集合的概念练习测试题.doc
高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(62)

1.1 集合的概念一、单选题1.已知3a =,{|2}A x x =≥,则( )A .a A ∈B .a A ∉C .{}a A =D .{}a a ∉答案:A解析:根据元素与集合的关系,即可求解.详解:由题意,集合{|2}A x x =≥,且3a =,因为32>,所以a A ∈.故选:A.2.设集合{1}A x Z x =∈-,则A .A ∅∉B .C .2A ∈D .{}2⊆A 答案:B详解:试题分析:集合A 表示大于1-的正数,因此B 项正确 考点:元素与集合的元素3.下列所给关系正确的个数是①π∈R 3Q ;③0∈*N ;④|−4|∉*N .A .1B .2C .3D .4 答案:B详解:由R(实数集)、Q(有理数集)、*N (正整数集)的含义知,①②正确,③④不正确.4.对于任意实数x x ,表示不小于x 的最小整数,如1.220.20=-=,.定义在R 上的函数()2f x x x =+,若集合(){}|10A y y f x x ==-,≤≤,则集合A 中所有元素的和为( )A .3-B .4-C .5-D .6-答案:B解析:根据x 的范围即可求出2x 的范围,根据x <>的定义即可求出2x x <>+<>的值,即得出集合A 的所有元素,从而得出集合A 的所有元素的和.详解:因为10x -,∴①1x =-时,22x =-,则:1x <>=-,22x <>=-;23x x ∴<>+<>=-;②10x -<时,220x -<,则:0x <>=,21x <>=-,或0; 21x x ∴<>+<>=-,或0;{3A ∴=-,1-,0};∴集合A 中所有元素和为4-.故选:B点睛:本题主要考查对x <>的定义的理解,以及不等式的性质,意在考查学生对这些.5.集合5793,,,,234⎧⎫⎨⎬⎩⎭用描述法可表示为( ) A .*21|,2n n x x n N +⎧⎫=∈⎨⎬⎩⎭ B .*23|,n x x n N n +⎧⎫=∈⎨⎬⎩⎭ C .*21|,n x x n N n -⎧⎫=∈⎨⎬⎩⎭ D .*21|,n x x n N n +⎧⎫=∈⎨⎬⎩⎭答案:D 解析:找出集合中元素的规律通式即可.详解: 由5793,,,,234,即3579,,,,1234,从中发现规律*21,n x n N n +=∈, 故可用描述法表示为*21|,n x x n N n +⎧⎫=∈⎨⎬⎩⎭. 故选:D.点睛:本题考查集合的描述法,属于基础题.6.已知集合A 中元素x 满足x x N *∈,则必有( )A .-1∈AB .0∈ACD .1∈A答案:D解析:利用列举法求解即可.详解:因为x ≤≤又x N *∈,所以x 的可能取值1,2.故选:D.点睛:本题主要考查了列举法.属于容易题.7.集合{1,2,3,5}A = ,当x A ∈时,若1,1x A x A -∉+∉,则称x 为A 的一个“孤立元素”,则A 中孤立元素的个数为( )A .1B .2C .3D .4答案:A解析:根据“孤立元素”的定义,依次研究各元素即可得答案.详解:解:对于元素1,112A +=∈,故不满足孤立元素的定义;对于元素2,213A +=∈,故不满足孤立元素的定义;对于元素3,312A -=∈,故不满足孤立元素的定义;对于元素5,514A -=∉,516A +=∉,故满足孤立元素的定义;故A 中孤立元素的个数为1个.故选:A.点睛:本题考查集合新定义问题,正确理解新定义是解题的关键,是基础题.8.已知集合{1,,1}A a a =-,若2A -∈,则实数a 的值为( )A .2-B .1-C .1-或2-D .2-或3-答案:C解析:由已知得2a =-或12a -=-,解之并代入集合中验证可得选项.详解:因为集合{1,,1}A a a =-,且2A -∈,所以2a =-或12a -=-,当2a =-时,{1,2,3}A =--,适合题意;当12a -=-时,1a =-,{1,1,2}A =--,也适合题意,所以实数a 的值为1-或2-.故选:C.点睛:本题考查元素与集合的关系,属于基础题.9.设集合222,3,3,7A a a a a⎧⎫=-++⎨⎬⎩⎭,{}|2|,0B a =-,已知4A ∈且4B ∉,则实数a 的取值集合为( )A .{}-1,-2B .{}-1,2C .{}-2,4D .{}4答案:D解析:由234a a -=或274a a ++=解出a 的值,再验证集合中元素的互异性.详解:当234a a -=时,可得4a =或1a =-,若1a =-,则274a a ++=,不合题意;若4a =,则2711.5a a ++=,|2|2a -=符合题意; 当274a a++=,可得1a =-或2a =-,若1a =-,则234a a -=,不合题意;若2a =-,则|2|0a -=,不合题意.综上所述:4a =.故选:D.点睛:本题考查了集合中元素的互异性,考查了分类讨论思想,属于基础题.二、填空题1.已知集合{}2|60A x x px =-+=,若3A ∈,则方程15x p -=的解为__________.答案:2x =解析:由题意可知,3是方程260x px -+=的根,解得5p =.方程15x p -=等价变形为155x -=,解得,即可.详解:3A ∈∴3是方程260x px -+=的根,即23360p -+=,解得5p =. 又方程155x p -==11x ∴-=,解得2x =.故答案为:2x =点睛:本题考查元素与集合的关系以及实数指数幂的运算,属于较易题.2.若-3∈x-2,2x 2-5x ,12},则x =________.答案:-1,32,1解析:由已知得x -2=-3或2x 2-5x =-3,解之再代入集合中检验集合的元素是否互异,可得答案.详解:由题意知,x -2=-3或2x 2-5x =-3.①当x -2=-3时,x =-1.把x =-1代入,得集合的三个元素为-3,7,12满足集合中元素的互异性;②当2x 2-5x =-3时,x =32或x =1,当x =32时,集合的三个元素为-12,-3,12,满足集合中元素的互异性;当x =1时,集合的三个元素为-1,-3,12,满足集合中元素的互异性,由①②知x =-1,32,1.故答案为:-1,32,1.点睛:本题考查由集合与元素的关系求参数的值,注意集合中的元素需互异,属于基础题.3.设集合{}2|20x x x a ++=有且只有两个子集,则a =______________.答案:1a =解析:本题先将条件“集合{}2|20x x x a ++=有且只有两个子集”转化为“方程220x x a ++=有且仅有1个解”,再建立方程求a 的值.详解:解:因为集合{}2|20x x x a ++=有且只有两个子集,所以集合{}2|20x x x a ++=有且只有一个元素,所以方程220x x a ++=有且仅有1个解,所以2240a ∆=-=,解得1a =.故答案为:1a =.点睛:本题考查根据集合中元素的个数求参数的值,是基础题.4.若集合2{|(2)20,A x x a x a =-++-<x ∈Z }中有且只有一个元素,则正实数a 的取值范围是________答案:12(,]23解析:由f (x )=x 2﹣(a+2)x+2﹣a <0可得x 2﹣2x+1<a (x+1)﹣1,即直线在二次函数图像的上方的点只有一个整数1,则满足题意,结合图象即可求出.详解:f (x )=x 2﹣(a+2)x+2﹣a <0,即x 2﹣2x+1<a (x+1)﹣1,分别令y =x 2﹣2x+1,y =a (x+1)﹣1,易知过定点(﹣1,﹣1),分别画出函数的图象,如图所示:∵集合A =x∈Z|f(x )<0}中有且只有一个元素,即点(0,0)和点(2,1)在直线上或者其直线上方,点(1,0)在直线下方,结合图象可得∴10{120 311a a a -≤--≤<,解得12<a 23≤故答案为(12,23]点睛:本题考查了二次函数的性质以及参数的取值范围,考查了转化思想和数形结合的思想,属于中档题5.设,a b ∈R ,集合{}{}2,0,a b a =,则b a -=_____________答案:1-解析:根据集合的互异性原则,可求得a 与b 的值,即可求得b a -的值.详解:因为集合{}{}2,0,a b a = 所以0a =或0b =当0a =时,集合20a =,因而元素重复,与集合的互异性原则相悖,所以舍去0a =当0b =时,可得2a a =,解得0a =(舍)或1a =综上可知, 1a =,0b =所以011b a -=-=-故答案为: 1-点睛:本题考查了集合的互异性原则及集合相等的应用,属于基础题.三、解答题1.写出集合2|,3n x x n ⎧⎫=∈⎨⎬⎩⎭N 中最小的3个元素.答案:240,,33解析:让n 取自然数集中最小3个数代入即可得.详解:0,1,2n =时,三个元素为24033,,. 点睛:根据集合中元素的性质,取n 为自然数集中最小3个数代入可求得集合A 中最小的三个元素.2.已知数集{}()1212,,,0,2n n A a a a a a a n =≤<<<≥具有性质P :对任意的i、()1j i j n ≤≤≤,i j a a +,与j i a a -两数中至少有一个属于A .(1)分别判断数集{}0,1,3,4与{}0,2,3,6是否具有性质P ,并说明理由;(2)证明:10a =,且()122n n na a a a =+++; (3)当5n =时,若22a =,求集合A .