初中数学《勾股定理》一章单元测试题

合集下载

北师大版八年级数学上册第一章《勾股定理》单元测试卷(含答案)

北师大版八年级数学上册第一章《勾股定理》单元测试卷(含答案)

北师大版八年级数学上册第一章《勾股定理》单元测试卷时间:100分钟满分:100分班级:_______ 姓名:________得分:_______一.选择题(每题3分,共30分)1.以如下a、b、c为三边长的三角形不是直角三角形的是()A.a=3,b=4,c=5B.a=4,b=6,c=8C.a:b:c=5:12:13D.a=2n,b=n2﹣1,c=n2+1(n为大于1的正整数)2.下列三角形是直角三角形的是()A.B.C.D.3.△ABC的三边长分别为a,b,c.下列条件,其中能判断△ABC是直角三角形的个数有()①∠A=∠B﹣∠C②a2=(b+c)(b﹣c)③∠A:∠B:∠C=3:4:5④a:b:c=5:12:13A.1个B.2个C.3个D.4个4.下列各组三个数据不是勾股数的是()A.5,13,12 B.4,7,5 C.7,24,25 D.30,40,50 5.如图,一架云梯AB长为25米,顶端A靠在墙AC上,此时云梯底端B与墙角C距离为7米,云梯滑动后停在DE的位置上,测得AE长为4米,则云梯底端B在水平方向滑动了()米A.4 B.6 C.8 D.106.如图,圆柱的底面直径为,BC=12,动点P从A点出发,沿着圆柱的侧面移动到BC 的中点S,则移动的最短距离为()A.10 B.12 C.14 D.207.如图,∠ACD是△ABC的外角,CE平分∠ACB,交AB于E,CF平分∠ACD,且EF∥BC交AC、CF于M、F,若EM=3,则CE2+CF2的值为()A.36 B.9 C.6 D.188.如图是一个底面为等边三角形的三棱镜,在三棱镜的侧面上,从顶点A到顶点A′镶有一圈金属丝,已知此三棱镜的高为5cm,底面边长为4cm,则这圈金属丝的长度至少为()A.8cm B.13cm C.12cm D.15cm9.如果三角形的三边长分别为a,b,c,且b2+c2=a2,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形10.现在人们锻炼身体的意识日渐増强,但是一些人保护环境的意识却很淡薄,如图是兴庆公园的一角,有人为了抄近道而避开横平竖直的路的拐角∠ABC,而走“捷径AC’于是在草坪内走出了一条不该有的“路AC”,已知AB=40米,BC=30米,他们踩坏了___米的草坪,只为少走___米路()A.20、50 B.50、20 C.20、30 D.30、20二.填空题(每题4分,共20分)11.如图,Rt△ABC中,∠ACB=90°,AC=12,BC=5,延长BC至点D,连接AD,若△ABD 是以AD为其中一腰的等腰三角形,则线段DC的长等于.12.如图,把图1中边长分别为3和4的两个全等矩形沿对角线分成四个全等的直角三角形,将这四个全等的直角三角形拼成图2所示的正方形,则图2中阴影部分的面积为.13.如图,两个正方形的面积分别是S1=18,S2=12,则第三个正方形的面积S3=.14.如图所示,∠ABC=∠BAD=90°,AC=13,BC=5,AD=16,则BD的长为.15.如图,一架13m长的梯子AB斜靠在一竖直的墙AC上,这时AC为12m.如果梯子的顶端A沿墙下滑7m,那么梯子底端B向外移m.三.解答题(每题10分,共50分)16.已知,如图,△ABC中,∠C=90°,AB=10,AC=8,BD为∠ABC的角平分线交AC于D,过点D作DE垂直AB于点E,(1)求BC的长;(2)求AE的长;(3)求BD的长17.如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.小区为美化环境,欲在空地上铺草坪,已知草坪每平方米30元,试问铺满这块空地共需花费多少元?18.如图,△ABC中,∠ACB=90°,AB=10cm,BC=8cm,若点P从点A出发,以每秒2cm 的速度沿折线A﹣B﹣C﹣A运动,设运动时间为t秒.(1)AC=cm;(2)若点P恰好在∠ABC的角平分线上,求此时t的值:(3)在运动过程中,当t为何值时,△ACP为等腰三角形.19.为了绿化环境,我县某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量,∠ADC=90°,CD=6m,AD=8m,AB=26m,BC=24m,(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要200元,问总共需投入多少元?20.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距离O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON 方向以72千米/时的速度行驶时,(1)A处是否会受到火车的影响,并写出理由(2)如果A处受噪音影响,求影响的时间.参考答案一.选择题1. B.2. D.3. C.4. B.5. C.6. A.7. A.8. B.9. B.10. B.二.填空11. 5或.12. 1.13. 6.14. 20.15. 7.三.解答题16.解:(1)∵∠C=90°,AB=10,AC=8,∴BC==6;(2)∵BD为∠ABC的角平分线,DE⊥AB,∴CD=DE,在Rt△BCD和Rt△BED中,,∴Rt△BCD≌Rt△BED(HL),∴BE=BC=6,∴AE=AB﹣BE=10﹣6=4;(3)设CD=DE=x,则AD=8﹣x,在Rt△ADE中,AE2+DE2=AD2,即42+x2=(8﹣x)2,解得x=3,所以,CD=DE=3,在Rt△BCD中,BD==3.17.解:如图,连接AC,在Rt△ABC中,∵AB=3m,BC=4m,∠B=90°,AB2+CB2=AC2∴AC=5m,在△ACD中,AC=5m,CD=12m,DA=13m,∴AC2+CD2=AD2,∴△ACD是直角三角形,∵S△ABC =×3×4=6,S△ACD=×5×12=30,∴S四边形ABCD=6+30=36,费用=36×30=1080(元).答:铺满这块空地共需花费1080元.18.解:(1)∵△ABC中,∠ACB=90°,AB=10cm,BC=8cm,∴AC==6cm,故答案为:6;(2)如图,过P作PD⊥AB于D,∵BP平分∠ABC,∠C=90°,∴PD=PC,BC=BD=8,∴AD=10﹣8=2,设PD=PC=y,则AP=6﹣y,在Rt△ADP中,AD2+PD2=AP2,∴22+y2=(6﹣y)2,解得y=,∴CP=,∴t===s;当点P与点B重合时,点P也在∠ABC的角平分线上,此时,t==5;综上所述,点P恰好在∠ABC的角平分线上,t的值为或5;(3)分四种情况:①如图,当P在AB上且AP=CP时,∠A=∠ACP,而∠A+∠B=90°,∠ACP+∠BCP=90°,∴∠B=∠BCP,∴CP=BP,∴P是AB的中点,即AP=AB=5,∴t==;②如图,当P在AB上且AP=CA=6时,t==3;③如图,当P在AB上且AC=PC时,过C作CD⊥AB于D,则CD==,∴Rt△ACD中,AD=,∴AP=2AD=,∴t==;④如图,当P在BC上且AC=PC=6时,BP=8﹣6=2,∴t==6.综上所述,当t=或3或或6s时,△ACP为等腰三角形.19.解:(1)连接AC,在Rt△ACD中,AC2=CD2+AD2=62+82=102,在△ABC中,AB2=262,BC2=242,而102+242=262,即AC2+BC2=AB2,∴∠ACB=90°,S四边形ABCD =S△ACB﹣S△ACD=•AC•BC﹣AD•CD,=×10×24﹣×8×6=96(m2).(2)需费用96×200=19200(元).20.解:(1)A处会受到火车的影响,理由:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米<200米,∴A处会受到火车的影响;(2)当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵72千米/小时=20米/秒,∴影响时间应是:320÷20=16秒.答:A处受噪音影响的时间为16秒.。

