CFMS手册-最新

合集下载

AWP Super Series 操作手册说明书

AWP Super Series 操作手册说明书

序列号范围AWP® SuperSeries AWPP-100000 之后CE带有维修信息原始说明的翻译Fifth EditionSecond PrintingPart No. 1298034CSGT操作手册 第五版 • 第二次印刷简介AWP ® Super Series零件号 1298034CSGTManufacturer: Terex Global GmbH Bleicheplatz 2 Schaffhausen, 8200 SwitzerlandEU Authorized representative : Genie Industries B.V. Boekerman 54751 XK OUD GASTEL The NetherlandsUK Authorized representative : Genie UK Limited The Maltings Wharf Road Grantham NG31 6BH UK目录简介 ...................................................................1 符号和危险图示定义 ..........................................5 一般安全 ............................................................7 人员安全 ............................................................9 工作区安全 ......................................................10 图例 .................................................................16 控制器 .............................................................17 检查 .................................................................18 操作说明 ..........................................................26 维护 .................................................................29 蓄电池充电说明 ...............................................32 运输说明 ..........................................................33 后倾操作说明 (37)规格 (40)© 1996 Terex Corporation 版权所有 第五版:第二次印刷, 2022 年 2 月 “Genie”和“AWP”是 Terex South Dakota 在美国和其他许多国家/地区的注册商标。

CFMS血栓弹力图

CFMS血栓弹力图

FDP

难以评估 凝血全貌
目前血栓弹力图实验种类和主 要用途
种类
普通杯检测 肝素酶杯检测 血小板杯检测
主要作用
1.评估凝血全貌,判断凝血状态 2.指导各种成分输血 3.区分原发和继发纤溶亢进 4.判断凝血酶相关药物的疗效如华法令、比 伐卢定、重组VII因子等 5. 评估血栓几率,预防手术后的血栓发生
过Ga+/XIIIa相互联结的最强的动力学特性, 代表纤维蛋白凝块的最终强度,主要反应血
51~69mm
小板功能
CI LY30 EPL
凝血综合 综合凝血指数, R, K, alpha, MA结合推算出 指数 CI= -0.6516Rc-0.3772Kc+0.1224Mac+-7.7922
血块稳定 性
MA出现后30分钟血块消融的比例(%)
微量全血样本 评估可出替血代风多险种,独立的检测 区分原发和继发纤溶亢进 检测服用氯吡格雷、阿司匹林等药物的病人是否安全
CFMS血栓弹力图可 以…
❖ 减少至少20%血制品使用
减少输血 减少二次手术 缩短住院时间
❖ 降低副作用
输血 血小板管理
❖ 三倍的休克风险 ❖ 五倍的死亡风险
主要内容
值(INR)和活化部分凝血活酶时间(APTT),还包括纤维蛋白原、血小板功 能、血栓弹力图、D-二聚体和凝血酶时间。
中华医学会麻醉分会-围手术期-输血指南-2007年
凝血功能包括血小板计数、PT、APTT、INR 以及血小板功能评估、血栓弹性图 (TEG)、纤维蛋白原水平等以指导输血。
美国红十字会-输血指南-2010年
预测纤溶 指数
MA出现后预计的血块消融能力(%)
-3~3 <7.5% <15%