答案:(1)集合{}0,1,3,4具有性质P ,集合{}0,2,3,6不具有性质P .(2)证明见解析. (3){0,2,4,6,8}A =.解析:(1)利用i j a a +与j i a a -两数中至少有一个属于A .即可判断出结论.(2)先由0n na a A =-∈,得出10a =,令“,1j n i =>,由“i j a a +与j i a a -两数中至少有一个属于A ”可得n i a a -属于A .令1i n =-,那么1n n a a --是集合A 中某项,1a 不符合不符合题意,2a 符合.同理可得:令1i n =-可以得到21n n a a a -=+,令2i n =-,3,....,2n -可以得到1n i n i a a a +-=+,倒序相加即可.(3)当5n =时,取5j =,当2i ≥时,55i a a a +>,由A 具有性质P,5i a a A -∈,又1i =时,51a a A -∈,可得51i a a Ai -∈=51525354550a a a a a a a a a a ->->->->-=,则515533524a a a a a a a a a -=-=-= ,又34245a a a a a +>+=,可得34a a A +∉,则43a a A -∈,则有43221a a a a a -==-.可得即12345,,,,a a a a a 是首项为0,公差为22a =等差数列是首项为0,公差为22a =等差数列.详解:解:(1)在集合{}0,1,3,4中,设{}0,1,3,4A =①011,101A A +=∈-=∈,具有性质P②033,303A A +=∈-=∈,具有性质P③044,404A A +=∈-=∈,具有性质P④134,312A A +=∈-=∉,具有性质P⑤145,413A A +=∉-=∈,具有性质P⑥347,431A A +=∉-=∈,具有性质P综上所述:集合{}0,1,3,4具有性质P ;在集合{}0,2,3,6中,设{}0,2,3,6B =,①022,202B B +=∈-=∈,具有性质P②033,303B B +=∈-=∈,具有性质P③066,606B B +=∈-=∈,具有性质P④235,321B B +=∉-=∉,不具有性质P⑤267,624B B +=∉-=∉,具有性质P⑥368,633B B +=∉-=∈,具有性质P综上所述:集合{}0,2,3,6不具有性质P .故集合{}0,1,3,4具有性质P ,集合{}0,2,3,6不具有性质P .(2)证明:令,1j n i =>由于120n a a a ≤<<<,则n n n a a a +>,故2n a A ∉ 则0n n a a A =-∈,即10a =i j a a +与j i a a -两数中至少有一个属于A ,i j a a ∴+不属于A ,n i a a ∴-属于A .令1i n =-,那么1n n a a --是集合A 中某项,10a =不符合题意,2a 可以.如果是3a 或者4a ,那么可知31n n a a a --=那么231n n n a a a a a -->-=,只能是等于n a ,矛盾.所以令1i n =-可以得到21n n a a a -=+,同理,令2i n =-,3,....,2n -可以得到1n i n i a a a +-=+,∴倒序相加即可得到1232n n n a a a a a +++⋯+= 即()122n n na a a a a =+++⋯+(3)当5n =时,取5j =,当2i ≥时,55i a a a +>,由A 具有性质P ,5i a a A -∈,又1i =时,51a a A -∈,51,2,3,4,5i a a Ai ∴-∈=123451234500a a a a a a a a a a =<<<<=<<<<,51525354550a a a a a a a a a a ∴->->->->-=,则515524a a a a a a -=-=,533a a a -=,从而可得245532a a a a a +==,故2432a a a +=,即433230a a a a a <-=-<,又3424534a a a a a a a A +>+=∴+∈/ ,则43a a A -∈,则有43221a a a a a -==-又54221a a a a a -==-544332212a a a a a a a a a ∴-=-=-=-=,即12345,,,,a a a a a 是首项为0,公差为22a =等差数列,{0,2,4,6,8}A ∴=点睛:(1)本问采用举反例的方法证明A 不具有P 性质;(2)采用极端值是证明这类问题的要点,一个数集满足某个性质,则数集中的特殊的元素(比如最大值、最小值)也满足这个性质;本问的第二个要点是集合的元素具有互异性,由互异性及题中给的性质P ,可得出等式;(3)利用在(2)中得到的结论得出12345,,,,a a a a a 之间的关系,再结合A 中元素所具有的P 性质即可得到结论.3.分别用列举法和描述法表示方程x 2+x –2=0的所有实数解的集合.答案:1,–2},x|x=1或x=–2}解析:根据列举法和描述法的定义分别进行表示即可. 详解:由220x x +-= 得1x = 或2x =- ,所以用列举法表示解集为}{1,2- ,用描述法表示为}{{}22012.x x x x x x +-===-=-或点睛:本题主要考查集合表示的两种方法:列举法和描述法,比较基础,要注意两者之间的区别.。
1.1 集合的概念同步练习卷【新教材】人教A版(2019)高中数学必修第一册(含答案)

1.1 集合的概念同步练习卷【人教A版2019】考试时间:60分钟;满分:100分姓名:___________班级:___________考号:___________考卷信息:本卷试题共22题,单选8题,多选4题,填空4题,解答6题,满分100分,限时60分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本节内容的具体情况!一.选择题(共8小题,满分24分,每小题3分)1.(3分)(2020秋•袁州区校级月考)下列四组对象中能构成集合的是()A.宜春市第一中学高一学习好的学生B.在数轴上与原点非常近的点C.很小的实数D.倒数等于本身的数2.(3分)(2020秋•路北区校级期中)下列元素与集合的关系表示正确的是()①﹣1∈N*;②√2∉Z;③32∈Q;④π∈QA.①②B.②③C.①③D.③④3.(3分)(2020•西城区校级期中)已知集合M={﹣2,3},N={﹣4,5,6},依次从集合M,N中各取出一个数分别作为点P的横坐标和纵坐标,则在平面直角坐标系中位于第一、二象限内的点P的个数是()A.4B.5C.6D.74.(3分)(2020春•大武口区校级期中)已知集合M={1,m+2,m2+4},且5∈M,则m的值为()A.1或﹣1B.1或3C.﹣1或3D.1,﹣1或35.(3分)集合A={1,﹣3,5,﹣7,9,﹣11,…},用描述法表示正确的是()①{x|x=2n±1,n∈N};②{x|x=(﹣1)n(2n﹣1),n∈N};③{x|x=(﹣1)n(2n+1),n∈N}.A.③B.①③C.②③D.①②③6.(3分)(2020秋•张店区校级月考)集合A={x∈N∗|63−x∈Z},用列举法可以表示为()A.{1,2,4,9}B.{1,2,4,5,6,9}C.{﹣6,﹣3,﹣2,﹣1,3,6}D.{﹣6,﹣3,﹣2,﹣1,2,3,6}7.(3分)(2020秋•华龙区校级期中)已知集合A={1,2,3,4},B={(x,y)|x∈A,y∈A,y﹣x∈A},则集合B中的元素的个数为()A.4B.5C.6D.78.(3分)(2020秋•汇川区校级月考)设集合A={2,3,a2﹣3a,a+2a+7},B={|a﹣2|,0}.已知4∈A且4∉B,则实数a的取值集合为()A.{﹣1,﹣2}B.{﹣1,2}C.{﹣2,4}D.{4}二.多选题(共4小题,满分16分,每小题4分)9.(4分)(2020秋•中山市校级月考)已知x∈{1,2,x2},则有()A.x=1B.x=2C.x=0D.x=√210.(4分)(2020秋•农安县月考)下面四个说法中错误的是()A.10以内的质数组成的集合是{2,3,5,7}B.由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}C.方程x2﹣2x+1=0的所有解组成的集合是{1,1}D.0与{0}表示同一个集合11.(4分)(2020秋•余姚市校级月考)已知集合A={x|ax2﹣2x+a=0}中至多含有一个元素,则实数a可以取()A.a≥1B.a=0C.a≤﹣1D.﹣1≤a≤112.(4分)若集合A具有以下性质:(1)0∈A,1∈A;(2)若x∈A,y∈A;则x﹣y∈A,且x≠0时,1x∈A.则称集合A是“好集”.下列命题中正确的是()A.集合B={﹣1,0,1}是“好集”B.有理数集Q是“好集”C.整数集Z不是“好集”D.设集合A是“好集”,若x∈A,y∈A,则x+y∈A 三.填空题(共4小题,满分16分,每小题4分)13.(4分)(2020秋•辛集市校级月考)下列关系中,正确的是.①−43∈R;②√3∉Q;③|﹣20|∉N*;④|−√2|∈Q;⑤﹣5∉Z;⑥0∈N.14.(4分)(2020秋•浙江期中)已知集合A={﹣2,2a,a2﹣a},若2∈A,则a=.15.