x 就得到了③ ③是一元一次方程,相信大家都会解。那么 根据上面的提示,你会解这个方程组吗?
比较一下上面的 方程组与方程有 什么关系?
二元一次方程组中有两个未知数, 如果消去其中一个未知数,将二元一 次方程组转化为我们熟悉的一元一次 方程,我们就可以先解出一个未知数, 然后再设法求另一未知数.这种将未知 数的个数由多化少、逐一解决的思想, 叫做消元思想.
《二元一次方程组的解法》教学设计

《二元一次方程组的解法》教学设计【教材依据】这节课内容是华师大版数学七年级下册第七章《二元一次方程组》的第二节,本节内容共安排了2个课时去完成。
本节课为《二元一次方程组的解法》第1课时。
在本节之前,学生已经掌握了有理数、整式的运算、解一元一次方程等知识,对二元一次方程、二元一次方程组等概念已了解,学生已经具备了进一步学习二元一次方程组解法的基本能力。
这节课的主要内容是用代入消元法解二元一次方程组,教材从实际问题出发,通过培养学生自主探索、合作交流、分析问题、解决问题的能力来学习二元一次方程组的解法——代入消元法。
探索如何用代入消元法将“二元”转化为“一元”的消元过程和用代入消元法解二元一次方程分别是本节课的重、难点。
组织学生学好本节课的内容将会为以后的“三元一次方程组、函数、线性方程组、高次方程组”学习打下坚实的基础。
一、设计思路(一)指导思想新课标指出,教学活动是师生积极参与、交往互动、共同发展的过程。
在课堂教学中学生是学习的主体,教师是学习的组织者、引导者与合作者。
教师在组织引导学生学习的过程中要充分调动学生学习的兴趣、积极性、主动性;要求学生通过积极思考、动手实践、自主探索、合作交流来提高数学能力。
(二)教学目标1.知识与技能。
(1)掌握用代入法解二元一次方程组的步骤。
(2)熟练运用代入法解简单的二元一次方程组。
2.过程与方法。
(1)培养学生的分析、动手、数学思维能力。
(2)使学生能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形。
(3)通过解决问题使学生初步理解用代入法解二元一次方程组的基本思路。
3.情感态度与价值观。
(1)通过合作交流,探索二元一次方程组的解法。
(2)培养学生的合作交流意识、自主探索、分析问题、解决问题能力。
(三)教学重、难点1.教学重点:用代入消元法解二元一次方程组。
2.教学难点:在解题过程中让学生充分体会“消元”思想和“化未知为已知”的化归思想。
(四)教学理念与方法本课借助多媒体辅助教学,给学生以直观形象的演示,增强学生感性认识的同时增强教学效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册数学《二元一次方程组解法》说课稿
各位评委老师们:
大家下午好!今天我说课的内容是人教版初中数学七年级
下册第八章第二节二元一次方程
组的解法第二课时加减消元法。
我主要从教材分析、教法、学法、教学过程四个方面向大
家汇报我对这节课的认识和理解。
一、说教材分析
1、教材的地位和作用
二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学
习其他数学知识的基础。
本节课是在学生学习了代入法解二元一次方程组的基础上,继续
学习另一种消元的方法---加减消元,它是学生系统学习二元一次方程组知识的前提和基础。
通过加减来达到消元的目的,让学生从中充分体会化未知为已知的转化过程,理解并掌握
解二元一次方程组的最常用的基本方法,为以后函数等知识的学习打下基础.
2、教学目标
通过对新课程标准的研究与学习,结合我校学生的实际情况,我把本节课的三维教学目标
确定如下:
(一)知识与技能目标:
会用加减消元法解简单的二元一次方程组。
理解加减消元法的基本思想,体会化未知为已知的化归思想方法。
(二)过程与方法目标:
通过经历加减消元法解方程组,让学生体会消元思想的应用,经过引导、讨论和交流让学
生理解根据加减消元法解二元一次方程组的一般步骤。
(三)情感态度及价值观:
通过交流、合作、讨论获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,
培养学生养成认真倾听他人发言的习惯和勇于克服困难的意志。
3、教学重点、难点:
大家都知道,数学的思想与方法才是数学的精髓,是联系各类数学知识的纽带,所以我将本
节课的重点和难点确定如下:
重点:用加减法解二元一次方程组。
难点:灵活运用加减消元法的技巧,把“二元”转化为“一元”
二、说教法
结合七年级学生的年龄特征和认知特点,在教学中我主要采用诱思探究的启发式教学达到师
生互动
三、说学法
本节课的教学我始终把学生作为学习的主人,不断激发
他们的学习兴趣,引导学生在自主探究、
合作交流、小组竞赛相结合的学习方式下获得成功的体验。
四、教学过程
(一)、温习回顾,引入新课
师:提问上节课学习的二元一次方程组的解法——代入
消元法,回顾用代入法解二元一次方程
组的基本思想及关键步骤,从而引入新课:加减消元法——解二元一次方程组。
(二)探究新知,讲授新课
【活动一:】
让学生快速用代入法解下面的方程组,待学生完成后,再观察思考:还可以用其他方法求
解吗?学生说出自己的结论,师引导分析。
师:如何消去y呢?
学生:说出自己的想法。
师:演示完整的解题过程,再让学生练习先消去未知数x
,来求解。
引导学生分析总结——
加减消元法的概念。
【活动二:题后反思,说一说】
1、结合前面两个方程的解法你能说一说什么是加减消元法?
2、用这种方法解二元一次方程组的前提条件是什么?
3、什么时候用加法,什么时候用减法?
[设计意图]用一连串的问题引导学生发现,这种消元
方法的依据是等式的基本性质,并且
得出当方程组中某一未知数的系数相等时可以通过两方程
相加消去一个未知数,从而达到把
二元转化为一元的目的,初步感知加减消元的思想。
为了及时巩固加减消元法的概念,抓住七年级学生对
竞争充满兴趣的心理特征,及激发
学生学习的积极性,培养学生学习数学的兴趣,我设计了
用比一比,抢答,考考你题使学生
的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。
【活动三:手脑并用,试一试】
例题讲解
为了巩固、运用加减消元法解方程组,设计了一道例题,强化学生的理解运用能力。
师最
后出示解题过程。
(分析后,学生上黑板扮演,师点评)
【设计意图】由于活动一已经初步了解到可以通过减法
消去系数相同的未知数,这里未知
数y的系数互为相反数,学生应该很容易想到通过两方程
相加消去未知数y。
所以,我让学
生独立思考后尝试自己写出解题过程,并找一学生在黑板
上做,其余学生做在练习本上完成。
然后师生共同评价,并有教师给出规范的书写过程。
使
学生初步感知加减消元的基本步骤,
同时也体会到它在解法上的优越性。
(三)巩固练习,体验成功
通过练习进一步巩固学生用加减消元法解二元一次方程组
的基础知识和基本技能,以求达到
熟练的程度。
(四)分享收获
在课堂临近尾声时,让学生畅所欲言,鼓励学生从数学知识、方法和步骤等方面谈谈自己的
收获,培养学生归纳和语言表达能力,同时也利于学生对所学知识有更全面更系统的认识。
(五)布置作业
必做题:课本103页第3题
选做题:第5题以及同步学习上的第4题
分层次布置作业,有效实施因材施教的方法,让不同层
次的学生得到不同的发展。
以上是我
对本节课的理解和认识,恳请各位领导、评委、老师们提出宝贵的意见和建议。
谢谢!!。