2018-2019深圳市小学毕业数学总复习小升初模拟训练试卷24-26(共3套)附详细试题答案
2018-2019深圳市小学毕业数学总复习小升初模拟训练试卷3-5(共3套)附详细试题答案

小升初数学综合模拟试卷3一、填空题:1.用简便方法计算下列各题:(2)1997×19961996-1996×19971997=______;(3)100+99-98-97+…+4+3-2-1=______.2.右面算式中A代表______,B代表______,C代表______,D代表______(A、B、C、D各代表一个数字,且互不相同).3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟______岁.4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗______面,黄旗______面.5.在乘积1×2×3×…×98×99×100中,末尾有______个零.6.如图中,能看到的方砖有______块,看不到的方砖有______块.7.右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考______次满分.9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,……这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.二、解答题:1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸(1)若P点在岸上,则A点在岸上还是水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点B,他脱鞋的次数与穿鞋的次数和是奇数,那么B点在岸上还是水中?说明理由.2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,简单说明理由.若办得到,写出正方框里的最大数和最小数.3.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.答案一、填空题:1.(1)(24)(2)(0)原式=1997×(19960000+1996)-1996×(19970000+1997)=1997×19960000+1997×1996-1996×19970000-1996×1997=0(3)(100)原式=(100-98)+(99-97)+…+(4-2)+(3-1)=2×50=1002.(1、0、9、8)由于被减数的千位是A,而减数与差的千位是0,所以A=1,“ABCD”至少是“ABC”的10倍,所以“CDC”至少是ABC的9倍.于是C=9.再从个位数字看出D=8,十位数字B=0.3.(28)(65-9)÷2=284.(50、150)40O÷8=50,8÷2-1=33×50=1505.(24)由2×5=10,所以要计算末尾的零只需数清前100个自然数中含质因数2和5的个数,而其中2的个数远远大于5的个数,所以含5的因数个数等于末尾零的个数.6.(36,55)由图观察发现:第一层能看到:1块,第二层能看到:2×2-1=3块,第三层:3×2-1=5块.上面六层共能看到方砖:1+3+5+7+9+11=36块.而上面六层共有:1+4+9+16+25+36=91块,所以看不到的方砖有91-36=55块.7.(25)8.(5)考虑已失分情况。
2018年深圳市小学毕业小升初模拟数学试题(共6套)附详细答案附答案

小升初数学试卷58一、填空题:(每题2分,共20分)1、6公顷80平方米=________平方米,42毫升=________立方厘米=________立方分米,80分=________时.2、奥运会每4年举办一次.北京奥运会是第29届,那么第24届是在________年举办的.3、在横线里填写出分母都小于12的异分母最简分数.=________+________=________+________.4、一个圆柱形的水桶,里面盛有18升水,正好盛满,如果把一块与水桶等底等高的圆锥形实心木块完全浸入水中,这时桶内还有________升水.5、如果a= b,那么a与b成________比例,如果= ,那么x与y成________比例.6、花店里有两种玫瑰花,3元可以买4枝红玫瑰,4元可以买3枝黄玫瑰,红玫瑰与黄玫瑰的单价的最简整数比是________.7、一个四位数4AA1能被3整除,A=________.8、如图,两个这样的三角形可以拼成一个大三角形,拼成后的三角形的三个内角的度数比是________或者________.9、如图,把一张三角形的纸如图折叠,面积减少.已知阴影部分的面积是50平方厘米,则这张三角形纸的面积是________平方厘米.10、有一串数,,,,,,,,,,,,,,,,…,这串数从左开始数第________个分数是.