(4分)(2020秋•汇川区校级月考)设集合A中有n个元素,定义|A|=n,若集合P={x∈Z|6x−3∈Z},则|P|=.16.(4分)(2020秋•河东区校级月考)已知a,b,c均为非零实数,集合A={x|x=|a|a+b|b|+ab|ab|},则集合A的元素的个数有个.四.解答题(共6小题,满分44分)17.(6分)下列研究对象能否构成一个集合?如果能,采用适当的方式表示它.(1)小于5的自然数;(2)某班所有个子高的同学;(3)不等式2x+1>7的整数解.18.(6分)已知集合M={﹣2,3x2+3x﹣4,x2+x﹣4},若2∈M,求x的值.19.(8分)用另一种方法表示下列集合.(1){绝对值不大于2的整数};(2){能被3整除,且小于10的正数};(3){x|x=|x|,x<5,且x∈Z};(4){(x,y)|x+y=6,x∈N*,y∈N*};(5){﹣3,﹣1,1,3,5}.20.(8分)(2020秋•黄浦区校级月考)已知集合A={x|kx2﹣8x+16=0,k∈R,x∈R}.(1)若A只有一个元素,试求实数k的值,并用列举法表示集合A;(2)若A至多有两个子集,试求实数k的取值范围.21.(8分)设集合A中含有三个元素3,x,x2﹣2x.(1)求实数x应满足的条件;(2)若﹣2∈A,求实数x.22.(8分)(2020秋•越秀区校级期中)已知不等式ax2+5x﹣2>0的解集是M.(1)若2∈M且3∉M,求a的取值范围;(2)若M={x|12<x<2},求不等式ax2﹣5x+a2﹣1>0的解集.1.1 集合的概念同步练习卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.(3分)(2020秋•袁州区校级月考)下列四组对象中能构成集合的是( ) A .宜春市第一中学高一学习好的学生B .在数轴上与原点非常近的点C .很小的实数D .倒数等于本身的数【分析】根据集合的含义分别分析四个选项,A ,B ,C 都不满足函数的确定性故排除,D 确定,满足. 【解答】解:A :宜春市第一中学高一学习好的学生,因为学习好的学生不确定,所以不满足集合的确定性,排除B :在数轴上与原点非常近的点,因为非常近的点不确定,所以不满足集合的确定性,排除C :很小的实数,因为很小的实数不确定,所以不满足集合的确定性,排除D :倒数等于它自身的实数为1与﹣1,∴满足集合的定义,故正确. 故选:D .【点睛】本题考查集合的含义.通过对集合元素三个性质:确定性,无序性,互异性进行考查,属于基础题.2.(3分)(2020秋•路北区校级期中)下列元素与集合的关系表示正确的是( ) ①﹣1∈N *;②√2∉Z ;③32∈Q ;④π∈QA .①②B .②③C .①③D .③④【分析】认识常用数集的表示符号及元素和集合的关系. 【解答】解:对于①:﹣1不是自然数,故﹣1∉N *,故①错误;对于②:√2是无理数不是整数,Z 表示整数集合∴√2∉Z ,故②正确; 对于③:32是有理数,Q 表示有理数集,∴32∈Q ,故③正确;对于④:π是无理数,Q 表示无理数集,∴π∉Q ,故④错误. 故选:B .【点睛】本题考查对数集的认识,属于基础题3.(3分)(2020•西城区校级期中)已知集合M ={﹣2,3},N ={﹣4,5,6},依次从集合M ,N 中各取出一个数分别作为点P的横坐标和纵坐标,则在平面直角坐标系中位于第一、二象限内的点P的个数是()A.4B.5C.6D.7【分析】利用列举法和第一、二象限的点的性质直接求解.【解答】解:集合M={﹣2,3},N={﹣4,5,6},依次从集合M,N中各取出一个数分别作为点P的横坐标和纵坐标,在平面直角坐标系中位于第一、二象限内的点P有:(﹣2,5),(﹣2,6),(3,5),(3,6),共4个.故选:A.【点睛】在平面直角坐标系中位于第一、二象限内的点P的个数的求法,考查列举法和第一、二象限的点的性质等基础知识,考查运算求解能力,是基础题.4.(3分)(2020春•大武口区校级期中)已知集合M={1,m+2,m2+4},且5∈M,则m的值为()A.1或﹣1B.1或3C.﹣1或3D.1,﹣1或3【分析】由5∈{1,m+2,m2+4},得m+2=5或m2+4=5,再由集合中元素的互异性,能求出m的取值集合.【解答】解:∵5∈{1,m+2,m2+4},∴m+2=5或m2+4=5,即m=3或m=±1.当m=3时,M={1,5,13};当m=1时,M={1,3,5};当m=﹣1时,M={1,1,5}不满足互异性,∴m的取值集合为{1,3}.故选:B.【点睛】本题考查实数的取值集合的求法,解题时要认真审题,注意集合性质的合理运用,是基础题.5.(3分)集合A={1,﹣3,5,﹣7,9,﹣11,…},用描述法表示正确的是()①{x|x=2n±1,n∈N};②{x|x=(﹣1)n(2n﹣1),n∈N};③{x|x=(﹣1)n(2n+1),n∈N}.A.③B.①③C.②③D.①②③【分析】取n=0,1,2分别验证三个集合即可.【解答】解:取n=0,{x|x=2n±1,n∈N}={0,1},故①错误;取n=0,{x|x=(﹣1)n(2n﹣1),n∈N}={﹣1},故②错误;取n=0,{x|x=(﹣1)n(2n+1),n∈N}={1},取n=1,{x|x=(﹣1)n(2n+1),n∈N}={﹣3},取n=2,{x|x=(﹣1)n(2n+1),n∈N}={5},……,故③正确;故选:A.【点睛】本题主要考查了集合的表示方法,是基础题.6.(3分)(2020秋•张店区校级月考)集合A={x∈N∗|63−x∈Z},用列举法可以表示为()A.{1,2,4,9}B.{1,2,4,5,6,9}C.{﹣6,﹣3,﹣2,﹣1,3,6}D.{﹣6,﹣3,﹣2,﹣1,2,3,6}【分析】利用已知条件,化简求解即可.【解答】解:集合A={x∈N∗|63−x∈Z},可知63−1=3,63−2=6,63−4=−6,63−5=−3,63−6=−2,63−9=−1,则x=1,2,4,5,6,9.集合A={x∈N∗|63−x∈Z}={1,2,4,5,6,9}.故选:B.【点睛】本题考查集合的表示方法,是基础题.7.(3分)(2020秋•华龙区校级期中)已知集合A={1,2,3,4},B={(x,y)|x∈A,y∈A,y﹣x∈A},则集合B中的元素的个数为()A.4B.5C.6D.7【分析】通过集合B,利用x∈A,y∈A,y﹣x∈A,求出集合B中元素的个数.【解答】解:因为集合A={1,2,3,4},B={(x,y)|x∈A,y∈A,y﹣x∈A},所以当x=1时,y=2或y=3或y=4,当x=2时,y=3或y=4,当x=3时,y=4,所以集合B中的元素个数为6.故选:C.【点睛】本题考查集合的元素与集合的关系,属基础题.8.(3分)(2020秋•汇川区校级月考)设集合A={2,3,a2﹣3a,a+2a+7},B={|a﹣2|,0}.已知4∈A且4∉B ,则实数a 的取值集合为( ) A .{﹣1,﹣2}B .{﹣1,2}C .{﹣2,4}D .{4}【分析】根据题意分a 2﹣3a =4且|a ﹣2|≠4,a +2a +7=4且|a ﹣2|≠4两种情况讨论,求出a 的值,并利用集合的互异性进行验证,即可求得符合题意的a 的值.【解答】解:由题意可得①当a 2﹣3a =4且|a ﹣2|≠4时,解得a =﹣1或4, a =﹣1时,集合A ={2,3,4,4}不满足集合的互异性,故a ≠﹣1, a =4时,集合A ={2,3,4,1112},集合B ={2,0},符合题意.②当a +2a+7=4且|a ﹣2|≠4,解得a =﹣1,由①可得不符合题意. 综上,实数a 的取值集合为{4}. 故选:D .【点睛】本题主要考查元素与集合的关系,考查集合的互异性,属于基础题. 二.多选题(共4小题,满分16分,每小题4分)9.(4分)(2020秋•中山市校级月考)已知x ∈{1,2,x 2},则有( ) A .x =1B .x =2C .x =0D .x =√2【分析】利用元素与集合的关系及集合中元素的互异性即可求解. 【解答】解:因为x ∈{1,2,x 2},所以x =2或x =x 2,解得x =2或x =1或x =0, 当x =2时,x ∈{1,2,4},符合题意;当x =1时,x ∈{1,2,1},不满足集合的互异性; 当x =0时,x ∈{1,2,0},符合题意., 故x =2或x =0. 故选:BC .【点睛】本题主要考查元素与集合间的关系,利用集合中元素的互异性验证结论是否符合题意是解题的关键,属于基础题.10.(4分)(2020秋•农安县月考)下面四个说法中错误的是( ) A .10以内的质数组成的集合是{2,3,5,7}B .由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}C .方程x 2﹣2x +1=0的所有解组成的集合是{1,1}D.0与{0}表示同一个集合【分析】结合集合的表示及元素与集合的基本关系分别检验各选项即可判断.【解答】解:10以内的质数组成的集合是{2,3,5,7},故A正确;由集合中元素的无序性知{1,2,3}和{3,2,1}表示同一集合,故B正确;方程x2﹣2x+1=0的所有解组成的集合是{1},故C错误;由集合的表示方法知0不是集合,故D错误,故选:CD.【点睛】本题主要考查了集合的表示及元素与集合的基本关系的判断,属于基础题.11.