第1章 勾股定理 单元测试(含答案) 2021-2022学年八年级数学北师大版上册

第1章 勾股定理 单元测试(含答案) 2021-2022学年八年级数学北师大版上册

第一章综合检测试卷(时间:120分钟 满分:100分)一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,共24分)1.下列各组数中,不是勾股数的是( )A .3,4,5B .4,5,6C .5,12,13D .6,8,10 2.【昆明官渡区期末】下列条件中,不能判定△ABC 为直角三角形的是( )A .a ∶b ∶c =5∶12∶13B .∠A +∠B =∠C C .∠A ∶∠B ∶∠C =2∶3∶5D .a =6,b =12,c =103.在一水塔A 的东北方向32 m 处有一抽水池B ,在水塔A 的东南方向24 m 处有一建筑工地C ,在BC 间需建一条直水管道,则水管的长为( )A .45 mB .40 mC .50 mD .56 m 4.如果△ABC 的三边长分别是m 2-1、2m 、m 2+1(m >1),那么( )A .△ABC 是直角三角形,且斜边长为2mB .△ABC 是锐角三角形C .△ABC 是直角三角形,且斜边长为m 2+1D .△ABC 是否为直角三角形,需看m 的值5.如图,在△ABD 中,∠D =90°,CD =6,AD =8,∠ACD =2∠B ,则BD 的长是( )第5题A .12B .14C .16D .186.如图,在△ABC 中,AB =AC =5,BC =6,M 为BC 边中点,MN ⊥AC 于点N ,那么MN 等于( )第6题A.65B.85 C .125 D.2457.如图所示是一段楼梯,高BC 是3 m ,斜边AC 是5 m ,如果在楼梯上铺地毯,那么至少需要地毯()第7题A.5 m B.6 mC.7 m D.8 m8.如图,长方形ABCD中,AB=3 cm,AD=9 cm,将此长方形折叠,使点D与点B 重合,折痕为EF,则△ABE的面积为()第8题A.6 cm2B.8 cm2C.10 cm2D.12 cm2二、填空题(本大题共6个小题,每小题3分,共18分)9.已知△ABC三条边的长度分别为9,12,15,则用两个这样的三角形所拼成的长方形的面积是________.10.若直角三角形的两条直角边长为a、b,且满足(a-3)2+|b-4|=0,则该直角三角形的第三条边长为________.11.如图,已知AB∶BC∶CD∶DA=2∶2∶3∶1,且∠ABC=90°,则∠BAD的度数为________.第11题第13题12.【云南中考】在△ABC中,AB=34,AC=5,若BC边上的高等于3,则BC边的长为________.第14题13.如图,点P是等边△ABC内一点,连接P A、PB、PC,P A∶PB∶PC=3∶4∶5,以AC为边作△AP′C≌△APB,连接PP′,则有以下结论:①△APP′是等边三角形;②△PCP′是直角三角形;③∠APB=150°;④∠APC=105°.其中一定正确的是________.(把所有正确答案的序号都填在横线上)14.如图所示,一个机器人从点O出发,向正东方向走了3米到达点A1,再向正北方向走6米到达点A2,再向正西方向走9米到达点A3,再向正南方向走12米到达点A4,再向正东方向走15米到达点A5,按此规律走下去,当机器人走到点A6时,与点O的距离是________米.三、解答题(本大题共9个小题,共58分)15.(本小题5分)在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AC=20,BC=15.求:(1)AB的长;(2)CD的长.第15题16.(本小题5分)如图所示,一架云梯长25 m,斜靠在一面墙上,梯子底端离墙7 m,这个梯子的顶端距地面有多高?如果梯子顶端下滑了4 m,那么梯子的底端在水平方向上也滑动了4 m吗?第16题17.(本小题5分)如图,四边形ABCD中,∠ADC=90°,AD=12,CD=9,AB=25,BC=20,求四边形ABCD的面积.第17题18.(本小题5分)【文山期末】如图是一块地,已知AD=4 m,CD=3 m,AB=13 m,BC=12 m,且CD⊥AD,求这块地的面积.第18题19.(本小题6分)如图,已知BE⊥AE,∠A=∠EBC=60°,AB=4,BC2=12,CD2=3,DE=3.求证:(1)△BEC为等边三角形;(2)ED⊥CD.第19题20.(本小题6分)如图,有一张直角三角形纸片,两直角边AC=6 cm,BC=8 cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,求CD的长.第20题21.(本小题8分)如图,等腰三角形ABC的底边BC长为8 cm,腰AB、AC的长为5 cm,一动点P在底边上从点B向点C以0.25 cm/s的速度移动,当点P运动到P A与腰垂直的位置时,求点P运动的时间.第21题22.(本小题8分)阅读理解:我们知道在直角三角形中,有无数组勾股数,例如5,12,13;9,40,41;…但其中也有一些特殊的勾股数,例如:3,4,5是三个连续正整数组成的勾股数.解决问题:(1)在无数组勾股数中,是否存在三个连续偶数能组成勾股数?若存在,试写出一组勾股数;(2)在无数组勾股数中,是否还存在其他的三个连续正整数能组成勾股数?若存在,求出勾股数;若不存在,说明理由.23.(本小题10分)台风是一种自然灾害,它以台风中心为圆心,在周围数十千米的范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A的正南方向240千米的B处有一台风中心,其中心风力为12级,每远离台风中心25千米,风力就会减弱一级.该台风中心现在以20千米/时的速度沿北偏东30°方向往F移动,如图所示,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.(1)该城市是否受到台风影响?请说明理由;(2)若该城市受到台风影响,则该城市受台风影响的持续时间有多长?第23题第一章综合检测试卷一、1.B 2.D 3.B 4.C 5.C 6.C7.C8.A二、9.10810.511.135°12.9或1解析:有两种情况:①如图1,∵AD是△ABC的高,∴∠ADB=∠ADC=90°.由勾股定理,得BD=AB2-AD2=(34)2-32=5,CD=AC2-AD2=52-32=4,∴BC=BD+CD=5+4=9.②如图2,同理得CD=4,BD=5,∴BC=BD-CD=5-4=1.综上所述,BC的长为9或1.图1图213.①②③14.15三、15.解:(1)在Rt△ABC中,因为∠ACB=90°,BC=15,AC=20,所以AB=25.(2)因为CD⊥AB,所以S△ABC=12AC·BC=12AB·CD,所以AC·BC=AB·CD,所以20×15=25CD,所以CD =12.16.解:在Rt △AOB 中,因为AB =25 m ,OB =7 m ,OA 2=AB 2-OB 2,所以OA =24 m .因为AA ′=4 m ,所以OA ′=OA -AA ′=20 m .在Rt △A ′OB ′中,因为OB ′2=A ′B ′2-OA ′2,所以OB ′=15 m ,所以BB ′=OB ′-OB =8 m .故这个梯子的顶端距地面24 m ;梯子的底端在水平方向上不是滑动了4 m ,而是滑动了8 m.17.解:连接AC .在△ADC 中,因为∠D =90°,AD =12,CD =9,所以AC =15,S △ADC =12AD ·CD =12×12×9=54.在△ABC 中,因为AC =15,AB =25,BC =20,所以BC 2+AC 2=AB 2,所以△ACB 是直角三角形,所以S △ACB =12AC ·BC =12×15×20=150,所以S 四边形ABCD =S △ABC +S △ACD =150+54=204.18.解:连接AC .因为CD ⊥AD ,AD =4 m ,CD =3 m ,所以AC 2=AD 2+CD 2=42+32=25,所以AC =5 m .又因为BC =12 m ,AB =13 m ,所以AC 2+BC 2=52+122=169=AB 2,所以∠ACB =90°,所以S 四边形ABCD =S △ABC -S △ADC =12BC ·AC -12AD ·CD =30-6=24(m 2),即这块地的面积是24 m 2.19.证明:(1)在Rt △ABE 中,因为∠A =60°,∠AEB =90°,所以∠ABE =30°.因为AB=4,所以AE =12AB =2,BE 2=AB 2-AE 2=12.又因为BC 2=12,所以BE =BC .又因为∠CBE =60°,所以△BEC 为等边三角形.(2)因为△BEC 为等边三角形,所以EC 2=BC 2=12.又因为DE 2=9,CD 2=3,所以DE 2+CD 2=12=EC 2,即△CDE 为直角三角形,且∠D =90°,所以ED ⊥CD .20.解:在Rt △ABC 中,AC =6 cm ,BC =8 cm ,由勾股定理,得AB 2=BC 2+AC 2=100,所以AB =10 cm.由折叠可知CD =DE ,∠DEA =∠C =90°,AE =AC =6 cm ,所以∠BED =90°,BE =AB -AE =4 cm.设CD =x cm ,则DE =x cm ,BD =(8-x )cm.在Rt △BDE 中,由勾股定理,得x 2+42=(8-x )2,解得x =3.故CD 的长为3 cm.21.解:①当点P 运动到P A 与腰AC 垂直时,过点A 作AD ⊥BC 于点D ,则BD =4 cm.在Rt △ABD 中,易知AD =3 cm.设PD =x cm ,在Rt △APD 中,P A 2=x 2+9;在Rt △P AC 中,PC 2=P A 2+AC 2,即(x +4)2=x 2+9+25,所以x =94,所以BP =BD -PD =4-94=74(cm),所以此时点P 运动的时间为74÷0.25=7(s).②当点P 运动到P A 与腰AB 垂直时,同理可得BP ′=254 cm ,此时点P 运动的时间为254÷0.25=25(s).故当点P 运动到P A 与腰垂直的位置时,点P 运动的时间为7 s 或25 s.22.解:(1)存在三个连续偶数能组成勾股数,如6,8,10.(2)不存在.理由:假设在无数组勾股数中,还存在其他的三个连续正整数能组成勾股数.设这三个正整数分别为n -1、n 、n +1,则(n -1)2+n 2=(n +1)2,解得n 1=4,n 2=0(舍去).当n =4时,n -1=3,n +1=5,所以三个连续正整数仍然是3,4,5,所以不存在其他的三个连续正整数能组成勾股数.23.解:(1)该城市会受到台风影响.理由如下:过点A 作AD ⊥BF 于点D .在Rt △ABD中,因为∠ADB =90°,∠ABD =30°,AB =240千米,所以AD =12AB =120千米.因为受到台风影响的最大距离为25×(12-4)=200(千米),且120<200,所以该城市会受到台风影响.(2)设当台风移到点E 处时,该城市开始受台风影响,当台风移至点C 处时,该城市脱离台风影响,则AE =AC =200千米.在Rt △ADE 中,由勾股定理,得DE 2=AE 2-DA 2=1602,所以DE =160千米.同理可得,CD =160千米.所以CE =CD +DE =320千米,所以该城市受台风影响的持续时间为32020=16(时).。

数学八年级上《第一章勾股定理》单元测试(含答案解析)

数学八年级上《第一章勾股定理》单元测试(含答案解析)
故选C.
先根据题意画出图形,再根据勾股定理解答即可.
此题将勾股定理与实际问题相结合,考查了同学们的观察力和由具体到抽象的推理能力,有一定难度.
10.试题分析:根据对称性可知: , ,又 ,所以 ∽ ,根据相似的性质可得出: , ,在 中,由勾股定理可求得AC的值, , ,将这些值代入该式求出BE的值.
二、填空题(本大题共10小题,共30.0分)
11. 如图,有一块田地的形状和尺寸如图所示,则它的面积为______ .
12.在 中,已知两边长为5、12,则第三边的长为______ .
13. 如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要______ 元钱.
14. 如图,有一个长为50cm,宽为30cm,高为40cm的长方体木箱,一根长70cm的木棍______放入 填“能”或“不能” .
15. 如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则 周长的最小值为______.
整理得: ,
解得: , 两直角边分别为12cm,16cm,
则这个直角三角形的周长为 .
故选D
根据两直角边之比,设出两直角边,再由已知的斜边,利用勾股定理求出两直角边,即可得到三角形的周长.
此题考查了勾股定理,利用了方程的思想,熟练掌握勾股定理是解本题的关键.
5. 解: 的面积 ,
由勾股定理得, ,
则 ,
【解答】
解:由图可知,直角三角形的斜边长为即为大正方形的边长,
根据勾股定理可知大正方形的面积为 , ,即 , , 小正方形的面积 大正方形的面积 个直角三角形的面积 .