Microsoft+MS-1541_v1.1_SChinese.pdf+笔记本电脑+使用者手册说明书

Microsoft+MS-1541_v1.1_SChinese.pdf+笔记本电脑+使用者手册说明书

目录版权和商标声明 ............................................................................................................1-4修订 ..............................................................................................................................1-4FCC-B 频道干扰声明....................................................................................................1-5FCC 规定......................................................................................................................1-5CE 规定 ........................................................................................................................1-6电池规范 .......................................................................................................................1-6WEEE 声明...................................................................................................................1-6化学物质法规................................................................................................................1-7升级和保修 ..................................................................................................................1-7购买备件 .......................................................................................................................1-7安全指南 .......................................................................................................................1-8产品中有害物质的名称及含量.....................................................................................1-10MSI 特殊功能 .............................................................................................................1-11简介 ...............................................................................................2-1打开包装 .......................................................................................................................2-2产品检视 .......................................................................................................................2-3顶盖开启检视图 .......................................................................................................2-3前端检视图 ..............................................................................................................2-5右端检视图 ..............................................................................................................2-6左端检视图 ..............................................................................................................2-7后端检视图 ..............................................................................................................2-9底部检视图 ............................................................................................................2-10如何使用键盘 .............................................................................................................2-12Windows 键 ...........................................................................................................2-12开启快速 Fn 启动键 ...............................................................................................2-13使用快速 Fn 启动键 ...............................................................................................2-13调整扬声器的音量..................................................................................................2-14调整显示器的亮度..................................................................................................2-15使用多个监视器 .....................................................................................................2-15应用程序:True Color (选择性配置) ......................................................................2-15产品规格 .....................................................................................................................2-16如何使用入门 .................................................................................3-1开始使用笔记本电脑 .....................................................................................................3-2如何舒适地使用笔记本电脑 ..........................................................................................3-3使用者手册如何使用电源供应器 .....................................................................................................3-4电源适配器 ..............................................................................................................3-4电池 .........................................................................................................................3-4如何在 Windows 10 下设置一个电源计划设定 .............................................................3-6选择或自定义电源计划 ............................................................................................3-6创建自己的电源计划 ................................................................................................3-8如何使用触摸板 .........................................................................................................3-10了解一般硬盘和固态硬盘............................................................................................3-11了解 M.2 固态硬盘插槽...............................................................................................3-11如何连接 Internet........................................................................................................3-12无线网络 ................................................................................................................3-12有线网络 ................................................................................................................3-14如何设置蓝牙连接.......................................................................................................3-19开启蓝牙连接.........................................................................................................3-19如何连接外部装置.......................................................................................................3-22视频:如何使用 RAID 功能 ........................................................................................3-23如何在 BIOS 中选择 Boot Mode.................................................................................3-24视频:如何在 MSI 笔记本电脑上恢复 Windows 10 操作系统.....................................3-25视频:如何使用 MSI 一键安装 ..................................................................................3-26版权和商标声明Copyright © 微星科技股份有限公司所有。

CFMS血栓弹力图检测杯参数说明

CFMS血栓弹力图检测杯参数说明

CFMS血栓弹力图检测杯参数说明CFMS血栓弹力图检测杯参数说明1.CFMS血栓弹力图检测所有参数的意义序号项目项目意义临床意义1 R值R参数反应参加凝血启动过程的凝血因子综合作用。

包含了内源性通路、外源性通路和共同通路的内容,直至纤维蛋白凝块开始形成。

也可为TEG ACT或ST。

R参数反应内、外源性和共同通路,以及纤维蛋白原被激活形成纤维蛋白网开始的情况是对检测凝血因子的一个指标。

2 K值从R时间终点至描记幅度达20mm所需时间。

K 反映纤维蛋白和血小板在凝参数反应纤维蛋白和血小板在凝血块开始形成时的共同作用的结果,即血凝块形成的速率,其中以纤维蛋白的功能为主,而影响血小板功能及纤维蛋白原的抗凝剂均可使K值延长。

血块开始形成时的共同作用的结果,即血凝块形成的速率,由于此时以纤维蛋白的功能为主,故为检测纤维蛋白原功能的一个指标。

3 α角度从血凝块形成点至描记图最大曲线弧度做切线与水平线的夹角。

α参数与K参数相同,反应反应纤维蛋白和血小板在凝血块开始形成时的共同作用的结果,α参数在极度低凝时要比K参数更直观。

意义同K值,但对极度低凝时的K参数更直观,也是检测纤维蛋白原功能的一个指标。

4 MA值描记图上的最大振幅,即最大切就力系数。

MA反映了正在形成的血凝临床检测血小板质量和数量的一个指标。

块的最大强度及血凝块形成的稳定性,主要受血小板及纤维蛋白原两个因素的影响,其中血小板的作用要比纤维蛋白原大,约占80%,血小板质量或数量的异常都会影响到MA值。

5 CI 凝血综合指数,反应样本在各种条件下的凝血综合状态,﹤-3:低凝,-3﹤正常﹤+3,﹥+3:高凝。

此参数对于血栓和出血的预测具有相当的意义。

此参数对于血栓和出血的预测具有相当的意义。

6 TPI 血小板动力学指数,TPI=EMX/K,及相对弹性切应力系数除以凝块形成的动力学特性,EMX是最大振幅是的E。

EMX=(100×MA)/(100-MA),K的单描述病人枸橼酸化全血的血凝情况,正常6-15、低凝﹤6,高凝状态﹥15。

GC-MS操作手册

GC-MS操作手册

選用前面注射器
選用後面注射器 選用前、後面注射器
(注射量設定) (注射針體積設定) (注射前之清洗) (注射後之清洗)
為其他相關之設 定,㆘頁詳述
表示選用部分
以樣品於注射前洗 針次數設定 以溶劑 A 於注射後 洗針次數設定 於注射前以樣品㆖ ㆘抽取次數設定
Filament
:1
BasePeak should be 69 or 219
Position of mass 69
Position of mass 219
Position of mass 502
Position of isotope mass 70
Position of isotope mass 220
C. 手動檢查儀器狀況(Diagnostics) ㆒般而言,在開完機抽真空(Pump Down)時,最難判斷何時可做 Tune 及儀
器況態是否可 Run Sample,除從 Ion Gauge 可見其真空度(<5.0 *10-5mtorr)或 Foreline Pressure 外,但是乎很難判斷是否有漏氣現象。而 Chemstation 在其軟體 ㆗可提供自我診斷功能(Diagnostics),能簡單判斷系統㆗是否有漏氣及污染,以 ㆘便簡單介紹如何使用。 1. 於 Instrument Control ㆗之 View 選取 Diagnostics/Vaccum Control。
執行即可 2. 待數分鐘後,會自動產生 T une Report,即完成 Tune。
M-8 GGGEEETTT
M-9 GGGEEETTT
B. 儀器狀態之確認(Tune Evaluation)
1. 於 GC/MSD 軟 體 ㆗ 之 Instrument Control 畫 面 , 選 取 Qualify\ Tune Evaluation 執行即可