(4分)(2020秋•余姚市校级月考)已知集合A={x|ax2﹣2x+a=0}中至多含有一个元素,则实数a可以取()A.a≥1B.a=0C.a≤﹣1D.﹣1≤a≤1【分析】根据集合A={x|ax2﹣2x+a=0}中至多含有一个元素,讨论集合A中的方程ax2﹣2x+a=0的根的情况,求解若ax2﹣2x+a=0为一元一次方程和一元二次方程至多含有一个根的情况,符合题意时可得实数a可以取为:a=0,a≥1或a≤﹣1.【解答】解:已知集合A={x|ax2﹣2x+a=0}中至多含有一个元素,则讨论集合A中的方程ax2﹣2x+a=0的根的情况,①若ax2﹣2x+a=0为一元一次方程,则a=0,解得x=0,符合题意;②若ax2﹣2x+a=0为一元二次方程,则a≠0,方程至多含有一个根,△=4﹣4a2≤0,解得a≥1或a≤﹣1,符合题意;故实数a可以取为:a=0,a≥1或a≤﹣1.故选:ABC.【点睛】本题主要考查元素与集合的关系,一元二次方程根的情况,分类讨论思想,属于基础题.12.(4分)若集合A具有以下性质:(1)0∈A,1∈A;(2)若x∈A,y∈A;则x﹣y∈A,且x≠0时,1x∈A.则称集合A是“好集”.下列命题中正确的是()A.集合B={﹣1,0,1}是“好集”B.有理数集Q是“好集”C .整数集Z 不是“好集”D .设集合A 是“好集”,若x ∈A ,y ∈A ,则x +y ∈A【分析】逐一判断给定的3个集合,是否满足“好集”的定义,最后综合讨论结果,可得答案. 【解答】解:对于A ,假设集合B 是“好集”,因为﹣1∈B ,1∈B ,所以﹣1﹣1=﹣2∈B ,这与﹣2∉B 矛盾,所以集合B 不是“好集”.故A 错误;对于B ,因为0∈Q ,1∈Q ,且对任意的x ∈Q ,y ∈Q 有x ﹣y ∈Q ,且x ≠0时,1x ∈Q ,所以有理数集Q 是“好集”,故B 正确;对于C ,因为2∈Z ,但12∉Z ,所以整数集Z 不是“好集”.故C 正确;因为集合A 是“好集”,所以0∈A ,又y ∈A ,所以0﹣y ∈A ,即﹣y ∈A ,又x ∈A ,所以x ﹣(﹣y )∈A ,即x +y ∈A ,故D 正确. 故选:BCD .【点睛】本题主要考查了元素与集合关系的判断,以及新定义的理解,同时考查了运算求解的能力,属于基础题.三.填空题(共4小题,满分16分,每小题4分)13.(4分)(2020秋•辛集市校级月考)下列关系中,正确的是 ①②⑥ . ①−43∈R ; ②√3∉Q ; ③|﹣20|∉N *; ④|−√2|∈Q ; ⑤﹣5∉Z ; ⑥0∈N .【分析】根据元素与集合的关系进行判断即可. 【解答】解:①−43∈R ,正确; ②√3∉Q ,正确;③因为|﹣20|=20∈N *,则|﹣20|∉N *,错误; ④因为|−√2|=√2∉Q ;则|−√2|∈Q ,错误; ⑤﹣5∉Z ,错误; ⑥0∈N .正确;所以正确的是①②⑥.【点睛】本题主要考查元素与集合的关系,属于基础题.14.(4分)(2020秋•浙江期中)已知集合A ={﹣2,2a ,a 2﹣a },若2∈A ,则a = 1或2 .【分析】根据2是集合中的元素,求出a 值,再验证集合中元素的互异性即可.【解答】解:∵2∈A ,∴2a =2或a 2﹣a =2;当2a =2时,a =1,a 2﹣a =0,A ={﹣2,2,0},符合题意;当a 2﹣a =2时,a =﹣1或a =2,a =2时,A ={﹣2,4,2},符合题意.a =﹣1时,A ={﹣2,﹣2,2},不符合题意.综上a =1或a =2,故答案为:1或2.【点睛】本题考查集合中元素的性质及元素与集合的关系,属于基础题目.15.(4分)(2020秋•汇川区校级月考)设集合A 中有n 个元素,定义|A |=n ,若集合P ={x ∈Z |6x−3∈Z },则|P |= 8 .【分析】通过对集合中元素构成的特点及元素条件求集合P ,即可得到答案.【解答】解:∵集合P ={x ∈Z |6x−3∈Z },∵x ∈Z ,6x−3∈Z ,∴x ﹣3=±1,±2,±3,±6.解得x =4,2,5,1,0,6,9,﹣3,∴P ={﹣3,0,1,2,4,5,6,9}.|P |=8,故答案为:8.【点睛】本题考查集合的元素,通过对集合中元素构成的特点及元素条件求集合,属于基础题.16.(4分)(2020秋•河东区校级月考)已知a ,b ,c 均为非零实数,集合A ={x|x =|a|a +b |b|+ab |ab|},则集合A 的元素的个数有 2 个.【分析】通过对a ,b 的正负的分类讨论,利用绝对值的定义去掉绝对值的符号 然后进行运算,求出集合中的元素.【解答】解:当a >0,b >0时,x =|a|a +b |b|+ab |ab|=1+1+1=3,当a >0,b <0时,x =|a|a +b |b|+ab |ab|=1﹣1﹣1=﹣1,当a <0,b >0时,x =|a|a +b |b|+ab |ab|=−1+1﹣1=﹣1,当a<0,b<0时,x=|a|a+b|b|+ab|ab|=−1﹣1+1=﹣1,故x的所有值组成的集合为{﹣1,3}故答案为:2.【点睛】本题考查了分类讨论的数学思想方法,绝对值的几何意义.考查计算能力,属于基础题.四.解答题(共6小题,满分44分)17.(6分)下列研究对象能否构成一个集合?如果能,采用适当的方式表示它.(1)小于5的自然数;(2)某班所有个子高的同学;(3)不等式2x+1>7的整数解.【分析】根据集合元素的确定性,互异性进行判断即可.【解答】解:(1)小于5的自然数为0,1,2,3,4,元素确定,所以能构成集合.为{0,1,2,3,4}.(2)个子高的标准不确定,所以集合元素无法确定,所以不能构成集合.(3)由2x+1>7得x>3,因为x为整数,集合元素确定,但集合元素个数为无限个,所以用描述法表示为{x|x>3,且x∈Z}.【点睛】本题主要考查集合的含义和表示,利用元素的确定性,互异性是判断元素能否构成集合的条件,比较基础.18.(6分)已知集合M={﹣2,3x2+3x﹣4,x2+x﹣4},若2∈M,求x的值.【分析】由已知2是集合M的元素,分类讨论列出方程,求出x的值,将x的值代入集合,检验集合的元素需满足互异性.【解答】解:当3x2+3x﹣4=2时,3x2+3x﹣6=0,x2+x﹣2=0,x=﹣2或x=1.经检验,x=﹣2,x=1均不合题意.当x2+x﹣4=2时,x2+x﹣6=0,x=﹣3或2.经检验,x=﹣3或x=2均合题意.∴x=﹣3或x=2.【点睛】本题考查解决集合中的参数值时,需将求出的参数值代入集合检验集合的互异性、考查分类讨论的数学思想方法.19.(8分)用另一种方法表示下列集合.(1){绝对值不大于2的整数};(2){能被3整除,且小于10的正数};(3){x|x=|x|,x<5,且x∈Z};(4){(x,y)|x+y=6,x∈N*,y∈N*};(5){﹣3,﹣1,1,3,5}.【分析】根据集合的概念,列举法及描述法的定义,选择适当的方法表示每个集合即可.【解答】解:(1){绝对值不大于2的整数}={﹣2,﹣1,0,1,2}.(2){能被3整除,且小于10的正数}={3,6,9}.(3){x|x=|x|,x<5,且x∈Z}={0,1,2,3,4}.(4){(x,y)|x+y=6,x∈N*,y∈N*}={(1,5),(2,4),(3,3),(4,2),(5,1)}.(5){﹣3,﹣1,1,3,5}={x|x=2k﹣1,﹣1≤k≤3,k∈Z}.【点睛】考查集合的概念,集合的表示方法:列举法,描述法.20.(8分)(2020秋•黄浦区校级月考)已知集合A={x|kx2﹣8x+16=0,k∈R,x∈R}.(1)若A只有一个元素,试求实数k的值,并用列举法表示集合A;(2)若A至多有两个子集,试求实数k的取值范围.【分析】(1)当k=0时,易知符合题意,当k≠0时,利用△=0即可求出k的值;(2)由A至多有两个子集,可知集合A中元素个数最多1个,再分k=0和k≠0两种情况讨论,即可求出实数k的取值范围.【解答】解:(1)①当k=0时,方程化为:﹣8x+16=0,解得x=2,此时集合A={2},满足题意;②当k≠0时,∵方程kx2﹣8x+16=0有一个根,∴△=(﹣8)2﹣4k×16=0,解得:k=1,此时方程为x2﹣8x+16=0,解得x=4,∴集合A={4},符合题意,综上所述,k=0时集合A={2};k=1时集合A={4};(2)∵A至多有两个子集,∴集合A中元素个数最多1个,①当k≠0时,一元二次方程kx2﹣8x+16=0最多有1个实数根,∴△=(﹣8)2﹣4k×16≤0,解得k≥1,②当k=0时,由(1)可知,集合A={2}符合题意,综上所述,实数k 的取值范围为:{0}∪[1,+∞).【点睛】本题主要考查了集合的表示方法,考查了集合的元素个数,是基础题.21.(8分)设集合A 中含有三个元素3,x ,x 2﹣2x .(1)求实数x 应满足的条件;(2)若﹣2∈A ,求实数x .【分析】(1)由集合元素的互异性直接求解.(2)若﹣2∈A ,则x =﹣2或x 2﹣2x =﹣2.由此能出x .【解答】解:(1)由集合元素的互异性可得:x ≠3,x 2﹣2x ≠x 且x 2﹣2x ≠3,解得x ≠﹣1,x ≠0且x ≠3.(2)若﹣2∈A ,则x =﹣2或x 2﹣2x =﹣2.由于x 2﹣2x =(x ﹣1)2﹣1≥﹣1,所以x =﹣2.【点睛】本题考查集合中元素的性质、实数值的求法,是基础题,解题时要认真审题,注意元素与集合的关系的合理运用.22.(8分)(2020秋•越秀区校级期中)已知不等式ax 2+5x ﹣2>0的解集是M .(1)若2∈M 且3∉M ,求a 的取值范围;(2)若M ={x|12<x <2},求不等式ax 2﹣5x +a 2﹣1>0的解集.【分析】(1)由2∈M 且3∉M ,列出不等式组,能求出实数a 的取值范围.(2)推导出12,2是方程ax 2+5x ﹣2=0的两个根,由韦达定理求出a =﹣2,从而不等式ax 2﹣5x +a 2﹣1>0即为2x 2+5x ﹣3<0,由此能求出不等式的解集.【解答】解:(1)∵不等式ax 2+5x ﹣2>0的解集是M .2∈M 且3∉M ,∴{4a +8>09a +13≤0,解得﹣2<a ≤−139, ∴a 的取值范围是(﹣2,−139].(2)∵M ={x|12<x <2},∴12,2是方程ax 2+5x ﹣2=0的两个根,∴由韦达定理得{12+2=−5a 12⋅2=−2a ,解得a =﹣2, ∴不等式ax 2﹣5x +a 2﹣1>0为2x 2+5x ﹣3<0,∴不等式ax 2﹣5x +a 2﹣1>0的解集为{x|−3<x <12}.【点睛】本题考查实数的取值范围的求法,考查不等式的解集的求法,考查运算求解能力,是基础题.。