八年级数学上册第一章《勾股定理》单元测试题-北师大版(含答案)

八年级数学上册第一章《勾股定理》单元测试题-北师大版(含答案)

试卷第1页,共8页 八年级数学上册第一章《勾股定理》单元测试题-北师大版(含答案)一、单选题(本大题共12小题,每小题3分,共36分)1.学习了勾股定理之后,老师给大家留了一个作业题,小明看了之后,发现三角形各边都不知道,无从下手,心中着急.请你帮助一下小明.如图,ABC 的顶点A ,B ,C 在边长为1的正方形网格的格点上,BD AC ⊥于点D ,则BD 的长为( )A .45B .85C .165D .2452.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若()221a b +=,小正方形的面积为5,则大正方形的面积为( )A .12B .13C .14D .153.如图所示的是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中5AE =,13BE =,则2EF 的值是( )试卷第2页,共8页A .128B .64C .32D .1444.如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形,若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是( )A .4B .8C .12D .165.往直径为26cm 的圆柱形容器内装入一些水以后,截面如图所示.若水面宽24cm AB =,则水的最大深度为( )A .8cmB .10cmC .16cmD .20cm6.如图,圆柱的底面周长为12cm ,AB 是底面圆的直径,在圆柱表面的高BC 上有一点D ,且10cm BC =,2cm DC =.一只蚂蚁从点A 出发,沿着圆柱体的表面爬行到点D 的最短路程是( )cm .A .14B .12C .10D .87.观察“赵爽弦图”(如图),若图中四个全等的直角三角形的两直角边分别为a ,b ,a b >,根据图中图形面积之间试卷第3页,共8页 的关系及勾股定理,可直接得到等式( )A .2()a a b a ab -=-B .22()()a b a b a b +-=-C .222( )2a b a ab b -=-+D .222()2a b a ab b +=++8.我们知道,如果直角三角形的三边的长都是正整数,这样的三个正整数就叫做一组勾股数.如果一个正整数c 能表示为两个正整数a ,b 的平方和,即22c a b =+,那么称a ,b ,c 为一组广义勾股数,c 为广义斜边数,则下面的结论:①m 为正整数,则3m ,4m ,5m 为一组勾股数;①1,2,3是一组广义勾股数;①13是广义斜边数;①两个广义斜边数的和是广义斜边数;①若2222,12,221a k k b k c k k =+=+=++,其中k 为正整数,则a ,b ,c 为一组勾股数;①两个广义斜边数的积是广义斜边数.依次正确的是( )A .①①①B .①①①①C .①①①D .①①①9.如图, Rt AED △中,90,,3,11AED AB AC AD EC BE ∠=====,则ED 的值为( )A 33B 34C 35D 37110.如图,在①ABC 中,AB =2,①ABC =60°,①ACB =45°,D 是BC 的中点,直线l 经过点D ,AE ①l ,BF ①l ,垂足分别为E ,F ,则AE +BF 的最大值为( )试卷第4页,共8页AB .C .D .11.在Rt①ABC 中,①C =90°,AC =10,BC =12,点D 为线段BC 上一动点.以CD 为①O 直径,作AD 交①O 于点E ,则BE 的最小值为( )A .6B .8C .10D .1212.中国古代称直角三角形为勾股形,如果勾股形的三边长为三个正整数,则称三边长叫“勾股数”;如果勾股形的两直角边长为正整数,那么称斜边长的平方叫“整弦数”对于以下结论:①20是“整弦数”;①两个“整弦数”之和一定是“整弦数”;①若c 2为“整弦数”,则c 不可能为正整数;①若m =a 12+b 12,n =a 22+b 22,11a b ≠22a b ,且m ,n ,a 1,a 2,b 1,b 2均为正整数,则m 与n 之积为“整弦数”;①若一个正奇数(除1外)的平方等于两个连续正整数的和,则这个正奇数与这两个连续正整数是一组“勾股数”.其中结论正确的个数为( )A .1个B .2个C .3个D .4个二、填空题(本大题共8小题,每小题3分,共24分)13.如图,OE ①AB 于E ,若①O 的半径为10,OE =6,则AB =_______.试卷第5页,共8页14.一根直立于水中的芦节(BD )高出水面(AC )2米,一阵风吹来,芦苇的顶端D 恰好到达水面的C 处,且C 到BD 的距离AC =6米,水的深度(AB )为________米15.学习完《勾股定理》后,尹老师要求数学兴趣小组的同学测量学校旗杆的高度.同学们发现系在旗杆顶端的绳子垂到了地面并多出了一段,但这条绳子的长度未知.如图,经测量,绳子多出的部分长度为1米,将绳子沿地面拉直,绳子底端距离旗杆底端4米,则旗杆的高度为______米.16.已知2(4)5y x x -+,当分别取1,2,3,……,2020时,所对应y 值的总和是__________.17.一个数的平方根是4a 和25a +,则=a _________,这个正数是_________.18.已知a 、b 、c 是一个三角形的三边长,如果满足2(3)450a b c ---=,则这个三角形的形状是_______.试卷第6页,共8页19732x y --,则2x ﹣18y 2=_____.20.爱动脑筋的小明某天在家玩遥控游戏时遇到下面的问题:已知,如图一个棱长为8cm 无盖的正方体铁盒,小明通过遥控器操控一只带有磁性的甲虫玩具,他先把甲虫放在正方体盒子外壁A 处,然后遥控甲虫从A 处出发沿外壁面正方形ABCD 爬行,爬到边CD 上后再在边CD 上爬行3cm ,最后在沿内壁面正方形ABCD 上爬行,最终到达内壁BC 的中点M ,甲虫所走的最短路程是 ______cm三、解答题(本大题共5小题,每小题8分,共40分)21.长清的园博园广场视野开阔,阻挡物少,成为不少市民放风筝的最佳场所,某校七年级(1)班的小明和小亮学习了“勾股定理”之后,为了测得风筝的垂直高度CE ,他们进行了如下操作:①测得水平距离BD 的长为15米;①根据手中剩余线的长度计算出风筝线BC 的长为25米;①牵线放风筝的小明的身高为1.6米.(1)求风筝的垂直高度CE ;(2)如果小明想风筝沿CD 方向下降12米,则他应该往回收线多少米?试卷第7页,共8页22.在一条东西走向河的一侧有一村庄C ,河边原有两个取水点A ,B ,其中AB =AC ,由于种种原因,由C 到A 的路现在已经不通了,某村为方便村民取水决定在河边新建一个取水点H (A ,H ,B 在一条直线上),并新修一条路CH ,测得CB =3千米,CH =2.4千米,HB =1.8千米.(1)问CH 是不是从村庄C 到河边的最近路,请通过计算加以说明;(2)求原来的路线AC 的长.23.如图,一棵竖直生长的竹子高为8米,一阵强风将竹子从C 处吹折,竹子的顶端A 刚好触地,且与竹子底端的距离AB 是4米.求竹子折断处与根部的距离CB .24.太原的五一广场视野开阔,是一处设计别致,造型美丽的广场园林,成为不少市民放风筝的最佳场所,某校八年级(1)班的小明和小亮同学学习了“勾股定理”之后,为了测得图中风筝的高度CE ,他们进行了如下操作: ①测得BD 的长为15米(注:BD CE );①根据手中剩余线的长度计算出风筝线BC 的长为25米;①牵线放风筝的小明身高1.7米.(1)求风筝的高度CE.(2)过点D作DH BC⊥,垂足为H,求BH的长度.25.(12,其中4x=.(2)已知x=y=,求22x xy y-+值.试卷第8页,共8页参考答案1.C2.B3.A4.B5.A6.C7.C8.D9.A10.A11.B12.C13.1614.815.7.5;16.203217.-3118.直角三角形19.2220.1621.(1)风筝的高度CE为21.6米;(2)他应该往回收线8米.22.(1)是;(2)2.5米.23.3米24.(1)风筝的高度CE为21.7米(2)BH的长度为9米25.(1)62,122x(2)11答案第1页,共1页。

(典型题)初中数学八年级数学上册第一单元《勾股定理》测试(含答案解析)

