高一数学随机事件的概率

合集下载

高一数学必修课件随机事件的概率

高一数学必修课件随机事件的概率
古典概型与几何概型的区别
主要在于样本点发生的可能性是否相等。在古典概型中,每个样本点发 生的可能性相等;而在几何概型中,样本点发生的可能性与其几何度量 成比例。
02
条件概率与独立性
Chapter
条件概率定义及计算
1 2 3
条件概率的定义
在事件A发生的条件下,事件B发生的概率,记 作P(B|A)。
样本空间
在一定条件下,并不总是出现,或者 并不总是以确定的方式出现的现象。
随机现象所有基本结果组成的集合。
随机事件
随机现象的某些基本结果组成的集合 。
概率定义及性质
概率定义
非负性
对于给定的随机事件A,如果随着试验次数 的增加,事件A发生的频率f_n(A)稳定于某 个常数p,则称p为事件A的概率,记为 P(A)=p。
的盈利能力和偿付能力。
赔款计算
在保险事故发生时,依据保险合 同和精算原理,计算应赔付的金
额。
THANKS
感谢观看
协方差和相关系数简介
协方差性质
若两个随机变量的变化趋势一致,则协方差为正;若变化趋势相反,则协方差为 负;若变化趋势无关,则协方差为0。
协方差和相关系数简介
独立随机变量的协方差为0。
相关系数定义:相关系数是协方差与两个随机变量标准差乘积的比值,用于消除量纲影响,更准确地反映两个随机变量的线 性相关程度。
对于任何事件A,有P(A)≥0。
规范性
可加性
对于必然事件S,有P(S)=1。
对于任意两个互斥事件A和B,有 P(A∪B)=P(A)+P(B)。
古典概型与几何概型
01
古典概型
如果每个样本点发生的可能性相等,则称这种概率模型为古典概率模型

高中概率知识点、考点、易错点归纳

高中概率知识点、考点、易错点归纳

高中数学第十一章-概率知识要点3.1.随机事件的概率3.1.1 随机事件的概率1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。

2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。

3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。

4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。

5、频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数。

6、频率:事件A 出现的比例()=A n n A nf。

7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.3.1.2 概率的意义1、概率的正确解释:随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。

认识了这种随机中的规律性,可以比较准确地预测随机事件发生的可能性。

2、游戏的公平性:抽签的公平性。

3、决策中的概率思想:从多个可选答案中挑选出正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则。

——极大似然法、小概率事件4、天气预报的概率解释:明天本地降水概率为70%解释是“明天本地下雨的机会是70%”。

5、试验与发现:孟德尔的豌豆试验。

6、遗传机理中的统计规律。

3.1.3 概率的基本性质 1、事件的关系与运算(1)包含。

对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,称事件B 包含事件A (或事件A 包含于事件B ),记作(B A ⊇⊆或A B)。

不可能事件记作∅。

(2)相等。

若B A A B ⊇⊇且,则称事件A 与事件B 相等,记作A=B 。

(3)事件A 与事件B 的并事件(和事件):某事件发生当且仅当事件A 发生或事件B 发生。

(4)事件A 与事件B 的交事件(积事件):某事件发生当且仅当事件A 发生且事件B 发生。

高一随机事件的概率知识点

高一随机事件的概率知识点

高一随机事件的概率知识点概述:随机事件概率是高中数学中的重要内容,通过对随机事件的概率进行研究和计算,可以帮助我们理解事件发生的可能性,以及在实际问题中的应用。

本文将介绍高一阶段涉及的随机事件的概率知识点。

一、基本概念在进一步讨论高一随机事件的概率知识点之前,我们先来了解一些基本概念。

1.1 随机试验随机试验指的是满足以下三个条件的试验:试验进行前无法确定出现的结果,试验的结果有多种可能性,每次试验的结果不会受到上一次结果的影响。

1.2 样本空间与事件在随机试验中,样本空间是指所有可能结果的集合,一般用"S"表示。

而事件是样本空间的子集,是指我们感兴趣的某些结果组成的集合。

1.3 事件的概率事件的概率是指该事件在所有可能结果中出现的可能性大小,通常用"P(A)"表示。

概率的取值范围在0到1之间,其中0表示不可能事件,1表示必然事件。

二、概率计算方法在计算随机事件的概率时,可以采用以下几种方法:2.1 等可能性原则当每个事件在样本空间中的出现是等可能的情况下,可以使用等可能性原则来计算事件的概率。