高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(60)

1.1 集合的概念一、单选题1.下列叙述正确的是( ).A .方程2210x x -+=的根构成的集合为{}1,1-B .{}22401030x x R x x R x ⎧⎫+>⎧∈+==∈⎨⎨⎬+<⎩⎩⎭C .集合(){,5M x y x y =+=且}20x y -=表示的集合是{}2,3D .集合{}1,2,3与集合{}3,2,1是不同的集合答案:B解析:解出2210x x -+=、520x y x y +=⎧⎨-=⎩可判断AC 的正误,由集合的无序性可得D 的正误,{}22401030x x R x x Rx ⎧⎫+>⎧∈+==∈=∅⎨⎨⎬+<⎩⎩⎭,可得B 的正误. 详解:方程2210x x -+=的根为1x =,故A 错误;{}22401030x x R x x Rx ⎧⎫+>⎧∈+==∈=∅⎨⎨⎬+<⎩⎩⎭,故B 正确; 由520x y x y +=⎧⎨-=⎩可解得53103x y ⎧=⎪⎪⎨⎪=⎪⎩,故C 错误; 集合{}1,2,3与集合{}3,2,1是相同的集合,故D 错误故选:B2.定义集合运算:{|()(),A B z z x y x y ⊗==+⨯-,}x A y B ∈∈,设A =,{1B =,则集合A B ⊗的真子集个数为A .8B .7C .16D .15答案:B详解:由题意A =,{B =,则A B ⊗有)))111,0,112,⨯=⨯==1= 四种结果,由集合中元素的互异性,则集合A B ⊗由3个元素,故集合A B ⊗的真子集个数为3217-=个,故选B3.已知M =x|x≤5,x∈R},a =b ( )A .a∈M,b∈MB .a∈M,b MC .a M ,b∈MD .a M ,b M答案:B解析:∵5a =,5b ,{|5}M x x x R =≤∈,,∴ a M b M ∈∉,,故选B. 4.设集合A={1,4,5},若a∈A,5-a∈A,那么a 的值为A .1B .4C .1或4D .0 答案:C详解:试题分析:当1a =时54a A -=∈成立;当4a =时51a A -=∈成立;当5a =时50a A -=∉,舍. 所以1a =或4a =.故C 正确.考点:元素与集合间的关系.5.已知集合A =3|,2x x Z Z x 且⎧⎫∈∈⎨⎬-⎩⎭,则集合A 中的元素个数为( ) A .2B .3C .4D .5 答案:C详解: 试题分析:32Z x ∈-,2x -的取值有3-、1-、1、3,又x Z ∈, x ∴值分别为5、3、1、1-,故集合A 中的元素个数为4,故选C.考点:数的整除性6.集合(x ,y)|y =2x -1}表示( )A .方程y =2x -1B .点(x ,y)C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图像上的所有点组成的集合答案:D解析:由集合中的元素的表示法可知集合(x ,y )|y=2x ﹣1}表示函数y=2x ﹣1图象上的所有点组成的集合.详解:集合(x ,y )|y=2x ﹣1}中的元素为有序实数对(x ,y ),表示点,所以集合(x ,y )|y=2x ﹣1}表示函数y=2x ﹣1图象上的所有点组成的集合.故选D .点睛:本题考查了集合的分类,考查了集合中的元素,解答的关键是明确(x ,y )表示点,是基础题.7.已知集合{}1,2,3A =,则下列说法正确的是( )A .2A ∈B .2A ⊆C .2A ∉D .∅=A答案:A解析:根据元素与集合之间关系,可直接得出结果.详解:因为集合{}1,2,3A =,所以2A ∈.故选:A点睛:本题主要考查元素与集合之间关系的判断,熟记元素与集合之间的关系即可,属于基础题型.8.集合8,,3M y y x N y N x ⎧⎫==∈∈⎨⎬+⎩⎭的元素个数是 A .2B .4C .6D .8答案:A 解析:根据题中给出的条件,x y N ∈,分别从最小的自然数0开始给x 代值,求出相应的y 的值,直到得出的1y <为止,求出y N ∈的个数.详解: 因为8|,,3M y y x y N x ⎧⎫==∈⎨⎬+⎩⎭, 所以:当0x =时,83y N =∈/; 当x 1=时,8213y N ==∈+; 当x 2=时,88235y N ==∈/+; 当3x =时,84333y N ==∈/+; 当x 4=时,88437y N ==∈/+;当5x =时,8153y N ==∈+; 当6x ≥时,813y x =<+,且0y ≠,所以y N ∉. 综上,8|,,{2,1}3M y y x y N x ⎧⎫==∈=⎨⎬+⎩⎭,元素个数是2个. 故选A.点睛:本题考查了集合中元素的个数,关键根据,x y N ∈用赋值法分析和解决问题,属于基础题.9.下面对集合1,5,9,13,17}用描述法表示,其中正确的是( )A .x|x 是小于18的正奇数}B .x|x =4s +1,s∈N,且s <5}C .x|x =4t -3,t∈N,且t<5}D .x|x =4s -3,s∈N ,且s<6}答案:B解析:根据描述法的定义,依次判断选项即可.详解:A :集合含有元素3,故A 错误;B :当s 01234=、、、、时,1591317x =、、、、,故B 正确; C :当0t =时,3x =-,故C 错误;D :当0s =时,3x =-,故D 错误.故选:B二、填空题1.已知{}20,,A a a =,若1A ∈,则实数a 的值是______.答案:1-解析:利用元素和集合的关系,以及集合的互异性可求解.详解:1A ∈,1a 或21a =,当1a =时,21a =,则{0,1,1}A =,不满足集合的互异性,舍去.当21a =时,解得:1a =-,1a =(舍去),此时{0,1,1}A =-符合题意.故答案为:1-2.已知集合123A x N y Z x ⎧⎫=∈=∈⎨⎬+⎩⎭,则集合A 用列举法表示为__________________答案:{}0,1,3,9解析:由y Z ∈,x ∈N ,可得3x +是12不小于3的因数,列出因数,求解即可详解:由x ∈N ,y Z ∈,则3x +是12不小于3的因数,则3x +可为3,4,6,12,即x 为0,1,3,9, 则集合A 用列举法表示为{}0,1,3,9点睛:本题考查描述法与列举法的转换,列举法表示集合,数集的应用3.设集合{}24,21,A a a =--,{}9,5,1B a a =--,且A ,B 中有唯一的公共元素9,则实数a 的值为______.答案:3-解析:先通过已知可得219a -=或29a =,解方程求出a ,然后带入集合验证,满足互异性即可.详解:∵{}24,21,A a a =--,{}9,5,1B a a =--,且A ,B 中有唯一的公共元素9, ∴219a -=或29a =.当219a -=时,5a =,此时{}4,9,25A =-,{}9,0,4B =-,A ,B 中还有公共元素4-,不符合题意;当29a =时,3a =±,若3a =,{}9,2,2B =--,集合B 违背互异性.若3,{4,7,9},{9,8,4},{9}a A B A B =-=--=-=,∴3a =-.故答案为:3-.点睛:本题考查元素与集合的关系,以及集合中元素的互异性,是基础题.4.集合[]{}cos(cos )0,0,x x x ππ=∈= _____.(用列举法表示)答案:2,33ππ⎧⎫⎨⎬⎩⎭ 解析:由已知得cos 2x ππ=,或cos 2x ππ=-,由此能得出结果. 详解: 集合[]{}cos(cos )0,0,x x x ππ=∈,cos 2x ππ∴=,或cos 2x ππ=-, 1cos 2x ∴=或1cos 2x =-, 3x π∴=或23x π=. []{}2cos(cos )0,0,,33x x x ππππ⎧⎫∴=∈=⎨⎬⎩⎭. 故答案为:2,33ππ⎧⎫⎨⎬⎩⎭. 点睛:本题主要考查的是三角函数以及列举法表示集合,是基础题.5.用描述法表示图中的阴影部分(包括边界)___________.答案:(){,0,x y xy ≥且211,132x y ⎫-≤≤-≤≤⎬⎭ 解析:根据阴影部分所在象限,确定xy 的范围,再结合图像,判断出,x y 的取值范围,由此求得可以表示出阴影部分的集合.