(典型题)初中数学八年级数学上册第一单元《勾股定理》测试(含答案解析)

一、选择题1.如图,四个全等的直角三角形和中间的小正方形可以拼成一个大正方形,若直角三角形的较长直角边长为a ,较短直角边长为b ,大正方形面积为S 1,小正方形面积为S 2,则(a +b )2可以表示为( )A .S 1﹣S 2B .S 1+S 2C .2S 1﹣S 2D .S 1+2S 2 2.毕达哥拉斯树,也叫“勾股树”,是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的树形图形,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A ,B ,C ,D 的边长分别是2,3,1,2,则△正方形E 的边长是( )A .18B .8C .22D .32 3.下列各组数据,不能作为直角三角形的三边长的是( ) A .5、6、7 B .6、8、10C .1.5、2、2.5D .3、2、7 4.七巧板是大家熟悉的一种益智类玩具.用七巧板能拼出许多有趣的图案.小明将一个直角边长为20cm 的等腰直角三角形纸板,切割七块.正好制成一副七巧板,则图中阴影部分的面积为( )A .210cmB .225cm 2C .22cm 2D .225cm 5.已知点P 是△ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫△ABC 的费马点(Fermat point ).已经证明:在三个内角均小于120°的△ABC 中,当∠APB =∠APC=∠BPC =120°时,P 就是△ABC 的费马点.若点P 是腰长为6的等腰直角三角形DEF 的费马点,则PD +PE +PF =( )A .6B .()326+C .63D .96.如图,直线l 上有三个正方形a 、b 、c ,若a 、c 的面积分别为3和4,则b 的面积为( )A .3B .4C .5D .77.如图所示的图案是由两个直角三角形和三个正方形组成的图形,其中一直角三角形的斜边和一直角边长分别是13,12,则阴影部分的面积是( )A .25B .16C .50D .418.如图,在长方形ACD 中,3AB cm =,9AD cm =,将此长方形折叠,便点D 与点B 重合,折痕为EF ,则ABE △的面积为( )2cm .A .12B .10C .6D .15 9.下列四组数中,是勾股数的是( ) A .5,12,13 B .4,5,6 C .2,3,4 D .1,2,5 10.如图,在ABC ∆中,90C ∠=︒,4AC =,2BC =.以AB 为一条边向三角形外部作正方形,则正方形的面积是( )A .8B .12C .18D .2011.下列各组数是勾股数的是( )A .4,5,6B .5,7,9C .6,8,10D .10,11,12 12.如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为( )A .514B .8C .16D .64二、填空题13.如图,把一张宽为4(即4AB =)的矩形纸片ABCD 沿,EF GH 折叠(点,E H 在AD 边上,点,F G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A '点,D 点对称点为D '点.当PFG △为等腰三角形时,发现此时PFG △的面积为10,则矩形ABCD 的长BC =_____.14.已知等腰三角形的两边长分别为a ,b ,且a ,b 满足2235(2313)0a b a b -+++-=,则此等腰三角形的面积为____.15.如图,△ABC 中AD ⊥BC 于D ,AC =2, DC =1,BD =3, 则AB 的长为_____.16.如图,直角三角形ABC 的周长为24,且AB :BC=5:3,则AC= __________.17.小明学了在数轴上表示无理数的方法后,进行了练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB OA ⊥,使3AB =(如图);再以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,则点P 所表示的数是____________.18.一架5米长的梯子斜靠在一竖直的墙上,这时梯足距离墙脚3m ,若梯子的顶端下滑1m ,则梯足将滑动______.19.如图,ABC 中,90C ∠=︒,D 是BC 边上一点,17AB cm =,10AD cm =,8AC cm =,则BD 的长为________.20.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的就用了这种分割方法,若BD =3,AE =10,则正方形ODCE 的边长等于____.三、解答题21.在△ABC 中,AB=8,AC=5,若BC 边上的高等于4,求BC 的长.22.某校校门口有一个底面为等边三角形的三棱柱(如图),学校计划在三棱柱的侧面上,从顶点A 绕三棱柱侧面一周到顶点A '安装灯带,已知此三棱柱的高为4m ,底面边长为1m ,求灯带最短的长度.23.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是.24.三国时代东吴数学家赵爽(字君卿,约公元3世纪)在《勾股圆方图注》一书中用割补的方法构造了“弦图”(如图1,并给出了勾股定理的证明.已知,图2中涂色部分是直角边长为,a b,斜边长为c的4个直角三角形,请根据图2利用割补的方法验证勾股定理.25.在等腰直角△ABC中,AB= AC, BAC=90°,过点B作BC的垂线l.点P为直线AB 上的一个动点(不与点A,B重合),将射线PC绕点P顺时针旋转90°交直线l于点D.(1)如图1,点P在线段AB上,依题意补全图形;①求证:∠BDP =∠PCB;②用等式表示线段BC,BD,BP之间的数量关系,并证明.(2)点P在线段AB的延长线上,直接写出线段BC,BD,BP之间的数量关系.26.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙脚的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,求小巷的宽度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据图形和勾股定理可知S1=c2=a2+b2,再由完全平方公式即可得到结果.【详解】解:如图所示:设直角三角形的斜边为c,则S1=c2=a2+b2S2=(a﹣b)2=a2+b2﹣2ab,∴2ab=S1﹣S2,∴(a+b)2=a2+2ab+b2=S1+S1﹣S2=2S1﹣S2,故选:C【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式.2.D解析:D【分析】根据勾股定理分别求出正方形E 的面积,进而即可求解.【详解】解:由勾股定理得,正方形E 的面积=正方形A 的面积+正方形B 的面积+正方形C 的面积+正方形D 的面积=22+32+12+22=18,∴正方形E 的边长故选:D .【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.3.A解析:A【分析】利用勾股定理的逆定理计算判断即可.【详解】∵2256253661+=+=≠2749=,∴5、6、7不能作为直角三角形的三边长,∴选项A 错误;∵22866436100+=+==210100=,∴6、8、10能作为直角三角形的三边长,∴选项B 正确;∵221.52 2.254 6.25+=+==22.5 6.25=,∴1.5、2、2.5能作为直角三角形的三边长,∴选项C 正确; ∵222347+=+==27=, ∴2能作为直角三角形的三边长,∴选项D 正确;故选A .【点睛】本题考查了勾股定理的逆定理,熟练掌握逆定理并进行准确计算是解题的关键. 4.B解析:B【分析】根据七巧板意义,计算出阴影等腰直角三角形的直角边的长即可.【详解】如图,根据题意,得BC=20,=EM ,∴,∴EF=FG=5, ∴212522EFG S EF ==, 故选B.【点睛】本题考查了等腰直角三角形的性质,等腰直角三角形的面积,熟练掌握七巧板制作规律和制作特点是解题的关键.5.B解析:B【分析】根据题意画出图形,根据勾股定理可得EF ,由过点D 作DM ⊥EF 于点M ,过E 、F 分别作∠MEP =∠MFP =30°就可以得到满足条件的点P ,易得EM =DM =MF =32方程求出PM 、PE 、PF ,继而求出PD 的长即可求解.【详解】解:如图:等腰Rt △DEF 中,DE =DF =6, ∴22226662EF DE DF =++=过点D 作DM ⊥EF 于点M ,过E 、F 分别作∠MEP =∠MFP =30°,则∠EPF=∠FPD=∠DPE=120°,点P 就是马费点,∴EM =DM =MF =32设PM =x ,PE =PF=2x ,在Rt △EMP 中,由勾股定理可得:222PM EM PE +=,即()22182x x +=, 解得:16x =26x =-即PM 6,∴PE =PF =26故DP =DM -PM =326,则PD +PE +PF =326463236326. 故选B .【点睛】此题主要考查了等腰直角三角形的性质、勾股定理的应用,正确画出做辅助线构造直角三角形进而求出PM 的长是解题关键.6.D解析:D【分析】根据“AAS”可得到△ABC ≌△CDE ,由勾股定理可得到b 的面积=a 的面积+c 的面积.【详解】解:如图∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°,∴∠ACB=∠DEC ,∵∠ABC=∠CDE ,AC=CE ,∴△ABC ≌△CDE ,∴BC=DE ,∵AC 2=AB 2+BC 2,∴AC 2=AB 2+DE 2,∴b 的面积=a 的面积+c 的面积=3+4=7.故答案为:D .【点睛】本题考查了全等三角形的判定与性质,勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.7.C解析:C【分析】由勾股定理解得2AB 、22CD BD +,再根据正方形边长相等的性质得到222225CD BD BC AB +===,据此解题即可.【详解】解:由勾股定理得,222131225AB =-=222BC CD BD =+222225CD BD BC AB ∴+===∴阴影部分的面积是222252550CD BD BC ++=+=,故选:C .【点睛】本题考查勾股定理,是重要考点,难度较易,掌握相关知识是解题关键.8.C解析:C【分析】设AE=x ,由折叠BE=ED=9-x ,再在Rt △ABE 中使用勾股定理即可求出x ,进而求出△ABE 的面积.【详解】解:设AE=x ,由折叠可知:BE=ED=9-x ,在Rt △ABE 中,由勾股定理有:AB²+AE²=BE²,代入数据:3²+x²=(9-x)²,解得x=4,故AE=4,此时11=43622∆⨯=⨯⨯=ABE S AE AB , 故选:C .【点睛】本题考查了折叠问题中的勾股定理,利用折叠后对应边相等,设要求的边为x ,在一个直角三角形中,其余边用x 的代数式表示,利用勾股定理建立方程求解x . 9.A解析:A【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A. ∵5,12,13是正整数,且52+122=132,∴5,12,13是勾股数;B. ∵42+52≠62,∴4,5,6不是勾股数;C. ∵22+32≠42,∴2,3,4不是勾股数;D. ∵25∴125故选A .【点睛】此题主要考查了勾股数,解答此题要用到勾股数组的定义,如果a ,b ,c 为正整数,且满足a 2+b 2=c 2,那么,a 、b 、c 叫做一组勾股数.10.D解析:D【分析】根据勾股定理解得2AB 的值,再结合正方形的面积公式解题即可.【详解】在ABC ∆中,90C ∠=︒,4AC =,2BC =,222224220AB AC BC ∴=+=+=∴以AB 为一条边向三角形外部作的正方形的面积为220AB =,故选:D .