二、选择题:(每题2分,共16分)11、甲、乙两堆煤同样重,甲堆运走,乙堆运走吨,甲、乙两堆剩下的煤的重量相比较()A、甲堆重B、乙堆重C、一样重D、无法判断12、下面能较为准确地估算12.98×7.09的积的算式是()A、12×7B、13×7C、12×8D、13×813、已知a能整除19,那么a()A、只能是19B、是1或19C、是19的倍数D、一定是3814、甲数除以乙数的商是5,余数是3,若甲、乙两数同时扩大10倍,那么余数()A、不变B、是30C、是0.3D、是30015、小圆半径与大圆直径之比为1:4,小圆面积与大圆面积比为()A、1:2B、1:4C、1:8D、1:1616、下面的方框架中,()具有不易变形的特性.A、B、C、D、17、在下面形状的硬纸片中,把它按照虚线折叠,能折成一个正方体的是()A、B、C、D、18、一个长9厘米、宽6厘米、高3厘米的长方体,切割成3个体积相等的长方体,表面积最大可增加()A、36平方厘米B、72平方厘米C、108平方厘米D、216平方厘米三、计算题:(共24分)19、计算下列各题,能简算的要简算:(1)69.58﹣17.5+13.42﹣2.5(2)×(×19﹣)(3)+ + +(4)[1﹣(﹣)]÷ .20、求未知数x的值:(1):x=15%:0.18(2)x﹣x﹣5=18.四、动手操作题:21、如图(1),一个长方形纸条从正方形的左边开始以每秒2厘米的速度沿水平方向向右行驶,如图(2)是运动过程中长方形纸条和正方形重叠部分的面积与运动时间的关系图.(1)运动4秒后,重叠部分的面积是多少平方厘米?(2)正方形的边长是多少厘米?(3)在图(2)的空格内填入正确的时间.五、应用题:(第1题~第4题每题6分,第5题8分,共32分)22、泰州地区进入高温以来,空调销售火爆,下面是两商场的促销信息:文峰大世界:满500元送80元.五星电器:打八五折销售.“新科”空调两商场的挂牌价均为每台2000元;“格力”空调两商场的挂牌价均为每台2470元.问题:如果你去买空调,在通过计算比较一下,买哪种品牌的空调到哪家商场比较合算?23、两辆汽车同时从A地出发,沿一条公路开往B地.甲车比乙车每小时多行5千米,甲车比乙车早小时到达途中的C地,当乙车到达C地时,甲车正好到达B地.已知C地到B地的公路长30千米.求A、B 两地之间相距多少千米?24、盒子里有两种不同颜色的棋子,黑子颗数的等于白子颗数的.已知黑子颗数比白子颗数多42颗,两种棋子各有多少颗?25、一个长方体的木块,它的所有棱长之和为108厘米,它的长、宽、高之比为4:3:2.现在要将这个长方体削成一个体积最大的圆柱体,这个圆柱体体积是多少立方厘米?26、甲、乙、丙三人合作完成一项工程,共得报酬1800元,三人完成这项工程的情况是:甲、乙合作8天完成工程的,接着乙、丙又合作2天,完成余下的,然后三人合作5天完成了这项工程,按劳付酬,各应得报酬多少元?答案解析部分一、<b >填空题:(每题2</b><b >分,共20</b><b>分)</b>1、【答案】60080;42;0.042;1【考点】时、分、秒及其关系、单位换算与计算,面积单位间的进率及单位换算,体积、容积进率及单位换算【解析】【解答】解:(1)6公顷80平方米=60080平方米;(2)42毫升=42立方厘米=0.042立方分米(3)80分=时.故答案为:60080,42,0.042,.【分析】(1)把6公顷乘进率10000化成80000平方米再与80平方米相加.(2)立方厘米与毫升是等量关系二者互化数值不变;低级单位立方厘米化高级单位立方分米除以进率1000.(3)低级单位分化高级单位时除以进率60.2、【答案】1988【考点】日期和时间的推算【解析】【解答】解:29﹣24=5(届),4×5=20(年),2008﹣20=1988(年).答:第24届汉城奥运会是在1988年举办的.故答案为:1988.【分析】要求第24届奥运会是在那年举办,要先求出24届与29届相差几届,根据每4年举办一次,相差几届,就是几个4年,然后用2008减去相差的时间,即得到24届的举办时间.3、【答案】;;;【考点】最简分数【解析】【解答】解:故答案为:、、、.【分析】根据要求,把写成分母都小于12的异分母最简分数,把分子11写成9+2,变成,然后约分即可,再把11写成8+3,变成进行约分.4、【答案】12【考点】关于圆锥的应用题【解析】【解答】解:18×(1﹣)=18×=12(升)答:这时桶内还有12升水.【分析】把一块与水桶等底等高的圆锥形实心木块完全浸入水中,说明圆锥占据的体积是里面水的体积的,那桶内的水是原来的(1﹣),根据分数乘法的意义,列式解答即可.5、【答案】正;反【考点】正比例和反比例的意义【解析】【解答】解:因为a=b,所以a:b= (一定)是比值一定;所以a与b成正比例;因为=,所以xy=15×8=120(一定)所以x与y成反比例.故答案为:正,反.【分析】判断两个相关联的量成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例,由此逐一分析即可解答.6、【答案】9:16【考点】求比值和化简比【解析】【解答】解:红玫瑰:3÷4=0.75(元)黄玫瑰:4÷3=(元)0.75:=(0.75×12):(×12)=9:16;答:甲、乙两种铅笔的单价的最简整数比是9:16.