5CFMS血栓弹力图检验采血要求-给采血处参考

5CFMS血栓弹力图检验采血要求-给采血处参考
栓弹力图检测项目及送检血样要求
检测项目名称 检测目的
采血要求
采血管
CFMS 血栓弹力图 普通杯检测
凝血全貌
枸橼酸钠抗凝全血 ≥2ml(按刻度抽!)
蓝盖
CFMS 血栓弹力图 肝素酶杯检测
肝素监测
枸橼酸钠抗凝全血 ≥2ml(按刻度抽!)
蓝盖
枸橼酸钠抗凝全血
CFMS 血栓弹力图 抗血小板药物 ≥2ml(按刻度抽!)
血小板图检测
治疗药效
肝素抗凝全血
≥2ml(按刻度抽!)
蓝盖 绿盖
检测杯 普通杯 普通杯 肝素酶杯 普通杯 试剂 A/B/C 杯
检测所用试剂 试剂 1、2 试剂 1、2 试剂 1、2 试剂 1、2
试剂 A/B/C 水
所需通道数 1 个通道 2 个通道
3 或 4 个通道
说明: (1)枸橼酸抗凝采血管:蓝盖,枸橼酸浓度为 0.109M 或 3.2%,推荐用 BD 公司的。 (2)肝素抗凝采血管:绿盖,每管含有>14.5IU/ml 肝素,推荐用 BD 公司的。 (3)请严格按照采血管的刻度抽血,不可多,也不可少!