详解:由于阴影部分所在象限为第一、三象限,且在,x y 轴上都有点,故0xy ≥;根据图像可知211,132x y -≤≤-≤≤,所以描述法表示图中的阴影部分(包括边界)为(){,0,x y xy ≥且211,132x y ⎫-≤≤-≤≤⎬⎭. 故填:(){,0,x y xy ≥且211,132x y ⎫-≤≤-≤≤⎬⎭. 点睛:本小题主要考查用集合表示区域,考查数形结合的数学思想方法,属于基础题.三、解答题1.已知53,⎛ ⎝⎭和3)都是集合{}22(,)|1A x y ax by =-=中的元素,求实数,a b 的值.答案:1,14a b ==解析:把3,⎛ ⎝⎭和代入方程221ax by -=列出方程组,即可求出实数,a b 的值. 详解:由题:3,⎛ ⎝⎭和都是集合{}22(,)|1A x y ax by =-=中的元素,所以3,⎛ ⎝⎭和满足方程221ax by -=, 59141631a b a b ⎧-=⎪⎨⎪-=⎩,解得:141a b ⎧=⎪⎨⎪=⎩, 所以1,14a b ==.点睛:此题考查根据集合中的元素求参数的值,关键在于准确代值列出方程组,解方程组即可得解.2.若a ,b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭. 求:(1)a b +;(2)20222019a b +.答案:(1) 0; (2) 2;解析:(1)根据{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭可得出0a b +=, (2)由(1)得=-a b ,即1b a=-,根据元素的互异性可得1a =-, 1b =,代入20222019a b +计算即可. 详解: (1)根据元素的互异性,得0a b +=或0a =,若0a =,则b a无意义,故0a b +=; (2) 由(1)得=-a b ,即1b a =-,据元素的互异性可得:1b a a ==-,1b =, ∴()2022202220192019112a b +=-+=.点睛:本题考查集合中元素的互异性,属于基础题.3.在平面直角坐标系中,O 为坐标原点,对任意的点(),P x y ,定义OP x y =+,任取点()()1122,,,A x y B x y ,记()()''1221,,,A x y B x y ,若此时2222''OA OB OA OB +≥+成立,则称点,A B 相关.(1)分别判断下面各组中两点是否相关,并说明理由.①()()2,1,3,2A B -;②()()4,3,2,4C D -.(2)给定*N ,3n n ∈≥,点集(){},,,,n x y n x n n y n x y Z Ω=-≤≤-≤≤∈,求集合n Ω中与点()1,1A 相关的点的个数.答案:(1)见解析(2)245n +解析:(1)根据所给定义,代入不等式化简变形可得对应坐标满足的关系,即可判断所给两个点的坐标是否符合定义要求.(2)根据所给点集,依次判断在四个象限内满足的点个数,坐标轴上及原点的个数,即可求得集合n Ω中与点(1,1)A 相关的点的个数;详解:若点()11,A x y ,()22,B x y 相关,则()12,A x y ',()21,B x y ,而OP x y =+不妨设11220,0,0,0x y x y ≥≥≥≥ 则由定义2222OA OB OA OB ''+≥+可知()()()()222211221221x y x y x y x y +++≥+++ 化简变形可得()()12120x x y y --≥(1)对于①(2,1)A -,(3,2)B ;对应坐标取绝对值,代入可知(23)(12)0--≥成立,因此相关;②对应坐标取绝对值,代入可知(42)(34)0--<,因此不相关.(2)在第一象限内,(1)(1)0x y --≥,可知1x n ≤≤且1y n ≤≤,有2n 个点;同理可知,在第二象限、第三象限、第四象限也各有2n 个点.在x 轴正半轴上,点()1,0满足条件;在x 轴负半轴上,点1,0满足条件;在y 轴正半轴上,点0,1满足条件;在y 轴负半轴上,点0,1满足条件;原点()0,0满足条件;因此集合n Ω中共有245n +个点与点(1,1)A 相关.点睛:本题考查了集合中新定义的应用,对题意的理解与分析能力的要求较高,属于难题.。
高考(高中)数学 集合的概念 100道练习题 有答案

高中(高考)数学知识点集合的概念练习卷试卷排列:按知识点知识点:集合的概念难度:中等以上版本:适合各地版本题型:填空题40多道,选择题20多道,解答题20多道,共100道有无答案:均有答案或解析价格:6元,算下来每题6分钱。
页数:46页1.已知A B ⊆,A C ⊆,{}1,2,3,5B =,{}0,2,4,8C =,则A 可以是( ) A .{}1,2 B .{}2,4 C .{}2 D .{}4 【答案】C【解析】解:因为{2}}8,4,2,0{},5,3,2,1{,可以是A C B B A C A ∴==⊆⊆2.若A 、B 、C 为三个集合,且C B B A =,则一定有( ) A 、C A ⊆ B 、A C ⊆ C 、C A ≠ D 、φ=A 【答案】A3.: 集合2{03},{9}P x Z x M x R x =∈≤<=∈≤,则PM =(A) {1,2} (B) {0,1,2} (C){x|0≤x<3} (D) {x|0≤x ≤3} 【答案】:B . 【解析】:{}0,1,2P =,[]3,3M =-,因此P M ={}0,1,24.设a ,b ∈R ,集合a b b aba b a -=+则},,,0{},,1{=(A )1 (B )-1 (C )2 (D )-2 【答案】C5.已知集合{(,),}U x y x R y R =∈∈,{(,)}M x y x y a =+<,{(,)()}P x y y f x ==,现给出下列函数:①x y a =②log a y x =③sin()y x a =+④cos y ax =,若01a <<时,恒有U P C M P ⋂=,则()f x 所有可取的函数的编号是 ( )A . ①②③④B .①②④C .①②D .④ 【答案】B 【解析】考点:补集及其运算;交集及其运算. 专题:计算题;数形结合.分析:利用补集的定义求出∁uM ,由P∩∁uM=P ,得到P ⊆∁uM ,故P 中的函数f (x )必须满足||x|+|y|≥a,检验各个选项是否满足此条件.解答:解:∵∁uM={(x ,y )||x|+|y|≥a},0<a <1时,P∩∁uM=P ,∴P={(x ,y )y=f (x )}⊆∁uM ,如图所示:结合图形可得满足条件的函数图象应位于曲线|x|+|y|=a (-a≤x≤a )的上方.①中,x ∈R ,y >0,满足|x|+|y|≥a,故①可取.②中,x >0,y=log a x ∈R ,满足||x|+|y|≥a,故②可取. ③中的函数不满足条件,如 x=0,a=π4时,y= 22,不满足|x|+|y|≥a.④中x ∈R ,-1≤y≤1,满足||x|+|y|≥a,故④可取.故选B .点评:本题考查补集的定义和运算,交集的定义和运算,求出∁uM={(x ,y )||x|+|y|≥a},是解题的关键.6.对于集合M、N,定义{},M N x x M x N -=∈∉且,()()M N M N N M ⊕=--.设{}23A t t x x ==-,(){}lg B x y x ==-,则A B ⊕为( )A .904x x ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭-<≤B.904x x x ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭<-≥或C .904x x ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭-<≤D .904x x x ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭->≤或【答案】B7.设集合{|0},{|03},1xA xB x x x =<=<<-那么“x A ∈”是“x B ∈”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 【答案】A8.设集合A p a a x a x A ∈><<--=1:},0,2|{命题,命题.2:A q ∈若q p ∨为真命题,q p ∧为假命题,则a 的取值范围是 ( )A .210><<a a 或B .210≥<<a a 或C .21≤<aD .21≤≤a【答案】C 【解析】由题q p ∨为真命题,q p ∧为假命题,可知p 、q 中有且仅有一个为真命题, i)若p 为真,q 为假,则0,12><<--a a a 且A ∉2,解得21≤<a ; ii) 若q 为真,则0,22><<--a a a ,解得2>a ,可知A ∈1,则p 为真,不符题意.9.含有三个实数的集合可表示为{a, ab,1},也可表示为{a 2,a+b ,0},则a 2007 +b 2007的值为( )A .0B .1C .—1D .1± 【答案】C【解析】100-=⇒=⇒=a b ab得a 2007 +b 12007-=10.设集合}5,4,3,2,1{},1,0,2{=-=N M ,映射N M f →:使得对任意的M x ∈,都有)()(x xf x f x ++是奇数,则这样的映射f 的个数是 ( )(A )45 (B )27 (C )15 (D )11 【答案】A 【解析】当2-=x 时,)2(2)()(---=++f x xf x f x 为奇数,则)2(-f 可取1、3、5,有3种取法;当0=x 时,)0()()(f x xf x f x =++为奇数,则)0(f 可取1、3、5,有3种取法;当1=x 时,)1(21)()(f x xf x f x +=++为奇数,则)1(f 可取1、2、3、4、5,有5种取法。