【点睛】本题考查勾股定理的应用,是重要考点,难度较易,掌握相关知识是解题关键. 11.C解析:C【分析】根据勾股数的定义:满足222+=a b c 的三个正整数a 、b 、c 叫做勾股数,逐一进行判断即可.【详解】解:A. 222456+≠,故此选项错误;B. 222579+≠,故此选项错误;C. 2226810+=,故此选项正确;D. 222101112+≠,故此选项错误.故选:C .【点睛】本题考查了勾股数的概念,熟记勾股数的概念是解题的关键.12.D解析:D【分析】设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,代入得到2225289a +=,计算求出答案即可.【详解】如图,设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,∴2225289a +=,∴字母A 所代表的正方形的面积264a =,故选:D ..【点睛】此题考查以弦图为背景的证明,熟记勾股定理的计算公式、理解三个正方形的面积关系是解题的关键.二、填空题13.【分析】根据勾股定理解答即可;【详解】由题可知∴作∵是等腰三角形∴∴由翻折可知∴∴;故答案是【点睛】本题主要考查了勾股定理的应用准确结合翻折的性质计算是解题的关键 解析:589+【分析】根据勾股定理解答即可;【详解】 由题可知△14102PFG S FG =⨯⨯=, ∴5FG =, 作PM FG ⊥,∵PFG △是等腰三角形,∴52FM GM ==, ∴25891622PF PG ⎛⎫==+= ⎪⎝⎭, 由翻折可知,BF PF PG CG ===,∴89BF CG ==∴589BC BF FG CF =++=+;故答案是589+.【点睛】 本题主要考查了勾股定理的应用,准确结合翻折的性质计算是解题的关键.14.或【分析】根据非负数的性质列出方程组求解的值然后分两种情况讨论画出图形作底边上的高利用勾股定理求出高即可求解【详解】解:由非负性可知解得①当是腰时三边分别为由2+2>3则能组成三角形设底边上的高为h 解析:374或22 【分析】根据非负数的性质列出方程组求解a ,b 的值,然后分两种情况讨论,画出图形,作底边上的高,利用勾股定理求出高,即可求解.【详解】解:由非负性可知235023130a b a b -+=⎧⎨+-=⎩, 解得23a b =⎧⎨=⎩, ①当a 是腰时,三边分别为2、2、3,由2+2>3,则能组成三角形,设底边上的高为h ,如下图所示则h=22322⎛⎫- ⎪⎝⎭=7 ∴此等腰三角形的面积为1732⨯⨯=37; ②当b 是腰时,三边分别为3、3、2,由3+2>3,则能组成三角形,设底边上的高为h ,如下图所示则22232⎛⎫- ⎪⎝⎭2 ∴此等腰三角形的面积为12222⨯⨯=22或综上:此等腰三角形的面积为4故答案为:或4【点睛】本题主要考查了等腰三角形的性质,非负数的性质,解二元一次方程组,三角形的三边关系,勾股定理,先求出a,b的值是解题的关键,要注意分情况讨论.15.【分析】根据ACDC解直角△ACD可以求得AD根据求得的AD和BD解直角△ABD可以计算AB【详解】∵AD⊥BC于D∴△ACD△ABD为直角三角形∴AC2=AD2+DC2∴AD===∵△ABD为直角解析:【分析】根据AC,DC解直角△ACD,可以求得AD,根据求得的AD和BD解直角△ABD,可以计算AB.【详解】∵AD⊥BC于D,∴△ACD、△ABD为直角三角形,∴AC2=AD2+DC2,∴AD,∵△ABD为直角三角形,∴AB2=AD2+BD2,∴AB=故答案为:【点睛】本题考查了直角三角形中勾股定理的灵活运用,根据两直角边求斜边,根据斜边和一条直角边求另一条直角边.16.8【分析】设AB=5x则BC=3x根据勾股定理可求出AC=4x由周长为24列方程求出x的值即可求出AC的长【详解】设AB=5x∵AB:BC=5:3∴BC=3x∴AC=4x∵直角三角形ABC的周长为2解析:8【分析】设AB=5x,则BC=3x,根据勾股定理可求出AC=4x,由周长为24列方程求出x的值,即可求出AC的长.【详解】设AB=5x,∵AB:BC=5:3,∴BC=3x,∴AC=4x,∵直角三角形ABC的周长为24,∴3x+4x+5x=24,解得:x=2,∴AC=4x=8.故答案为8【点睛】本题主要考查了勾股定理的运用,用含有x的式子分别表示出三边的值,代入周长公式求解是解题关键.17.【分析】根据勾股定理可计算出OB的长度即点P在数轴正半轴表示的数【详解】解:在Rt△OAB中∵OA=2OB=3;∴OB=;∴以点O为圆心OB为半径与正半轴交点P表示的数为故答案为:【点睛】本题考查勾【分析】根据勾股定理可计算出OB的长度,即点P在数轴正半轴表示的数.【详解】解:在Rt△OAB中∵OA=2,OB=3;∴==;∴以点O为圆心,OB为半径与正半轴交点P【点睛】本题考查勾股定理的应用及数轴上点的坐标的表示,根据题意先计算OB的长度,注意以点O交点即可得解.18.【分析】根据条件作出示意图根据勾股定理求解即可【详解】解:由题意可画图如下:在直角三角形ABO中根据勾股定理可得如果梯子的顶度端下滑1米则在直角三角形中根据勾股定理得到:则梯子滑动的距离就是故答案为解析:1m【分析】根据条件作出示意图,根据勾股定理求解即可.【详解】解:由题意可画图如下:在直角三角形ABO 中,根据勾股定理可得,22534OA =-=,如果梯子的顶度端下滑1米,则'413OA m =-=.在直角三角形''A B O 中,根据勾股定理得到:'4OB m =,则梯子滑动的距离就是'431OB OB m -=-=.故答案为:1m .【点睛】本题考查的知识点是勾股定理的应用,根据题目画出示意图是解此题的关键. 19.9cm 【分析】由可知为直角三角形利用勾股定理可分别计算求得BC 和CD 从而完成BD 求解【详解】∵∴同理∴故答案为:【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长 解析:9cm【分析】由90C ∠=︒可知ABC 为直角三角形,利用勾股定理,可分别计算求得BC 和CD ,从而完成BD 求解.【详解】∵90C ∠=︒ ∴222217815BC AB AC -=-=同理 22221086CD AD AC =-=-=∴1569BD BC CD =-=-=故答案为:9cm .【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长.20.2【分析】根据题意有两对全等的直角三角形设正方形的边长为x 则BC=3+xAC=10+xAB=13根据勾股定理BC2+AC2=AB2列出方程解出x 即可【详解】解:设DC=CE=x 则BC=3+xAC=1解析:2【分析】根据题意,有两对全等的直角三角形,设正方形的边长为x,则BC=3+x,AC=10+x,AB=13,根据勾股定理,BC2+AC2=AB2,列出方程,解出x即可.【详解】解:设DC=CE=x,则BC=3+x,AC=10+x∵BC2+AC2=AB2∴(3+x)2+(10+x)2=132∴x=2故答案为:2.【点睛】本题主要考查了全等三角形的性质与勾股定理,熟悉全等三角形对应边相等,勾股定理的应用是解决本题的关键.三、解答题21.BC=43+3或43-3【分析】作AD⊥BC于D,分点D在线段BC上和BC的延长线上两种情况,根据勾股定理计算即可.【详解】解:作AD⊥BC于D,分两种情况:①高BD在线段BC上,如图1所示:在Rt△ABD中,BD=2222AB AD-=-=,8443在Rt△ACD中,CD=2222AC AD-=-=3,54∴BC=BD+CD=43+3;②高AD在CB的延长线上,如图2所示:BC=BD-CD=43-3;综上所述,BC的长为43+3或43-3.【点睛】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.22.5m【分析】先画出三棱柱的侧面展开图,再根据勾股定理求解.【详解】将三棱柱展开如图,连接A’A,则A’A的长度就是彩带的最短长度,如图,在Rt△AA'B中AB=底面等边三角形的周长=3×1=3(m)∵AA'=4(m)由勾股定理得:22AA'=+=(m).435答:灯带的最短长度为5m.【点睛】本题考查学生对勾股定理的应用能力,熟练掌握勾股定理是解题的关键.23.(1)见解析;(2)30.【分析】(1)根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC;(2)利用(1)中结论,根据全等三角形的性质即可解决问题;【详解】(1)证明:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△BCE和△CAD中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△CAD (AAS );(2)解:∵△BCE ≌△CAD ,BE =5,DE =7,∴BE =DC =5,CE =AD =CD+DE =5+7=12.∴由勾股定理得:AC =13,∴△ACD 的周长为:5+12+13=30,故答案为:30.【点睛】本题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.也考查了余角的性质和勾股定理.24.见解析【分析】根据总面积=以c 为边的正方形的面积+2个直角边长为,a b 的三角形的面积=以b 为上底、(a+b)为下底、高为b 的梯形的面积+以a 为上底、(a+b)为下底、高为a 的梯形的面积,据此列式求解.【详解】 证明:总面积()()21112222S c ab a b b b a a b a =+⨯=++⋅+++⋅ 222c a b ∴=+【点睛】此题考查的是勾股定理的证明,用两种方法表示同一图形的面积是解题关键. 25.(1)见解析;①见解析;②BC -BD;见解析;(2)BD -BCBP【分析】(1)根据题意补全图形即可:①设PD 与BC 的交点为E ,根据三角形内角和定理可求解;②过点P 作PF ⊥BP 交BC 于点F .证明△BPD ≌△FPC ,即可得到结论;(2)过点P 作PH ⊥BP 交CB 的延长线于点H ,证明△HPC ≌△BPD 即可.【详解】解:(1)补全图形,如图.①证明:如图①,设PD与BC的交点为E.根据题意可知,∠CPD=90°.∵BC⊥l,∴∠DBC=90°.∴∠BDP+∠BED=90°,∠PCB+∠PEC= 90°.∵∠BED=∠PEC∴∠BDP=∠PCB.②BC-BD=2BP.证明:如图②,过点P作PF⊥BP交BC于点F.∵AB= AC, A=90°,∴∠ABC=45°.∴BP=PF,∠PFB=45°.∴∠PBD=∠PFC=135°.∴△BPD≌△FPC.∴BD=FC.∵BF2BP,∴BC -BD=2BP .(3)过点P 作PH ⊥BP 交CB 的延长线于点H ,如图③,∵∠DPC=∠CBM=90°,∠PMD=∠BMC∴∠PDM=∠BCM∵∠ABC=∠ACB=45°∴∠HBP=45°∴∠DBP=45°∵∠BPH=90°∴∠BHP=45°∴HP=BP∴2HB PB =又∠DPC=90°∴∠HPC=∠BPD ,在△HPC 和△BPD 中,HP BP BPD HPC PHC PBD =⎧⎪∠=∠⎨⎪∠=∠⎩∴△HPC ≌△BPD∴2BP BC +∴BD -BC 2BP .【点睛】此题主要考查了三角形全等的判定与性质,以及等腰直角三角形的性质运用和勾股定理的应用,熟练掌握相关定理与性质是解答此题的关键.26.2米【分析】先根据勾股定理求出AB 的长,同理可得出BD 的长,进而可得出结论.【详解】解:在Rt ACB ∆中,90ACB ∠=︒,0.7BC =米, 2.4AC =米,2220.7 2.4 6.25AB ∴=+=.在Rt △A BD '中,90A DB ∠'=︒,2A D '=米,222BD A D A B +'=',222 6.25BD ∴+=,2 2.25BD ∴=,0BD >,1.5BD ∴=米,0.7 1.5 2.2CD BC BD ∴=+=+=米,答:小巷的宽度为2.2米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.。