CFX用户手册-User Fortran

CFX用户手册-User Fortran

User FortranIntroductionThe chapter discusses:•User CEL Functions and Routines•User Junction Box Routines•Shared Libraries•User Parameters•Utility Routines for User Functions•ANSYS CFX Memory Management System (MMS)•User CEL Examples•User Junction Box Examples•Using CFX-4 Routines in ANSYS CFXTo allow you to add additional features and physical models to ANSYS CFX, you can write your own subroutines in Fortran and have the ANSYS CFX-Solver call these routines through a source code interface. You may also wish to implement customized physical models which would never be available in ANSYS CFX due to confidentiality considerations.ANSYS CFX supports user subroutines written in Fortran 77 or Fortran 90.A list of supported compilers for each platform is available. Using Fortran 77 whenever possible is recommended.Two different kinds of user routines are available in ANSYS CFX:CFX可以利用两种不同的方式应用用户子程序•User defined CEL (CFX Expression Language) functions can be used within a CEL expression, following the standard CEL rules. Fordetails, see User CEL Functions and Routines.用户定义CEL(User defined CEL)函数可以在CEL表达式中使用•Junction box routines can be used at several places in the ANSYSCFX-Solver to execute user code. For details, see User Junction Box Routines.Junction box routines可以在ANSYS CFX-Solver中执行用户代码The following tasks can be accomplished with user subroutines in ANSYS CFX:通过用户程序可以在CFX中完成以下内容:•Input of user data (e.g., data required for profile boundary conditions or externally generated sources).•User-specified boundary conditions (e.g., profile boundary conditions).•User-specified initial conditions (e.g., externally generated flow fields, random distribution or disturbance of existing solutions).•User-specified source terms (e.g., externally generated body forces or general additional source terms used to implement newphysical models).•Junction box routines called every timestep which acts as a general interface between the ANSYS CFX-Solver and other software (e.g., structure mechanic codes). Junction boxes also offer an interface for advanced monitoring and solution output.•User particle routines are used to specify sources of momentum, heat and mass transfer, and can also be used to specify injection regions for particles. The structure of particle user routines is the same.An example of this functionality is available.For details, see Structure of User CEL Functions.For details, see Particle User Sources.For details, see User Defined.Note that ANSYS CFX includes features such as advanced monitoring of solution variables or global values and extended CEL functionality, which may reduce your need for user subroutines.To use junction box routines, you will need to be familiar with the ANSYS CFX MMS (Memory Management System) to set up and pass around user data for access in any subroutine. For details, see ANSYS CFX Memory Management System (MMS).Shared libraries allow subroutines to be re-used without recompilation for successive ANSYS CFX-Solver runs or even for different applications. The location of a shared library is specified in ANSYS CFX-Pre. During execution of the ANSYS CFX-Solver, the user subroutines are loaded from the specified shared libraries. For details, see Shared Libraries.User CEL Functions and RoutinesUser CEL functions allow you to create your own functions in addition to the predefined CEL functions (e.g., sin, cos, step, etc.). You can then use these functions in any expression where a CEL function can be used.A user CEL function passes an argument list to a subroutine that you have written, and then uses the returned values from the subroutine to set values for the quantity of interest. The figure below demonstrates the concept.All variables that are available for use in standard CEL expressions are also available for use in User CEL Expressions. A list of these variablesis available. For details, see Variables Available for use in CEL Expressions.Details on creating user CEL functions in ANSYS CFX-Pre and defining quantities via an expression with an argument list are available.•For details, see User Routine Details View.•For details, see User Functions.Details on creating shared libraries and compiling subroutines are available. For details, see Shared Libraries.Examples of using user CEL functions are available. For details, see User CEL Examples.Structure of User CEL FunctionsA User Fortran file may contain several user routines that can be called from the ANSYS CFX-Solver, as well as any secondary routines that are called only from other routines in this file.In addition to any comments and declarations that you may wish to add, the basic structure of a user CEL function is:#include "cfx5ext.h"dllexport(<callingname>)SUBROUTINE <callingname>(& NLOC, NRET, NARG, RET, ARGS, CRESLT, CZ,DZ,IZ,LZ,RZ ) CINTEGER NLOC,NARG,NRETCHARACTER CRESLT*(*)REAL ARGS(NLOC,NARG), RET(NLOC,NRET)CINTEGER IZ(*)CHARACTER CZ(*)*(1)DOUBLE PRECISION DZ(*)LOGICAL LZ(*)REAL RZ(*)C.... executable statementsENDThe dllexport() macro is used to ensure that a calling name is known externally on those platforms that require it for successful runtimelinking. The macro is defined in an include file so #include "cfx5ext.h" should be the first line of the Fortran file.One dllexport() should be specified for every routine that the ANSYS CFX-Solver can call in the Fortran file.Each dllexport() must precede the SUBROUTINE statement that it refers to and must start in column 1. The argument of the dllexport macro should be the name of the subroutine in lower case and should not contain spaces.User CEL functions have a fixed argument list which contains the following data fields:•NLOC: Number of locations in space over which the calculations have to be performed.