集合概念和练习题

集合概念及练习题集合的概念必然范围的,确信的,能够区别的事物,看成一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元。
集合的分类:并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}补集:属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}空集:包括于任何集合,但不能说“空集属于任何集合无穷集:概念:集合里含有无穷个元素的集合叫做无穷集有限集:令N*是正整数的全部,且N_n={1,2,3,……,n},若是存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。
集合元素的性质:1.确信性:每一个对象都能确信是不是某一集合的元素,没有确信性就不能成为集合,例如“个子高的同窗”“很小的数”都不能组成集合。
那个性质要紧用于判定一个集合是不是能形成集合。
2.互异性:集合中任意两个元素都是不同的对象。
如写成{1,1,2},等同于{1,2}。
互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作那个集合的一个元素。
3.无序性:{a,b,c}{c,b,a}是同一个集合。
4.纯粹性:所谓集合的纯粹性,用个例子来表示。
集合A={x|x<2},集合A 中所有的元素都要符合x<2,这确实是集合纯粹性。
5.完备性:仍用上面的例子,所有符合x<2的数都在集合A中,这确实是集合完备性。
完备性与纯粹性是遥相呼应的。
经常使用数集的符号:(1)全部非负整数的集合通常简称非负整数集(或自然数集),记作N (2)非负整数集内排除0的集,也称正整数集,记作N+(或N*) (3)全部整数的集合通常称作整数集,记作Z(4)全部有理数的集合通常简称有理数集,记作Q(5)全部实数的集合通常简称实数集,记作R(6)复数集合计作C集合的表示方式:经常使用的有列举法和描述法。
集合的概念练习题

第一讲 集合的概念及其运算1、子集的个数例1、(1)若{ 1,2 }A ⊆{ 1,2,3,4 },求满足这个关系式的集合A 的个数(2)已知集合A ={0、2、4},},|{A b a b a x x B ∈⋅==、,则集合B 的子集的个数为 。
(3)从自然数1~20这20个数中,任取两个数相加,得到的和作为集合M 的元素,则M 的真子集共有 个。
☆规律方法总结:(1)子集的个数:一个有n 个元素的集合,其①子集有 个;②真子集有 个;③非空子集有 个;④非空真子集有 个; (2)已知集合M 中有m 个元素,集合N 中有n 个元素,则满足M N P ⊆的集合P 的个数为12--m n2、集合中元素的个数例2、(1)已知集合M,N 分别含有8个、13个元素,若N M 中有6个元素, ①求N M 中的元素个数. ②当N M 含多少个元素时,φ=N M .(2)50名学生参加跳远和铅球两样测试,跳远和铅球测验成绩分别及格40人和31人,两次测验成绩均不及格的有4人,则两项成绩都及格的人数是( )A 、35B 、25C 、28D 、15(3) 某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多少种不同的选法? 3、集合间的关系例3、判断下列两集合之间的关系⑴ },14|{},,12|{Z k k x x N Z k k x x M ∈±==∈+== (2)},2|{},,12|{22R b b b x x B R a a a x x A ∈-==∈++== (3) },24|{},,42|{Z k k x x N Z k k x x M ∈+==∈+==ππππ 4、方程、不等式与集合例4、(1) 已知方程0)(,0)(==x g x f 的解集分别为B A ,。
① 写出方程0)()(=⋅x g x f 的解集② 写出方程0)()(22=+x g x f 的解集③ 写出方程0)()(=x g x f 的解集 (2)已知不等式0)()0(>>x g x f ,的解集分别为B A 、, 0)()0(<<x g x f ,的解集分别为N M 、。
集合的概念及练习题

---------------------------------------------------------------最新资料推荐------------------------------------------------------集合的概念及练习题集合的概念及练习题 1.1 集合与集合的表示方法一、选择题 1.下列各组对象①接近于 0 的数的全体;②比较小的正整数全体;③平面上到点 O 的距离等于 1 的点的全体;④正三角形的全体;⑤2 的近似值的全体.其中能构成集合的组数有 A.2 组 B.3 组 C.4 组 D.5 组 2.设集合 M={大于 0 小于 1 的有理数}, N={小于 1050 的正整数}, P={定圆 C 的内接三角形}, Q={所有能被 7 整除的数},其中无限集是 A.M、N、P B.M、P、Q C.N、P、Q D.M、N、Q 3.下列命题中正确的是 A.{x|x2+2=0}在实数范围内无意义 B.{}与{}表示同一个集合C.{4,5}与{5,4}表示相同的集合 D.{4,5}与{5,4}表示不同的集合 4.直角坐标平面内,集合 M={|xy0,xR,yR} 的元素所对应的点是 A.第一象限内的点 B.第三象限内的点C.第一或第三象限内的点 D.非第二、第四象限内的点 5.已知 M={m|m=2k,kZ},X={x|x=2k+1,kZ},Y={y|y=4k+1,kZ},则 A.x+yM B.x+yX C.x+yY D.x+y?M 6.下列各选项中的 M 与 P 表示同一个集合的是 A.M={xR|x2+0.01=0},P={x|x2=0} B.M={|y=x2+1,xR},P={|x =y2+1,xR} C.M={y|y=t2+1,tR},P={t|t=2+1,yR} D.M={x|x=2k,kZ},P={x|x=4k+2,kZ} 二、1/ 8填空题 7.由实数 x,-x,|x|所组成的集合,其元素最多有______个. 8.集合{3,x,x2-2x}中,x 应满足的条件是______. 9.对于集合 A={2,4,6},若 aA,则 6-aA,那么 a 的值是______. 10.用符号或?填空:①1______N,0______N.-3______Q,0.5______Z,2______R.②1______R,5______Q,|-3|______N+,|-|______Z. 11.若方程 x2+mx+n=0 的解集为{-2,-1},则 m=______,n=______. 12.若集合 A={x|x+x+b=0}中,仅有一个元素 a,则 a=______,b=______. ?x?y?1?13.方程组?y?z?2 的解集为______. ?z?x?3? 14.已知集合 P ={0,1,2,3,4},Q={x|x=ab,a,bP,ab},用列举法表示集合 Q=______. 15.用描述法表示下列各集合:① {2 , 4 , 6 ,8 ,10 ,12}________________________________________________.② {2 , 3 ,4}_________________________________________________________ __.③,,,,}_______________________________________________ _______. 16.已知集合 A={-2,-1,0,1},集合 B={x|x=|y|,yA},则 B=______.三、解答题 17.集合 A ={有长度为 1 的边及 40的内角的等腰三角形}中有多少个元素?试画出这些元素来. 18.设 A 表示集合{2,3,a2+2a-3},B 表示集合{a +3,2},若已知 5A,且 5?B,求实数 a 的---------------------------------------------------------------最新资料推荐------------------------------------------------------ 值. 19.实数集 A 满足条件:1?A,若 aA,则12345345671?A. 1?a 若 2A,求 A;集合 A 能否为单元素集?若能,求出 A;若不能,说明理由;求证:1? 1?A. a 20.已知集合 A={x|ax-3x+2=0},其中 a 为常数,且aR ①若 A 是空集,求 a 的范围;②若 A 中只有一个元素,求 a 的值;③若 A 中至多只有一个元素,求 a 的范围. 21.