第一章 勾股定理数学八年级上册-单元测试卷-北师大版(含答案)

第一章 勾股定理数学八年级上册-单元测试卷-北师大版(含答案)

第一章勾股定理数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,花园住宅小区有一块长方形绿化带,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路”.他们仅仅少走了()步路(假设2步为1米),却踩伤了花草.A.6步B.5步C.4步D.2步2、如图,点A在双曲线y=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为()A.2B.4C.D.53、下列数组中,是勾股数的是()A.1,2,3B.6,8,9C.5,11,12D.9,40,414、∠BAC放在正方形网格纸的位置如图,则tan∠BAC的值为()A. B. C. D.5、如图,□ABCD的对角线AC与BD相交于点0,AB⊥AC,若AB=4,AC=6,则BD的长是( )A.8B.9C.10D.116、如图,在中,,,,则的长为()A. B. C.3 D.157、在中,D是直线上一点,已知,,,,则的长为()A.4或14B.10或14C.14D.108、在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到斜边AB的距离是()A. B. C.9 D.69、下列四组线段中,可以构成直角三角形的是( )A.1,,3B.3,4,5C.4,5,6D.6,7,810、如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=6,E是BD的中点,则CE 的长为( )A. B.2 C. D.311、如图是一个6×6的正方形网格,每个小正方形的顶点都是格点,Rt△ABC的顶点都是图中的格点,其中点A、点B的位置如图所示,则点C可能的位置共有()A.9个B.8个C.7个D.6个12、下列四组线段中,不能组成直角三角形的是()A.a=3,b=4,c=3B.a= ,b= ,c=C.a=3,b=4,c=D.a=1,b= ,c=313、一个等腰三角形的底边长是6,腰长是一元二次方程的一根,则此三角形的外接圆的半径是()A.3.2B.C.3.5D.414、如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为( )A.4B.8C.16D.815、如图,在中,,以点为圆心,长为半径画弧,交于点和点,再分别以点为圆心,大于长为半径画弧,两弧相交于点,作射线交于点.若,则的长度是()A.2B.3C.D.二、填空题(共10题,共计30分)16、如图,每个方格都是边长为1的小正方形,则AB+BC=________.17、如图,在中,弦,点在上移动,连结,过点作交于点,则的最大值为________.18、一个直角三角形的两条直角边长分别为3,4,则第三边为________.19、如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是________20、一个三角形的三边分别为7cm,24 cm,25 cm,则此三角形的面积为________ cm2.21、如图,四边形ABCD是圆O的内接四边形,AC⊥BD交于点P,半径R=6,BC=8,则tan∠DCA=________.22、在中,,,,则a的值是________.23、如图,已知在Rt△ABC中,∠ACB=90°,点D是AC延长线上的一点,AD=24,点E 是BC上一点,BE=10,连接DE,M、N分别是AB、DE的中点,则MN=________.24、如图,菱形的边长为2,,点Q是的中点,点P是对角线上一动点,则最小值为________.25、菱形的周长为,对角线与相交于点,点E为边的中点,以为边作正方形,连接,则的面积为________.三、解答题(共5题,共计25分)26、如图,中,于D.求及的长.27、如图,四边形ABCD中,AB⊥AD,已知AD=3cm,AB=4cm,CD=13cm,BC=12cm,求四边形ABCD的面积.28、如图,某学校(A点)与公路(直线L)的距离为300米,又与公路车站(D点)的距离为500米,现要在公路上建一个小商店(C点),使之与该校A及车站D的距离相等,求商店与车站之间的距离.29、去年某省将地处A、B两地的两所大学合并成了一所综合性大学,为了方便A、B两地师生的交往,学校准备在相距2km的A、B两地之间修筑一条笔直公路(即图中的线段AB),经测量,在A地的北偏东60°方向、B地的西偏北45°方向C处有一个半径为0.7km的公园,问计划修筑的这条公路会不会穿过公园?为什么?(≈1.732)30、如图,在△ABC中,∠A=90°,点D为BC的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,试写出线段BE,EF,FC之间的数量关系,并说明理由.参考答案一、单选题(共15题,共计45分)1、C2、A3、D4、D6、C7、A8、A9、B10、C11、A12、B13、B14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

八年级数学-勾股定理-经典单元测试题(含答案)

八年级数学-勾股定理-经典单元测试题(含答案)

勾股定理单元测试题一、选择题1、下列各组数中,能构成直角三角形的是( )A :4,5,6B :1,12:6,8,11 D :5,12,23 2、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( ) A :26 B :18 C :20D :213、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( ) A :3 B :4 C :5 D :74、在Rt △ABC 中,∠C =90°,∠B =45°,c =10,则a 的长为( ) A :5 B :10 C :25 D :55、等边三角形的边长为2,则该三角形的面积为( )A 、33、23、36、若等腰三角形的腰长为10,底边长为12,则底边上的高为( )A 、6B 、7C 、8D 、9 7、已知,如图长方形ABCD 中,AB=3cm , AD=9cm ,将此长方形折叠,使点B 与点D 重合, 折痕为EF ,则△ABE 的面积为( ) A 、3cm 2B 、4cm 2C 、6cm 2D 、12cm 28、若△ABC 中,13,15AB cm AC cm ==,高AD=12,则BC 的长为( ) A 、14 B 、4 C 、14或4 D 、以上都不对 二、填空题1、若一个三角形的三边满足222c a b -=,则这个三角形是 。

2、木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 。

(填“合格”或“不合格” )ABEFD第7题D CBA3、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。

4、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正 方形的边长为5,则正方形A ,B ,C ,D 的 面积的和为 。

5、如右图将矩形ABCD 沿直线AE 折叠,顶点D 恰好落 在BC 边上F 处,已知CE=3,AB=8,则BF=___________。

第一章勾股定理单元测试题(含答案)

第一章勾股定理单元测试题(含答案)