•NARG: Number of arguments passed to the function.•ARGS(1:NLOC,1:NARG): Arguments passed to the function (at each point in space).•NRET: Number of return variables. This is always 1 in ANSYS CFX, but is included to allow future extensions.•RET(1:NLOC,1:NRET): Return variables (at each point in space).•CZ(*), DZ(*), IZ(*), LZ(*), RZ(*): CHARACTER, DOUBLE PRECISION, INTEGER, LOGICAL and REAL stacks.The length (NLOC) of the arguments (ARGS) and the return value (RET) of user CEL functions is determined by the locale for which the routine is called. For example, for a boundary element group, NLOC is the number of faces in the group, and for vertices, NLOC is the number of vertices in the current zone.Note that, in general, your user CEL function will be called several times during each iteration and the value of NLOC will be different for each call. This is because the ANSYS CFX-Solver will split the specified region (e.g., a boundary condition region) into a number of smaller ‘pieces' and call your function for each piece. Your user subroutine should be coded to deal with this.The stacks are required if the information specified on the right side of the CEL expression (e.g., B*C and D in A = UR(B*C, D)) is not sufficient to calculate A. It might be necessary to pick up additional data (e.g., user input data, data at other locales, gradients, etc). For details, see Utility Routines for User Functions. This data is accessed from the ANSYS CFX Memory Management System and requires the global stacks. Therefore, the global stacks are added to the argument list. For details, see ANSYS CFX Memory Management System (MMS).A template user CEL function Fortran file named ucf_template.F can be found in <CFXROOT>/examples/.Note that all strings used in User Fortran are case sensitive.User CEL Function UnitsOn entry into a user CEL function routine, the arguments are automatically converted into the units specified in the Argument List list in the User Function Editor (labelled Argument List in the definition for the function in the CCL file LIBRARY section).On exit, the results are automatically converted from the Result Units into the solution units used by the ANSYS CFX-Solver.This ability to choose the working units for the routine with automatic conversion may be useful for creating interfaces between the ANSYS CFX-Solver and third-party data or applications.User CEL Example 1: User Defined Momentum SourceProblem SetupA common application of user CEL functions is the specification of user defined source terms. In the following example, a constant source term for the y-component of the momentum equation has to be applied on two rectangular boxes characterized by their extension in the x and y coordinate direction.Creating the User CEL FunctionAdditional information on creating user CEL functions in ANSYS CFX-Pre is available. For details, see User Functions.First, you should first create a user routine with the following settings: •Routine Name: UserSourceRoutine•Option: User CEL Function•Calling Name: user_source•Library Name: MomentumSource1•Library Path: /home/cfxuser/shared_librariesNext, you should create a User Function with the following settings: •Function Name: UserSource•Option: User Function•User Routine Name:•Argument List: [m], [m]•Result Units: [kg m^-2 s^-2]In this example, the compiled code for the user subroutine MomentumSource1.F is stored in the shared library libMomentumSource1.so (the prefix and suffix may vary depending on your platform), which can be found under the /home/cfxuser/shared_libraries/<architecture> directory. If there is a problem linking the shared library to the ANSYS CFX-Solver, you can check that it has been created, but you will usually not need to know about this library.The new user CEL function can now be used to set the momentum source components within the subdomain as follows:•Momentum x-comp: 0.0•Momentum y-comp: UserSource(X,Y)•Momentum z-comp: 0.0These values are set on the Subdomain Sources form. For details, see Sources Tab.User Fortran RoutineSource terms for the momentum equations can be specified in CEL for a given subdomain. Since the user CEL routine defined the extent of the source, the source subdomain can be defined to cover the entire flow domain. The subroutine was developed from the template routine ucf_template.F available in <CFXROOT>/examples/. Note that some commented sections ofthe routine have not been included here. The routine MomentumSource1.F has the following form:#include "cfx5ext.h"dllexport(user_source)SUBROUTINE USER_SOURCE (& NLOC,NRET,NARG,RET,ARGS,CRESLT,CZ,DZ,IZ,LZ,RZ)CC .....CC ------------------------------C Argument listC ------------------------------CINTEGER NLOC, NRET, NARGCHARACTER CRESLT*(*)REAL RET(1:NLOC,1:NRET), ARGS(1:NLOC,1:NARG)CINTEGER IZ(*)CHARACTER CZ(*)*(1)DOUBLE PRECISION DZ(*)LOGICAL LZ(*)REAL RZ(*)CC .....CC ------------------------------C Executable statementsC ------------------------------CC---------------------------------------------------------C SOURCE = RET(1:NLOC,1)C X = ARGS(1:NLOC,1)C Y = ARGS(1:NLOC,2)C---------------------------------------------------------CC---- Low level user routineCALL USER_SOURCE_SUB (NLOC,RET(1,1),ARGS(1,1),ARGS(1,2)) CCRESLT = 'GOOD'ENDSUBROUTINE USER_SOURCE_SUB (NLOC,SOURCE,X,Y)CC .....CC ------------------------------C Local VariablesC ------------------------------INTEGER NLOC, ILOCREAL SOURCE(NLOC), X(NLOC), Y(NLOC)C---------------------------------------------------------C - 0.5<x<1.5 and 1.25<y<1.75 --> SOURCE = 1000.0C - 3.5<x<4.5 and 1.25<y<1.75 --> SOURCE = -1000.0C---------------------------------------------------------C ---------------------------C Executable StatementsC ---------------------------DO ILOC=1,NLOCSOURCE(ILOC) = 0.0IF (X(ILOC).GE.0.5 .AND. X(ILOC).LE.1.5 .AND.& Y(ILOC).GE.1.25 .AND. Y(ILOC).LE.1.75) THENSOURCE(ILOC) = 1000.0ELSE IF (X(ILOC).GE.3.5 .AND. X(ILOC).LE.4.5 .AND.& Y(ILOC).GE.1.25 .AND. Y(ILOC).LE.1.75) THENSOURCE(ILOC) = -1000.0END IFEND DOCENDUser CEL Example 2: Using Gradients for an Additional Variable SourceFor some applications, the source terms for the transport equations might depend on local gradients. Gradients are currently not supported directly within CEL. However, gradients of most variables can still be accessed in CEL expressions through the use of user CEL functions. This is achieved by calling the utility USER_GETVAR with the ‘Gradient' operator attached to the variable name.The following example shows the use of a source term depending on gradientsof one additional variable, , in the transport equation of another additional variable,.Equation 1. Equation 2.For this demonstration density is constant, the flow is uniform andis a simple algebraic variable:Equation 3.so that the solution along a streamline can be trivially verified as:Equation 4. where is the distance from the inlet and is the flow speed.A user CEL function is given the coefficientas an argument and computes the whole of the source term, . Thevariables andhave dimensions of length, so their gradients are therefore dimensionless. The coefficienthas the same dimensions as the source term, which are those of density times velocity.Problem SetupCreating the Additional VariablesBefore creating a domain define two additional variables: •Create an additional variable called phi1 of Type Unspecified with Units of [m]•Create an additional variable called phi2 of Type Specific with Units of [m]Creating the DomainCreate a domain that includes both additional variables phi1 and phi2:•Declare phi1 of Type Algebraic, and type in the expressionto define it•Declare phi2 of Type Transport Equation. Do not set a Kinematic DiffusivityCreate a domain that includes both additional variables, solved using a transport equation. Do not set a kinematic diffusivity.Creating the User CEL Routine and FunctionIn ANSYS CFX-Pre, you should create a User Routine and then a User Function. For details, see User Routine Details View. Additional information on creating User CEL Function in ANSYS CFX-Pre is available. For details, see User Functions.The User Routine takes the following form:•Routine Name: UserSource2Routine•Option: User CEL Function•Calling Name: user_source2•Library Name: AdVarSource•Library Path: /home/cfxuser/shared_librariesand the User Function is set up as follows:•Function Name: UserSource2•Option: User Function•User Routine Name: UserSource2Routine•Argument List: [kg m^-2 s^-1]•Result Units: [kg m^-2 s^-1]In this example, the user subroutine AdVarSource.F is stored in the shared library libAdVarSource.so (the prefix and suffix may vary depending on your platform) which can be found under the/home/cfxuser/shared_libraries/<architecture> directory.Defining the Source TermThe new User CEL Function can now be used to set the additional variable source within the subdomain as follows:•Create a subdomain and set the Additional Variable Source Value as: UserSource2(1000 [kg m^-2 s^-1]).This is accessed from the Subdomain Sources form. For details, see Sources Tab.The coefficient a in the non-linear source term has been set to a constant value of 1000 [kg m^-2 s^-1].User Fortran RoutineThe subroutine was developed from the template routine ucf_template.F available in <CFXROOT>/examples/. Note that some commented sections of the routine have not been included here. This routine contains a call to USER_GETVAR to access variable data. For details, see Utility Routines for User Functions. Note that USER_GETVAR requires the fluid prefix for user-supplied variable names. For a one-off application it is possible simply to call USER_GETVAR with an assumed name for the working fluid, e.g., for a single phase problem using ‘Water':CALL USER_GETVAR (‘Water,phi1.Gradient', CRESLT,pGRAD_PHI,& CZ,DZ,IZ,LZ,RZ)However, to make it applicable in general, the example given here uses USER_ASSEMBLE_INFO to extract the equation and principal names, and GET_PHASE_FROM_VAR followed by CONVERT_NAME_S2U to extract the user's phase name. Hence, it works on any problem, independently of the choice of fluids.