用列举法把下列集合表示出来:①A={x?N| ②B={29?N};?x9?N|x?N};?x ③C={y|y=-x2+6,xN,yN};④D={|y=-x2+6,xN,yN};⑤E={x|p?x,p?q?5,p?N,q?N*}? q 22.已知集合 A={p|x2+2x+1=0,xR},求集合B={y|y=2x-1,xA}.集合与集合的表示方法参考答案一、选择题1.A .B .C .D .A 6.C 解析:在选项 A 中,M=?,P={0},是不同的集合;在选项 B 中,有 M={|y=x2+11,xR},P={|x=y2+11,yR},是不同的集合,在选项 C 中,y=t2+11,t=2+11,则 M={y|y1},P={t|t1},它们都是由不小于 1 的全体实数组成的数集,只是用不同的字母代表元素,因此,M 和 P 是同一个集合,在选项 D 中,M 是由,0,2,4,6,8,10,组成的集合,P 是由,2,6,10,14,组成的集合,因此,M 和 P 是两个不同的集合.答案:3/ 8C.二、填空题7.2.x3 且x0 且x-1 ?x??3,?2 根据构成集合的元素的互异性,x 满足?x?2x??3, ?x2?2x?x.?? 解之得 x3 且 x0 且 x-1. 9.2 或 410.①,,,?,.②,?,,?.11.m=3,n=2. 11,b?.解析:由题意知,方程x2+x+b=0 只有等根x=a,则?=39 112-4b=0①,将 x=a 代入原方程得 a2+a+b=0②,由①、②解得 a?,b?.912.a? 13.{} 14.Q={0,2,3,4,6,8,12} *15.①{x|x=2n,nN 且 n6},②{x|2x4,xN},或{x|=0} ③{x|x?n,n?N*且 n?6} n?2 16.B={0,1,2}解析:∵yA,y=-2,-1,0,1,∵x=|y|,x=2,1,0,B={0,1,2} 三、解答题 17.解:有 4 个元素,它们分别是:底边为 1,顶角为 40的等腰三角形;底边为 1,底角为 40的等腰三角形;腰长为 1,顶角为 40的等腰三角形;腰长为1,底角为 40的等腰三角形. 18.解:∵A,且5?B.?a2?2a?3?5,?a??4 或a?2,?即?a?2.a?3?5,???? a=-4 1?A,即-1A.1?2 11∵-1A,-11?A,即?A.1? 111∵?A??A,即 2A. ?1,221?2 11由以上可知,若 2A,则 A 中还有另外两个数-1和A?{?1,,2}.2 1,即 a2-a+1=0.不妨设 A 是单元素的实数集.则有 a?1?a19.证明:---------------------------------------------------------------最新资料推荐------------------------------------------------------ 若 2A,由于 21,则∵?=2-411=-3<0,方程 a2-a+1=0 没有实数根. A 不是单元素的实数集. 1?A1?a 11?A. ?A,即11?a1?1?a∵若 aA,则 ?20.解:①∵A 是空集方程 ax2-3x+2=0 无实数根 ?a??0,9 解得a?????9?8a?0, 2;②∵A 中只有一个元素,方程 ax2-3x+2=0 只有一个实数根.当 a=0 时,方程化为-3x+2=0,只有一个实数根 x? 当 a0 时,令?=9-8a=0,得 a? 等的实数根,即 A 中只有一个元素.由以上可知 a=0,或 a?9,这时一元二次方程 ax2-3x+2=0 有两个相 89 时,A 中只有一个元素. 9.③若 A 中至多只有一个元素,则包括两种情形,A中有且仅有一个元素,A 是空集,由①、②的结果可得 a=0,或 a? 21.解:①由 9-x>0 可知,取 x=0,1,2,3,4,5,6,7,8 验证,则 x=0,6,8 时 9?1,3,9 也是自然数,A={0,6,8}?x ②由①知,B={1,3,9}.③∵y=-x2+66,而 xN,yN, x=0,1,2 时,y=6,5,2 符合题意. C={2,5,6}.④点满足条件 y=-x2+6,xN,yN,则有新课标集合的含义及其表示姓名:_________ 一、选择题:1.下面四个命题:集合 N 中的最小元素是 1:5/ 8若?a?N,则 a?N x2?4?4x 的解集为{2,2};0.7?Q,其中不正确命题的个数为 A. 0 B. 1 C. D.3 2. 下列各组集合中,表示同一集合的是 A.M???3,2??,N??2,3?? B.M??3,2?,N??2,3? C.M???x,y?x?y?1?,N??yx?y?1?D. M??1,2?,N???1.2?? 3.下列方程的实数解的集合为??12? ?2,?3?? 的个数为4x2?9y2?4x?12y?5?0;6x2?x?2?0; ?2x?1?2 ?3x?2??0;x2?x?2?0 A.1 B. C.3D.4 4.集合A??xx2 ?x?1?0? ,B??x?Nx?x2 ?6x?10??0 ?,C??x?Q4x?5?0?, D??xx 为小于 2 的质数? ,其中时空集的有 A. 1 个 B.2 个 C.3 个 D.4 个. 下列关系中表述正确的是 A.0??x2?0? B.0???0,0?? C. 0?? D.0?N. 下列表述正确的是 A.?0??? B.?1,2???2,1? C.?????D.0?N 7. 下面四个命题:集合 N 中的最小元素是 1:方程?x?1?3 ?x?2??x?5??0 的解集含有 3 个元素;0??满足 1?x?x 的实数的全体形成的集合。
(完整版)集合的概念与表示方法习题

集合的概念与表示方法测试卷一、选择题(共15题,每题2分,共30分) 1.给出下列表述:①联合国常任理事国;②充分接近2的实数的全体;③方程 错误!未找到引用源。
的实数根;④全国著名的高等院校. 以上能构成集合的是( ) A.①③ B.①② C.①③④ D.①②③④2. 由 a ²,2-a ,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是() A 、1 B 、-2 C 、6 D 、23.下列各组对象中不能组成集合的是()A. 直角三角形的全体B. 所有的无理数C. 方程2x-1=0的整数解D. 我班个子较高的同学 4.下列叙述正确的是( ) A. 集合},3|{N x x x ∈<中只有两个元素 B. }1{}012|{2==+-x x xC. 整数集可表示为}{ZD. 有理数集表示为{x x |为有理数集}5.方程组⎩⎨⎧-=-=+11y x y x 的解集是( ) A. {0,1} B. (0,1)C. {(x,y)|x=0,或y=1}D. {(0,1)}6.下列集合表示法正确的是( )A.{1,2,2}B.{全体实数}C.{有理数}D.不等式 x ²-5>0的解集为{x ²-5>0} 7. 设A={a},则下列各式正确的是( ) A 、0∈A B 、a ∉AC 、a ∈AD 、a=A8. 由大于-3且小于11的偶数所组成的集合是( ) A 、{x|-3<x<11,x ∈Q} B 、{x|-3<x<11}C 、{x|-3<x<11,x=2k,k ∈N}D 、{x|-3<x<11,x=2k,k ∈Z} 9. 设集合M ={(1,2)},则下列关系成立是( )。
A 、1∈MB 、2∈MC 、(1,2)∈MD 、(2,1)∈M 10. 集合{x-1,x ²-1,2}中的x 不能取得值是( ) A 、2 B 、3 C 、4 D 、511. 直角坐标平面内,集合M={(x ,y )丨xy ≥0,x ∈R ,y ∈R }的元素所对应的点是 A 、第一象限内的点 B.第三象限内的点C.第一或第三象限内的点D.非第二、第四象限内的点 12. 下列结论不正确的是( )A 、0∈NB 、错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 . 1 集 合 的 概 念
〖帮你读书〗
1. 集合的概念:有某些的对象组成的叫做集合,简称;组成集合
的对象叫做这个集合的。
2. 集合的表示:一般采用表示集合,
3. 采用表示集合中的元素。
4. 几个常用数集的表示:自然数集记作;正整数集记作;整数集记作;有理数集记作;实数集记作;空集记作。
5. 集合与元素之间的关系:如果 a 是集合 A 的元素,就说 a A
, 记作,
6. 如果 a 不是集合 A 的元素,就说 a A ,记作 ,
7. 集合的分类:含有元素的集合,叫做有限集,含有无限多个元素的集合叫做,不含叫空集,记作 :.
〖疑难解惑〗
1. 只含有元素 0 的集合是空集吗?
〖技能训练〗
1. 用符号 " "或" "填空:
(1)3.14R(2) 2 R
1
(3) 2 N(4)-2N
(5) 3 Q(6) R
2. 选择题:
(1) 下列对象能组成集合的是();
A, 大于 5 的自然数
B.一切很大的树
C.班上个子很高的同学
D.班上考试分数很高的同学
(2)下列对象不能组成集合的是() .
A. 不大于 8 的自然数
B. 很接近于 1 的数
C. 班上身高超过 1.8 米的同学
D. 班上数学小测中得分在85 分以上的同学。
3.下列对象能否组成集合?若能组成集合,判断哪些是有限集?哪些是无限极?那些事空集?
(1). 某班学习成绩好的同学;
(2)绝对值不小于 3 的所有整数;
4.判断下列集合是有限集、无限集还是空集:
(1)所有大于 3 且小于 4 的实数;
(2)方程x25x 6 0的解集 .。