第一章 勾股定理单元测试题一、选择题(每小题3分,共30分)1. 下列各组中,不能构成直角三角形的是下列各组中,不能构成直角三角形的是 ( ). (A )9,12,15 (B )15,32,39 (C )16,30,32 (D )9,40,41 2. 如图1,直角三角形ABC 的周长为24,且AB :BC=5:3,则AC= ( ). (A )6 (B )8 (C )10 (D )12 3. 已知:如图2,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中阴影部分的面积为则图中阴影部分的面积为 ( ). (A )9 (B )3 (C )49 (D )294. 如图3,在△ABC 中,AD ⊥BC 与D ,AB=17,BD=15,DC=6,则AC 的长为(的长为( ). (A )11 (B )10 (C )9 (D )8 5. 若三角形三边长为a 、b 、c ,且满足等式ab c b a 2)(22=-+,则此三角形是(,则此三角形是( ). (A )锐角三角形)锐角三角形 (B )钝角三角形)钝角三角形 (C )等腰直角三角形)等腰直角三角形 (D )直角三角形)直角三角形 6. 直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为,则这个直角三角形斜边上的高为 ( ). (A )6 (B )8.5 (C )1320 (D )13607. 高为3,底边长为8的等腰三角形腰长为的等腰三角形腰长为 ( ). (A )3 (B )4 (C )5 (D )6 8. 一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需沿边长爬行一周需 ( ). (A )6秒 (B )5秒 (C )4秒 (D )3秒9. 我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图1所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 、b ,那么2)(b a + 的值为的值为 ( ). (A )49 (B )25 (C )13 (D )1 10. 如图5所示,在长方形ABCD 中,E 、F 分别是AB 、BC 上的点,且BE=12,BF=16,则由点E 到F 的最短距离为的最短距离为 ( ). (A )20 (B )24 (C )28 (D )32 二、填空题(每小题3分,共30分) 11. 写出两组直角三角形的三边长写出两组直角三角形的三边长 .(要求都是勾股数)(要求都是勾股数) 12. 如图6(1)、(2)中,(1)正方形A 的面积为的面积为 . (2)斜边x= . 个直角三角形为 .,∠B=90°,求四边形ABCD 的面积的半圆,的半圆,其边缘其边缘AB=CD=20m ,点E 在CD20.(8分)如图13(1)所示为一个无盖的正方体纸盒,现将其展开成平面图,如图13(2)所示.已知展开图中每个正方形的边长为1. (1)求该展开图中可画出最长线段的长度,并求出这样的线段可画几条. (2)试比较立体图中∠ABC与平面展开图中///CBAÐ的大小关系. 21.(8分)如图14,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米. (1)这个梯子底端离墙有多少米?)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?米吗?22.(8分)有一块直角三角形的绿地,量得两直角边长分别为6m m,8.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.为直角边的直角三角形,求扩充后等腰三角形绿地的周长.4322+212´´AE=)4(1822»+p 定理可知,定理可知,BC=4000500022=-)10;(,所以梯子向后滑动了8米. 45,)45253,的周长为80m 3ADABAD。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