•USER_ASSEMBLE_INFO•GET_PHASE_FROM_VAR•CONVERT_NAME_S2UThe routine AdVarSource.F has the following form:#include "cfx5ext.h"dllexport(user_source2)SUBROUTINE USER_SOURCE2 (& NLOC,NRET,NARG,RET,ARGS,CRESLT,CZ,DZ,IZ,LZ,RZ)C--------------------C DetailsC --------------------C ARGS(1:NLOC,1) holds parameter 'a' evaluated at all locations C RET(1:NLOC,1) will hold return resultC ------------------------------C Preprocessor includesC ------------------------------#include "MMS.h"#include "stack_point.h"C ------------------------------C Argument listC ------------------------------INTEGER NLOC,NARG,NRETCHARACTER CRESLT*(*)REAL ARGS(NLOC,NARG), RET(NLOC,NRET)INTEGER IZ(*)CHARACTER CZ(*)*(1)DOUBLE PRECISION DZ(*)LOGICAL LZ(*)REAL RZ(*)C ------------------------------C External routinesC ------------------------------INTEGER LENACTEXTERNAL LENACTC ------------------------------C Local VariablesC ------------------------------CHARACTER*(MXDNAM) ACTION,CGROUP,CEQN,CTERM,CPVAR, & CLVAR,CPATCH,CRESLOC,CPHASECHARACTER*120 User_Phase_Name, User_Variable_NameC ------------------------------C Stack pointersC ------------------------------__stack_point__ pGRAD_PHIC ---------------------------C Executable StatementsC ---------------------------C Initialise success flag.CRESLT = 'GOOD'C Initialise RET to zero.CALL SET_A_0 ( RET, NLOC*NRET )CC---- Determine user's phase name for use in USER_GETVARCC Use USER_ASSEMBLE_INFO to determine solver equation and principal C variable names CEQN, CPVAR.ACTION = 'GET'CALL USER_ASSEMBLE_INFO (ACTION,CGROUP,CEQN,CTERM,CPVAR, & CLVAR,CPATCH,CRESLOC,& CZ,DZ,IZ,LZ,RZ)IF (CRESLOC.NE.'GOOD' .AND. CRESLOC.NE.'SOME') THENCRESLT = 'FAIL'GO TO 999ENDIFC Extract phase name from principal variableCALL GET_PHASE_FROM_VAR (CPVAR, CPHASE)C Convert solver phase name to user phase name.CALL CONVERT_NAME_S2U('Phase',CPHASE,' ',User_Phase_Name, & CRESLT, CZ,DZ,IZ,LZ,RZ)IF (CRESLT .NE. 'GOOD') GO TO 999CC---- Obtain grad(phi1)C in array shape GRAD_PHI(1:3,1:NLOC) located at RZ(pGRAD_PHI)CUser_Variable_Name =User_Phase_Name(1:LENACT(User_Phase_Name))& // '.phi1.Gradient'CALL USER_GETVAR (User_Variable_Name, CRESLT, pGRAD_PHI, & CZ,DZ,IZ,LZ,RZ)IF (CRESLT .NE. 'GOOD') GO TO 999CC---- Calculate source expression in RET(1:NLOC,1)CCALL USER_SOURCE_CAL( RET(1,1), ARGS(1,1), RZ(pGRAD_PHI), NLOC )C999 CONTINUECC Send any diagnostics or stop requests via master processorIF (CRESLT .NE. 'GOOD') THENCALL MESAGE( 'BUFF', 'USER_SOURCE2 returned error:' )CALL MESAGE( 'BUFF', CRESLT )CALL MESAGE( 'BUFF-OUT', ' ' )END IFCC==================================================================== ===ENDSUBROUTINE USER_SOURCE_CAL (SOURCE, A, GRAD_PHI, NLOC)CC Purpose: Source = a * grad(phi).grad(phi)CC InputsINTEGER NLOCREAL A(NLOC), GRAD_PHI(3,NLOC)C OutputsREAL SOURCE(NLOC)C LocalsINTEGER ILOCCDO ILOC = 1, NLOCSOURCE(ILOC) = A(ILOC) * ( GRAD_PHI(1,ILOC)**2 & + GRAD_PHI(2,ILOC)**2& + GRAD_PHI(3,ILOC)**2 )END DOCENDUser CEL Example 3: Integrated Quantity Boundary ConditionsProblem SetupOne application of the integrated quantity functions would be to set a boundary inlet temperature based on some average outflow values from a domain. In this way, you could set up a boundary condition, which acts like a thermostat control for a room. This requires the use of a User CEL Function to set the inflow temperature, and one of the arguments, which is passed to the subroutine, is the average outflow temperature.Creating the User FunctionFurther information on creating User CEL Function in ANSYS CFX-Pre is available. For details, see User Functions.First, you should first create a User Routine with the following settings: •Routine Name: INLET T•Option: User CEL Function•Calling Name: inlet_t•Library Name: InletTemperature•Library Path: /home/cfxuser/shared_librariesNext, you should create a User Function with the following settings.•Function Name: INLET T•User Routine Name: INLET T•Argument List: [K], [Pa]•Result Units: [K]In this example, the user subroutine InletTemperature.F is stored in the shared library libInletTemperature.so (the prefix and suffix may vary depending on your platform) which can be found under the/home/cfxuser/shared_libraries/<architecture> directory. The new User CEL Function can now be used to set the feedback loop for the inlet temperature as follows:•On the Inlet Boundary Condition Values form set the Heat Transfer option to Static Temperature and enter the expression:INLET_T(areaAve(T)@Outflow,areaAve(p)@Outflow)Note that the integrated quantity is passed into the inlet temperature function as an argument. The ANSYS CFX-Solver recalculates these values during the coefficient loop so that the value is always up to date. For details, see Boundary Details: Inlet.User Fortran RoutineThe routine InletTemperature.F has the following form (note that this is not a complete routine, the purpose of this example is to demonstrate the quantities that can be passed to the subroutine).#include "cfx5ext.h"dllexport(inlet_t)SUBROUTINE INLET_T(NLOC,NRET,NARG,RET,ARGS,CRESLT,CZ,DZ,IZ,LZ,RZ)CC ------------------------------C Argument listC ------------------------------INTEGER NLOC, NRET, NARGCHARACTER CRESLT*(*)REAL RET(1:NLOC,1:NRET), ARGS(1:NLOC,1:NARG)CC------------------------------------------------------------------C ‘Static Temperature‘ is stored in RET(1:NLOC,1)C ‘areaAve(T@Outflow)‘ is stored in ARGS(1:NLOC,1)C ‘areaAve(p@Outflow)‘ is stored in ARGS(1:NLOC,2)C------------------------------------------------------------------CC ------------------------------C Executable statementsC ------------------------------C...END。