也就是说,如果一个随机试验有n个等可能的结果,而事件A有m个结果,那么事件A发生的概率可以表示为P(A) = m/n。

2.2 排列组合法当样本空间中的结果不是等可能的情况下,可以使用排列组合法来计算事件的概率。

排列和组合是高中数学中的基本概念,通过这些方法可以计算不同情况下事件的出现次数,从而求解事件的概率。

2.3 频率计算法频率计算法是通过实验的方式计算事件发生的概率。

当试验次数足够大时,事件发生次数与总试验次数的比值趋近于事件的概率。

三、概率的性质和应用在了解了概率计算方法之后,我们来探讨一些概率的性质和应用。

3.1 加法定理加法定理是指对于两个不相容事件A和B,它们的概率之和等于它们各自的概率之和。

即P(A∪B) = P(A) + P(B)。

3.2 乘法定理乘法定理是指对于两个相互独立的事件A和B,它们的概率乘积等于它们各自的概率之积。

随机事件的概率知识点高三

随机事件的概率知识点高三

随机事件的概率知识点高三随机事件的概率是高中数学中重要的概念之一。

在高三数学学习中,我们需要掌握随机事件的基本概念、计算方法以及与排列组合之间的关系。

通过学习这些知识点,我们能够更好地理解随机事件的发生规律,为我们解决实际问题提供数学的思维工具。

一、基本概念随机事件是指在一次试验中可能出现的不同结果。

在概率论中,我们把每个试验的结果称为样本点,样本空间是指所有可能的样本点的集合。

随机事件是样本空间的子集。

例如,抛一枚硬币的样本空间为{正面,反面},那么“出现正面”的事件可以表示为A={正面}。

二、概率的计算方法在概率理论中,我们用P(A)表示事件A的概率。

概率的计算方法有以下几种常见的形式:1.频率定义:当试验的次数非常多时,事件A发生的频率接近于A的概率,用频率定义计算概率的方法适用于大量试验的情况。

2.古典定义:对于一个有限样本空间的等可能试验,事件A的概率可以使用P(A)=|A|/|S|来计算,其中|A|表示事件A包含的样本点个数,|S|表示样本空间中的样本点个数。