○…………○…………装学校:___________姓名………内…………………○…………订……绝密★启用前初中数学《勾股定理》一章单元测试题温馨提示:亲爱的同学们,考试只是检查我们对所学知识的掌握情况,希望你不要慌张,平心静气,做题时把字写得工整些,让老师和自己看得舒服些,祝你成功!一、单选题(计36分)1.(本题3分)在以下列三个数为边长的三角形中,不能组成直角三角形的是( ) A . 4、7、9 B . 5、12、13 C . 6、8、10 D . 7、24、25 2.(本题3分)下列说法中正确的是( ) A . 已知a ,b ,c 是三角形的三边,则a 2+b 2=c 2 B . 在直角三角形中两边和的平方等于第三边的平方 C . 在Rt △ABC 中,∠C=90°,所以a 2+b 2=c 2 D . 在Rt △ABC 中,∠B=90°,所以a 2+b 2=c 23.(本题3分)如图所示,AB =BC =CD =DE =1,AB ⊥BC ,AC ⊥CD ,AD ⊥DE ,则AE =( )A . 1B . √2C . √3D . 24.(本题3分)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNPQ 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=60,则S 2的值是( )……外……………装……………订……………线………※※不※※要※※在※线※※内※※答※※题※…………………○…A . 12 B . 15 C . 20 D . 305.(本题3分)如图,一棵大树在离地面3米处折断,树的顶端落在离树干底部4米处,那么这棵树折断之前的高度是( )A . 8米B . 12米C . 5米D . 5或7米6.(本题3分)在数学活动课上,老师要求学生在4×4的正方形ABCD 网格中(小正方形的边长为1)画直角三角形,要求三个顶点都在各点上,而且三边与AB 或AD 都不平行,则画出的形状不同的直角三角形有( )种.A . 3B . 4C . 5D . 67.(本题3分)如图是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300m ,公园到医院的距离为400m.若公园到超市的距离为500m ,则公园在医院的( )A . 北偏东75°的方向上B . 北偏东65°的方向上C . 北偏东55°的方向上D . 无法确定8.(本题3分)如图是由5个正方形和5个等腰直角三角形组成的图形,已知③号正方形的面积是1,那么①号正方形的面积是( )A . 4B . 8C . 16D . 329.(本题3分)如图所示,一个圆柱高为8cm ,底面圆的半径为5cm ,则从圆柱左下角A 点出发.沿圆柱体表面到右上角B 点的最短路程为( )……外………○……………………○……_____班级:____………○…………装………线…………………内……………装…………○…A . √25π2+8cmB . √64+25π2cmC . √8+5π2cmD . 以上都不对 10.(本题3分)如图,在△ABC 中,AD ⊥BC 于D ,BD=√5,DC=1,AC=√5,那么AB 的长度是( )A . √27B . 27C . 3D . 2511.(本题3分)直角三角形的两边长分别是6,8,则第三边的长为( ) A . 10 B . 2√2 C . 10或2√7 D . 无法确定12.(本题3分)如图,是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果正方形的面积是13,小正方形的面积是1,直角三角形的两条边是分别是a ,b ,则a+b 和的平方的值( )A . 13B . 19C . 25D . 169 二、填空题(计20分)13.(本题4分)在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 所对的边长.如果∠A=105°,∠B=45°,b=2√2,那么c=_____.14.(本题4分)已知矩形ABCD 中,AB=4,BC=7.∠BAD 的平分线AE 交BC 于E 点,EF ⊥DE 交AB 于F 点,则EF 的长为_____.15.(本题4分)如图是由4个边长为1的正方形构成的“田字格”.只用没有刻度的直尺在这个“田字格”___条.…………○…………○……线………○……※※在※※装※※答※※题※※ …………○………16.(本题4分)如图,在四边形ABCD 中,∠BAD=∠C=90°,AB=AD=9,AE ⊥BC 于E ,AE=8,则CD 的长为_____.17.(本题4分)如图,分别以直角三角形三边向外作三个半圆,若S 1=30,S 2=40,则S 3=_____.三、解答题(计45分)18.(本题8分)如图,在一张长方形ABCD 纸张中,一边BC 折叠后落在对角线BD 上,点E 为折痕与边CD 的交点,若AB=5,BC=12,求图中阴影部分的面积.19.(本题9分)一驾2.5米长的梯子靠在一座建筑物上,梯子的底部离建筑物0.7米,如果梯子的顶部滑下0.4米,梯子的底部向外滑出多远(其中梯子从AB 位置滑到CD 位置)?…○…………………○……___班级:________……线…………○………装…………○…20.(本题9分)如图,将边长为a 与b 、对角线长为c 的长方形纸片ABCD ,绕点C 顺时针旋转90°得到长方形FGCE ,连接AF .通过用不同方法计算梯形ABEF 的面积可验证勾股定理,请你写出验证的过程.21.(本题9分)已知:如图,四边形ABCD 中,∠ABC=135°,∠BCD=120°,,BC=5 ,CD=6,求AD 的长.………○…※※题※※……22.(本题9分)如图,在长方体上有一只蚂蚁从项点A 出发,要爬行到顶点B 去找食物,一只长方体的长、宽、高分别为4、1、2,如果蚂蚁走的是最短路径,你能画出蚂蚁走的路线吗?参考答案1.A【解析】【分析】根据勾股定理逆定理逐项分析即可.【详解】A. ∵42+72≠92,∴4、7、9不能组成直角三角形;B. ∵52+122=132,∴5、12、13能组成直角三角形;C. ∵62+82=102,∴6、8、10能组成直角三角形;D. ∵72+242=252,∴7、24、25能组成直角三角形;故选A.【点睛】本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.2.C【解析】A选项中,因为“在任意三角形中,三边并不满足两边的平方和等于第三边的平方”,所以A中说法错误;B选项中,因为“在直角三角形中,两直角边的平方和等于斜边的平方”,所以B中说法错误;C选项中,因为在Rt△ABC中,∠C=90°,所以a2+b2=c2成立,所以C中说法正确;D选项中,因为在Rt△ABC中,∠B=90°,所以a2+c2=b2,所以D中说法错误.故选C.3.D【解析】试题分析:根据勾股定理进行逐一计算即可.解:∵AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,∴AC===;AD===;AE===2.故选D.4.C【解析】【分析】设每个小直角三角形的面积为m,则S1=4m+S2,S3=S2-4m,依据S1+S2+S3=60,可得4m+S2+S2+S2-4m=60,进而得出S2的值.【详解】设每个小直角三角形的面积为m,则S1=4m+S2,S3=S2-4m,因为S1+S2+S3=60,所以4m+S2+S2+S2-4m=60,即3S2=60,解得S2=20,故选C.【点睛】本题主要考查了勾股定理和正方形、全等三角形的性质的运用,证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.5.A【解析】【分析】先根据勾股定理求出折断部分的长,再加上没折断的部分即可.【详解】√32+42=5米,3+5=8米.故选A.【点睛】本题考查了勾股定理的应用,在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.6.A【解析】【详解】解:如图所示:形状不同的直角三角形共有3种情况:直角边之比为1:1,或1:2,或1:3.故选:A.7.B【解析】试题解析:如图,∵3002+4002=5002,∴∠AOB=90°,∵超市在医院的南偏东25°的方向,∴∠COB=90°-25°=65°,∴∠AOC=90°-65°=25°,∴∠AOD=90°-25°=65°.故选B.8.C【解析】【分析】等腰直角三角形中,直角边长和斜边长的比值为1:√2,正方形面积为边长的平方;所以要求①号正方形的面积,求出①号正方形的边长即可.【详解】要求①号正方形的面积,求①号正方形的边长即可,题目中给出③号正方形的面积为1,即③号正方形的边长为1,根据勾股定理4号正方形的边长为√12+12=√2,以此类推,可以求得①号正方形边长为4,所以①号正方形面积为4×4=16.故选C.【点睛】本题考查的是在等腰直角三角形中勾股定理的运用,已知直角边求斜边边长,解本题的关键是正确的运用勾股定理.9.B【解析】【分析】沿过A的圆柱的高AD剪开,展开得出平面,连接AB,根据勾股定理求出AB的长即可.【详解】沿过A的圆柱的高AD剪开,展开得出平面,如图连接AB,则AB的长就是从圆柱左下角A点出发.沿圆柱体表面到右上角B点的最短路程,由题意知:∠BCA=90°,AC=1×2×5cm×π=5πcm,BC=8cm,2由勾股定理得:AB=√AC2+BC2=√64+25π2(cm).故选B.【点睛】本题考查了平面展开-最短路线问题及勾股定理的应用,解此题的关键是知道求出哪一条线段的长,题目比较好,但是一道比较容易出错的题目.10.C【解析】【分析】根据AC,DC解直角△ACD,可以求得AD,根据求得的AD和BD解直角△ABD,可以计算AB.【详解】∵△ACD为直角三角形,∴AC2=AD2+DC2,∴AD=2,∵△ABD为直角三角形,∴AB2=AD2+BD2,∴AB=3,故选C.【点睛】本题考查了直角三角形中勾股定理的灵活运用,根据两直角边求斜边,根据斜边和一条直角边求另一条直角边.11.C【解析】【分析】已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即较长是斜边或直角边的两种情况,然后利用勾股定理求解即可.【详解】有两种情况:(1)当8是直角边时,第三边为斜边,长为√62+82=10;(2)当8是斜边时,第三边为直角边,长为√82−62=2√7;所以第三边的长为10或2√7.故选C.【点睛】本题考查了勾股定理.对较长的边分两种情况(1)直角边(2)斜边,进行讨论是解题的关键.12.C【解析】【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方13,也就是两条直角边的平方和是13,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=12.根据完全平方公式即可求解.【详解】根据题意,结合勾股定理a2+b2=13,ab=13−1,四个三角形的面积=4×12∴2a b=12,联立解得:(a+b)2=13+12=25.故选C.【点睛】本题考查了勾股定理的应用,解题的关键是注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.13.c=2【解析】【分析】已知∠A,∠B根据内角和为180°,可以求出∠C,在直角△ACD中求得AD,在直角△ABD 中求AD,根据AD=AD作为相等关系计算c.【详解】作AD⊥BC于点D,在直角△ACD 中,∠C =180°-105°-45°=30°,AD =b 2(直角三角形中30°角所对直角边为斜边的一半);在直角△ABD 中,AD =BD ,且AD 2+BD 2=AB 2,AD =√22c ,∴b 2=√22c ,∵b =2√2,∴c =2.故答案为:c =2.【点睛】本题考查了直角三角形中勾股定理的运用,本题中在直角△ACD 和直角△ABD 中求AD 是解题的关键.14.5【解析】试题解析:连接DF ,在矩形ABCD 中,∵AE 平分∠BAD ,4743BE AB CE BC BE ∴=====,﹣﹣,则在Rt CDE 中, 5DE ==,在Rt AFD 中, 222AF AD DF +=,即2227AF DF +=, ①在Rt BEF 中, ()22244AF EF -+=, ②在Rt EFD 中, 2225DF EF =+, ③ 化简可得21AF =, 即1AF =,3BF ∴=,则在Rt BEF 中, 5EF =.故答案为:5.15.8【解析】答案如图:.16.8﹣√17【解析】【分析】作DF⊥AE于F,则四边形DCEF为矩形,即DC=EF,要求CD的长度,求出AF即可.再根据△ABE≌△ADF,要求AF求出BE即可.【详解】如图,作DF⊥AE于F,则DCE F为矩形,DC=EF,又∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,又∵AB=AD,∴△ABE≌△ADF,∴AF=BE,在Rt△ABE中,BE=√92−82=√17,∴DC=EF=AE-AF=8-√17.故答案为:8﹣√17.点睛】本题考查了在直角三角形中勾股定理的合理运用和全等三角形的构建及证明.解本题关键是求证全等三角形,和已知2边求直角三角形的第3边.17.70【解析】【分析】根据勾股定理以及圆面积公式,可以证明:S1+S2=S3.故S3=70.【详解】设直角三角形三边分别为a、b、c,如图所示:则,,.∵a2+b2=c2,∴.即S1+S2=S3.∴S3=70.故答案为:70.【点睛】本题考查了圆的面积公式和勾股定理的应用,注意发现此图中的结论:S1+S2=S3.18.图中阴影部分的面积为78.5【解析】试题分析:如图,设点C在BD上的对应点为点F,连接EF,则易得EF⊥BD于点F,BF=BC=12,由已知易得BD=13,由此可得DF=1,设CE=x,则EF=x,DE=5-x,在Rt△DEF中由勾股定理建立方程即可求得x的值,从而可得到EF的长,结合BD的长即可求出△BDE 的面积了.试题解析:设折叠后点C在BD上的对应点为点F,连接EF,∴EF⊥BD,BF=BC=12,∴∠DFE=90°,∵AB=5,AD=BC=12,∠A=90°,∴BD=√52+122=13,∴DF=13-12=1,设CE=x,则EF=CE=x,DE=5-x,在△DEF中,x2+12=(5-x)2,解得x=125,∴图中阴影部分的面积S△BDE=12×13×125=785.19.0.8米【解析】【分析】要求梯子的底部滑出多远,就要求梯子原先顶部的高度AO,且△AOB,△COD均为直角三角形,可以运用勾股定理求解.【详解】解:在直角三角形AOB中,根据勾股定理AB2=AO2+OB2,可以求得:OA==2.4米,现梯子的顶部滑下0.4米,即OC=2.4﹣0.4=2米,且CD=AB=2.5米,所以在直角三角形COD中DO2=CD2﹣CO2,即DO==1.5米,所以梯子的底部向外滑出的距离为1.5米﹣0.7米=0.8米.答:梯子的底部向外滑出的距离为0.8米.【点睛】本题考查的是勾股定理的实际应用,找出题目中隐含的直角三角形是解题的关键.20.见解析【解析】试题分析:根据S梯形ABEF=S△ABC+S△CEF+S△ACF,利用三角形以及梯形的面积公式即可证明.证明:∵S梯形ABEF=(EF+AB)•BE=(a+b)•(a+b)=(a+b)2,∵Rt△CDA≌Rt△CGF,∴∠ACD=∠CFG,∵∠CFG+∠GCF=90°,∴∠ACD+∠GCF=90°,即∠ACF=90°,∵S梯形ABEF=S△ABC+S△CEF+S△ACF,∴S梯形ABEF=ab+ab+c2,∴(a+b)2=ab+ab+c2∴a2+2ab+b2=2ab+c2,∴a2+b2=c2.考点:勾股定理的证明.221.19【解析】过A作AF⊥CB交CB的延长线于F,过D作DE⊥BC交BC的延长线于E,∴AF∥DE,过F作FG∥AD交DE于G,∴ADGF是平行四边形. ………………………………………………………………………1分135.45sin4522ABCFBAABFAF FBABAB∠=︒∴∠=︒∴∆∴==⋅︒==是等腰直角三角形.分12060sin606ccos6016233BCDDCEDE CDCE CD∠=︒∴∠=︒∴=⋅︒===⋅︒=⨯=⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯又分845EFGEF FB BC CEEG ED DGED AFAD FG∆=++==-=-=∴====在Rt中,分分22.见解析【解析】【分析】分为两种情况:如图1根据勾股定理求出AB长,如图2根据勾股定理求出AB长,得出图1时最短,画出即可.【详解】·解:能;线段AB的长就是蚂蚁走的最短距离,分为两种情况:如图1:AC=4,BC=2+1=3,∠C=90°,由勾股定理得:AB=5;如图2:AC=4+1=5,BC=2,∠C=90°,在△ABC中,由勾股定理得:AB=>5,∴沿图1路线走时最短,;如图3:即能画出蚂蚁走的最短路线:如图从A到C′再到B或先沿底面走到C''然后走到B.【点睛】本题考查了勾股定理,最短路线问题的应用,关键是能求出符合条件的最短路线的长,题目比较好,但是一道比较容易出错的题目.。

相关文档
最新文档