MS中文数据手册

MS中文数据手册
●调节控制位MOD0到MOD4选择在32个DCO时钟周期的周期里f(DCO+1)被使用多少次,在剩余的时钟周期里使用频率f(DCO).这个频率是一个如下所示的平均值:
晶振,XIN,XOUT
注释:1.晶体两端都需要连接电容,电容值由晶体制造商规定。
2.仅当使用一个外部逻辑水平时钟源时适用,使用晶体或谐振器时不适用。
注释:x为P2口的位标识符6到7,在元件上没有与这两位对应的外部引脚
注释:将P2口未连接的两位6和7用作中断标志是一种良好的应用方法,除了软件其他信号不会影响到这两个中断标志,从而它们被用作软件中断。
JTAG熔丝检查模式
上电复位(POR)后第一次使用JTAG口,在TEST端有熔丝的MSP430设备有一个熔丝检查模式,可以检测熔丝的通断。该模式有效时,如果熔丝没烧断,将有一个熔丝检查电流Itf(电压3V时1mA,电压5V时2.5mA)从TEST引脚流到地,必须防止意外激活熔丝检查模式,以免增加系统功耗。
可选电阻,独立可编程(参阅注释1)
注释1:在标准OTP或者EPROM设备MSP430P112或MSP430E112中,用于上拉或下拉的可选电阻R optx 是不可编程的。
从低电压模式唤醒响应时间(LPMx)
注释1:这个参数是保持程序存储器(RAM)中数据不丢失所需的最小电压,在这个电压下,程序不能执行。
2.数字端口引脚的泄露电流要单个测量。端口引脚必须选择为输入并且没有选择上拉或下拉电阻。
输出 P2x,Tax
输出P1口和P2口
注释:1.对于所有输出组合,最大总电流I OH(max)和I OL(max)不能超过±12mA,以便输出电压满足输出电压下降标准。
2.对于所有输出组合,最大总电流I OH(max)和I OL(max)不能超过±36mA,以便输出电压满足输出电压下降标准。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

血栓弹力图仪北京乐普科技技术服务部目录一、血栓弹力图仪简介 ......................................................................................................- 1 -1.1血栓弹力图仪 ................................................................................................................- 1 -1.2血栓弹力图仪的检测原理 ............................................................................................- 1 -1.3 CFMS血栓弹力图产品类型 ..........................................................................................- 2 -1.4结果分析 ........................................................................................................................- 3 -1.4.1普通检测杯 .................................................................................................................- 3 -1.4.2.肝素酶检测杯 .............................................................................................................- 4 -1.4.3.血小板激活途径杯检测 .............................................................................................- 4 -二、凝血及血栓 ..................................................................................................................- 6 -2.1凝血瀑布学 ....................................................................................................................- 6 -2.2血栓的形成 ....................................................................................................................- 6 -2.2.1血栓形成因素 .............................................................................................................- 7 -2.2.2血栓形成病因 .............................................................................................................- 7 -2.2.3常见的抗栓溶栓治疗 .................................................................................................- 7 -三、出血 ..............................................................................................................................- 8 -3.1出血常见病理因素 ........................................................................................................- 8 -3.2常见出血治疗 ................................................................................................................- 9 -四、常见检测方法和CFMS的区别 ...................................................................................- 9 -4.1常规出凝血检查 ............................................................................................................- 9 -4.2出凝血项目意义及正常值 ......................................................................................... - 10 -4.3常见疾病实验室检查与CFMS凝血动态监测仪比较: .......................................... - 12 -五、血小板聚集过程及临床常用抗血小板药物............................................................ - 14 -5.1血小板聚集过程: ..................................................................................................... - 14 -5.2临床常用抗血小板药物作用机制: ......................................................................... - 15 -5.3药物对血栓弹力图的影响: ..................................................................................... - 16 -六、CFMS的临床应用 ......................................................................................................- 17 -七、CFMS操作注意事项及流程 ..................................................................................... - 21 -八、CFMS常见问题及解决方案 ..................................................................................... - 24 -8.1软件常见问题 ............................................................................................................. - 24 -8.1.1登陆 .......................................................................................................................... - 24 -8.1.2维护 .......................................................................................................................... - 24 -8.2仪器常见故障 ..............................................................................................................- 26 -8.2.1经常性R值偏小 .......................................................................................................- 26 -8.2.2经常性R值偏大 .......................................................................................................- 26 -8.2.3图形有锯齿状或矩形图 ........................................................................................... - 27 -8.2.4MA值偏小 ................................................................................................................. - 27 -8.2.5图形不出图或单一直线 .......................................................................................... - 28 -8.2.6温度异常 .................................................................................................................. - 28 -8.2.7水平调节问题 .......................................................................................................... - 28 -8.3常见错误图形 ............................................................................................................. - 29 -九、案例分享 ................................................................................................................... - 33 -十、相关文献 ................................................................................................................... - 40 -十一、附件 ....................................................................................................................... - 43 -一、血栓弹力图仪简介1.1血栓弹力图仪(Thrombelastography)血栓弹力图是一种从整个动态过程来监测凝血过程的分析仪。

相关文档
最新文档