3.几何概率定义:对于一些几何问题,我们可以利用几何概率的定义来计算概率。

例如,投掷一个点在单位正方形中的均匀分布的事件A,可以通过计算事件A所占的面积来求得概率。

4.条件概率定义:当事件A的发生与事件B的发生有关联时,我们可以通过条件概率来计算事件A在事件B发生的条件下的概率。

条件概率的计算公式为P(A|B)=P(AB)/P(B),其中P(AB)表示事件A与事件B同时发生的概率,P(B)表示事件B的概率。

三、排列与组合与概率的关系排列与组合是高中数学中的基础知识点,它们与概率有着密切的关系。

1.排列:排列是从n个不同元素中取出m个元素,按照一定的顺序排列的方式。

表示为A(n,m)。

当考虑概率时,排列可以用来计算有序事件的概率。

2.组合:组合是从n个不同元素中取出m个元素,不考虑排列顺序的方式。

表示为C(n,m)。

当考虑概率时,组合可以用来计算无序事件的概率。

随机事件的概率

随机事件的概率

随机事件的概率导言:随机事件是指在一定条件下,由于种种因素的不确定性而发生的事件。

生活中的许多事情都是随机事件,无法预测和控制。

我们对于随机事件的发生与否往往抱有一定的期望或预测,这就引出了随机事件的概率。

一、什么是概率?概率(probability)是现代数学中研究事件发生的一种数学方法。

概率既是一种数学工具,同时也是描述随机现象出现“规律”的一种观念。

概率的大小通常用数字来表示,范围在0到1之间,概率越大,表示事件发生的可能性越大。

二、概率的计算方法1. 古典概率:古典概率也叫“理论概率”,它是指当各种结果发生的机会是等可能的时候,可以根据有限的样本空间中可能结果的数目比来计算。

例如投掷均匀的骰子,每一个面都有相同的机会出现,那么每一个面出现的概率就是1/6。

2. 频率概率:频率概率也叫“实验概率”,它是指在实际的重复试验中,事件发生的次数与总的试验次数的比例。

例如,我们可以通过多次投掷骰子的实验来计算每个面出现的概率,通过实验的结果来估计概率。

3. 主观概率:主观概率也叫“人为概率”,它是指个人根据经验、直觉和一些可能的关联性来估计事件发生的概率。

这种概率是主观的,因为它依赖于个人的判断和看法。

三、随机事件的应用随机事件的概率在现实生活中有着广泛的应用,下面举几个例子进行阐述:1. 赌场中的赌博:在赌场中,很多赌博游戏都基于随机事件的概率来决定输赢。

例如,在轮盘赌中,赌徒根据小球停在哪一个数字上来下注,而小球停留在哪个数字上是完全由随机事件决定的。

赌徒可以根据每个数字出现的概率来决定下注的策略。

2. 保险业的风险评估:在保险业中,概率是一个非常重要的概念。

保险公司需要根据客户的信息以及历史数据来评估风险,并计算出合理的保险费用。

例如,在车险中,保险公司需要根据客户的驾驶记录和车辆信息来评估客户发生车祸的概率,并根据概率来决定保险费用的高低。

3. 股票市场:在股票市场中,投资者根据股票的历史数据和一些基本面分析来预测股票的未来涨跌。

随机事件的概率与计算知识点总结

随机事件的概率与计算知识点总结

随机事件的概率与计算知识点总结概率是数学中一个重要的分支,用于描述事件发生的可能性。

在我们日常生活中,随机事件无处不在,了解概率与计算知识点能够帮助我们更好地理解和分析各种事件的发生概率。

本文将对随机事件的概率与计算知识点进行总结,帮助读者更好地理解和应用于实际问题中。

1. 概率的基本概念概率是描述随机事件发生可能性的数值,在0到1之间取值,0表示不可能发生,1表示必然发生。

对于一个随机事件E,其概率记作P(E)。

2. 事件的排列与组合在考虑多种事件同时发生的情况下,我们需要了解事件的排列与组合。

排列是指考虑事件中元素的顺序,而组合则只考虑元素的选择与不考虑顺序。

在计算排列与组合中,我们可以使用阶乘、组合数学公式等方法来求解。

3. 加法法则加法法则用于计算多个事件中至少有一个事件发生的概率。

如果事件A和事件B是互斥事件(即两者不能同时发生),则它们的概率可通过简单相加得到:P(A∪B) = P(A) + P(B)。

4. 乘法法则乘法法则用于计算多个事件同时发生的概率。

如果事件A和事件B是相互独立事件(即一个事件的发生不影响另一个事件的发生),则它们的概率可通过简单相乘得到:P(A∩B) = P(A) × P(B)。

5. 条件概率在一些情况下,事件的发生可能会受到其他事件的影响。

条件概率用于描述在给定其他事件发生的前提下,某个事件发生的概率。

条件概率可通过P(A|B) = P(A∩B) / P(B)来计算,其中P(A|B)表示在事件B发生的条件下,事件A发生的概率。

6. 贝叶斯定理贝叶斯定理是描述事件的后验概率与先验概率之间关系的数学公式。

它以事件的条件概率为基础,并利用贝叶斯公式来进行计算,即P(A|B) = (P(B|A) × P(A)) / P(B),其中P(A)和P(B)分别表示事件A和事件B的概率。

7. 随机变量与概率分布随机变量是概率论中一个重要的概念,它可以用于描述随机事件的结果。

高一数学随机事件的概率1-202004

高一数学随机事件的概率1-202004
5.并事件至少有一个发生的概率:
=P(A)+P(B)-P(AB). 6.条件概率:
7.独立事件同时发生的概率: 若事件A与B相互独立,则 P(AB)=P(A)P(B).
8.独立重复试验恰好发生k次的概率:
若在每次试验中事件A发生的概率为p,
则在n次独立重复试验中,事件A恰好发
生k次的概率为

k=0,1,2,…,n.
随机事件的概率习题课
பைடு நூலகம்
概率原理 1.古典概型:
P(A)=事件A所包含的基本事件的个数 ÷基本事件的总数.
2.几何概型:
构成事件A的区域长度(面积或体积)
P(A)=
试验的全部结果所构成的区域长度(面积或体积)
3.对立事件的概率:
4.互斥事件只有一个发生的概率: 若事件A与B互斥,则 P(A∪B)=P(A)+P(B).
例4(09重庆卷文)某单位为绿化环 境,移栽了甲、乙两种大树各2珠,设甲、 乙两种大树移栽的成活率分别为5/6和 4/5,且各株大树是否成活互相不影响, 求移栽的4株大树中: (1)至少有1株成活的概率; (2)两种大树各成活1株的概率.
例5(09江西卷文)某公司拟资助三位大 学生自主创业,现聘请两位专家,独立地对 每位大学生的创业方案进行评审.假设评审结 果为“支持”或“不支持”的概率都是0.5. 若某人获得两个“支持”,则给予10万元的 创业资助;若只获得一个“支持”,则给予5 万元的资助;若未获得“支持”,则不予资 助.求: (1) 该公司的资助总额为零的概率; (2)该公司的资助总额超过15万元的概率.
应用举例
例1(09全国卷2文)某车间甲组有10 名工人,其中有4名女工人;乙组有10名 工人,其中有6名女工人.现分别从甲、 乙两组中各抽取2名工人进行技术考核. (1)求从甲组抽取的工人中恰有1名女 工人的概率; (2)求抽取的4名工人中恰有2名男工人 的概率.

高一数学第七章概率知识点

高一数学第七章概率知识点

高一数学第七章概率知识点概率是数学中的一个重要概念,研究随机事件发生的可能性大小。

在高一数学课程的第七章中,我们将学习概率的基本概念、计算方法以及与概率相关的统计分布。

本文将介绍一些重要的概率知识点,使读者对概率有一个初步的了解。

一、概率的基本概念概率是描述随机事件发生可能性大小的一种数值。

在实际问题中,随机事件可能有多个结果,每个结果发生的概率是不同的。

概率的取值范围是0到1之间,其中0表示不可能事件,1表示必然事件。

二、事件的分类在概率问题中,我们可以将事件分为两类:互斥事件和不互斥事件。

当两个事件不能同时发生时,称这两个事件为互斥事件;当两个事件可以同时发生时,称这两个事件为不互斥事件。

三、概率的计算公式我们通过事件发生的次数与总次数之比来计算概率。

对于一个随机事件A,如果事件A发生的次数为n,总次数为N,那么事件A发生的概率可以表示为P(A) = n/N。

在计算概率时,我们需要注意事件的互斥性和相互独立性。

四、加法定理和条件概率加法定理是指对两个不互斥事件A和B,事件A或事件B发生的概率可以表示为P(A或B) = P(A) + P(B) - P(A且B)。

条件概率是指在已知事件B发生的条件下,事件A发生的概率,表示为P(A|B) = P(A且B)/P(B)。

条件概率是概率理论中一个重要的概念,常用于解决实际问题。

五、独立事件和相互依赖事件当事件A的发生与事件B的发生没有任何关系时,称事件A与事件B是独立事件;当事件A的发生与事件B的发生有关系时,称事件A与事件B是相互依赖事件。

对于独立事件,我们可以根据乘法定理来计算其概率。

六、排列组合与概率在概率问题中,我们常常需要考虑的是从一个集合中抽取若干个元素,形成一个子集合的问题。

这就涉及到排列和组合的问题。

排列是指从n个元素中取出m个元素,并且考虑元素的顺序;组合是指从n个元素中取出m个元素,但不考虑元素的顺序。

排列组合与概率密切相关,可以通过排列组合的方法来计算概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1节随机事件的概率
1.有下列事件:
①连续掷一枚硬币两次,两次都出现正面朝上;
②异性电荷相互吸引;
③在标准大气压下,水在1 ℃结冰;
④买了一注彩票就得了特等奖.
其中是随机事件的有()
A. ①②
B. ①④
C. ①③④
D. ②④
2. (创新题)下列事件中,随机事件的个数为( )
①方程ax+b=0有一个实数根;
②2009年5月15日,去新加坡旅游的人感染甲型H1N1;
③2012年伦敦奥运会中国拿金牌数居第一名;
④常温下,焊锡熔化;
⑤若a>b,那么ac>bc.
A. 2
B. 3
C. 4
D. 5
3.关于随机事件的频率与概率,以下说法正确的是()
A. 频率是确定的,概率是随机的
B. 频率是随机的,概率也是随机的
C. 概率是确定的,概率是频率的近似值
D. 概率是确定的,频率是概率的近似值
4.下列事件中,随机事件是( )
A. 向区间(0,1)内投点,点落在(0,1)区间
B. 向区间(0,1)内投点,点落在(1,2)区间
C. 向区间(0,2)内投点,点落在(0,1)区间
D. 向区间(0,2)内投点,点落在(-1,0)区间
5. 事件A的频率满足( )
A. m
n =0 B. m
n
=1 C. 0<m
n
<1 D. 0≤m
n
≤1
6.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车,时间从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年时间里挡风玻璃破碎的概率近似为___________.
7.同时掷两枚骰子,点数之和在2~12间的事件是___________事件,点数之和为12的事件是___________事件,点数之和小于2或大于12的事件是___________事件;将一枚骰子连掷两次,点数之差为5的事件是___________事件,点数之差为6的事件是___________事件.
8.指出下列随机事件的条件及结果.
(1)某人射击8次,恰有2次中靶;
(2)某人购买福利彩票10注,有2注中得三等奖,其余8注未中奖.
9.(1)某厂一批产品的次品率为1
,问任意抽取10件产品是否一
10
定会发现一件次品?为什么?
,问“这10件产品中必有一件次品”(2) 10件产品中次品率为1
10
的说法是否正确?为什么?
10.(改编题)用一台自动机床加工一批螺母,从中抽出100个逐个进行直径检验,结果如下:
直径个数从这100个螺母中,任意抽取一个,求事件A(d∈(6.92,6.94]),事件B(d∈(6.90,6.96]),事件C(d>6.96)的频率.
11. 某射手在同一条件下进行射击,结果如下表所示:
(1)计算表中击中靶心的各个频率;
(2)这个运动员击中靶心的概率约是多少?
12.(创新题)某教授为了测试贫困地区和发达地区的同龄儿童的智力,出了10个智力题,每个题10分,然后作了统计,下表是统计结果.
贫困地区:
发达地区:
(1)利用计算器计算两地区参加测试的儿童中得60分以上的频率;
(2)求两个地区参加测试的儿童得60分以上的概率;
(3)分析贫富差距为什么会带来人的智力的差别.
答案
1. B
2. C
3. D
4. C
5. D
6. 0.03
7. 必然随机不可能随机不可能
8. (1)条件:某人射击8次;结果:恰有2次中靶.
(2)条件:某人购买福利彩票10注;结果:2注中得三等奖,其余8注未中奖.
9. (1)不一定,因为此处次品率即指概率,1
是随机事件的结果,而
10
不是确定性事件的结果.
(2)正确,因为这是确定事件.
10. 设n=100,A、B、C发生的次数分别为
m A=17+26=43,m B=10+17+17+26+15+8=93,
m C=2+2=4.
=0.43,
事件A发生的频率为43
100
事件B发生的频率为93
=0.93,
100
=0.04.
事件C发生的频率为4
100
11. (1)0.8,0.95,0.88,0.9,0.89,0.91,0.906 (2)0.9
12. (1)贫困地区:
发达地区:
(2)贫困地区和发达地区参加测试的儿童得60分以上的频率逐渐趋于0.5和0.55,故概率分别为0.5和0.55.
(3)经济上的贫困导致贫困地区生活水平落后,儿童的健康和发育会受到一定的影响;另外经济落后也会使教育事业发展落后,导致智力出现差别.。

相关文档
最新文档