故答案为:9:16.【分析】根据“总价÷数量=单价”,分别求出红玫瑰与黄玫瑰的单价,再作比化简即可.7、【答案】2或5或8【考点】2、3、5的倍数特征【解析】【解答】解:当和为9时:4+A+A+1=9,A=2,当和为12时:4+A+A+1=12,A=3.5,当和为15时:4+A+A+1=15,A=5,当和为18时:4+A+A+1=18,A=6.5,当和为21时:4+A+A+1=121,A=8.故答案为:2或5或8.【分析】能被3整除,说明各个数位上的数相加的和能被3整除,4+A+A+1的和一定是3的倍数,因为A 是一个数字,只能是0、1、2、3、…、9中的某一个整数,最大值只能是9.若A=9,那么4+A+A+1=23,23<24,那么它们的数字和可能是6,9,12,15,18,21,当和为6时,A=0.5不行;当和等于9时,A=2,可以;当和为12时,A=3.5不行;当和为15时,A=5可以;当和为18时,A=6.5不行;当和为21时,A 等于8可以.8、【答案】1:1:1;1:1:4【考点】图形的拼组【解析】【解答】解:(1)当以长直角边为公共边时,如图它的三个角的度数的比是:(30°+30°):60°:60°=60°:60°:60°=1:1:1;(2)当以短直角边时,如图它的三个角的度数的比是30°:30°:(60°+60°)=30°:30°:120°=1:1:4.故答案位:1:1:1或者1:1:4.【分析】两个这样的三角形拼成一个大三角形的方法有两种,一种是以长直角边为公共边,另一种是以短直角边为公共边,然后根据各个角的度数,算出它们之间的比,据此解答.9、【答案】200【考点】简单图形的折叠问题【解析】【解答】解:因为折叠后面积减少,所以阴影部分的面积占三角形纸的面积的:1﹣﹣=,所以角形纸的面积:50÷=200(平方厘米).答:张三角形纸的面积是200平方厘米.故答案为:200.【分析】根据面积减少,先求出阴影部分面占三角形纸的面积的份数,即1﹣﹣=,然后用阴影部分面积除以所占的份数计算即可得解.10、【答案】111【考点】数列中的规律【解析】【解答】解:分母是11的分数一共有;2×11﹣1=21(个);从分母是1的分数到分母是11的分数一共:1+3+5+7+ (21)=(1+21)×11÷2,=22×11÷2,=121(个);还有10个分母是11的分数;121﹣10=111;是第111个数.故答案为:111.【分析】分母是1的分数有1个,分子是1;分母是2的分数有3个,分子是1,2,1;分母是3的分数有5个,分子是1,2,3,2,1;分母是4的分数有7个;分子是1,2,3,4,3,2,1.分数的个数分别是1,3,5,7…,当分母是n时有2n﹣1个分数;由此求出从分母是1的分数到分母是11的分数一共有多少个;分子是自然数,先从1增加,到和分母相同时再减少到1;所以还有10个分母是11的分数,由此求解.二、<b >选择题:(每题2</b><b >分,共16</b><b>分)</b>11、【答案】D【考点】分数的意义、读写及分类【解析】【解答】解:由于不知道这两堆煤的具体重量,所以无法确定哪个剩下的多.故选:D.【分析】由于不知道这两堆煤的具体重量,所以无法确定哪个剩下的多:如果两堆煤同重1吨,第一堆用去它的,即用了1×= 吨,即两堆煤用的同样多,则剩下的也一样多;如果两堆煤重量多于1吨,第二堆用的就多于吨,则第一堆剩下的多;如果两堆煤重量少于1吨,第二堆的就少于堆,则第二堆剩下的多;据此即可解答.12、【答案】B【考点】数的估算【解析】【解答】解:因为12.98×7.09≈13×7,所以较为准确地估算12.98×7.09的积的算式是B.故选:B.【分析】根据小数乘法的估算方法:把相乘的因数看成最接近它的整数来算.12.98最接近13,7.09最接近7,所以较为准确地估算12.98×7.09的积的算式是B.13、【答案】B【考点】整除的性质及应用【解析】【解答】解:因为a能整除19,所以19÷a的值是一个整数,因为19=1×19,所以a是1或19.故选:B.【分析】若a÷b=c,a、b、c均是整数,且b≠0,则a能被b、c整除,或者说b、c能整除a.因为a能整除19,所以19÷a的值是一个整数,所以a是1或19.14、【答案】B【考点】商的变化规律【解析】【解答】解:甲数除以乙数商是5,余数是3,如果甲数和乙数同时扩大10倍,那么商不变,仍然是5,余数与被除数和除数一样,也扩大了10倍,应是30.例如;23÷4=5…3,则230÷40=5…30.故选:B.【分析】根据商不变的性质“被除数和除数同时扩大或缩小相同的倍数(0除外),商不变”,可确定商仍然是5;但是余数变了,余数与被除数和除数一样,也扩大了10倍,由此确定余数是30.15、【答案】B【考点】比的意义,圆、圆环的面积【解析】【解答】解:设小圆半径为x,则大圆直径为4x,由题意得:小圆面积:πx2大圆面积:π(4x÷2)2=4πx2所以小圆面积与大圆面积比:πx2:4πx2=1:4故选:B.【分析】设小圆半径为x,则大圆直径为4x,利用圆的面积=πr2,分别计算得出大圆与小圆的面积即可求得它们的比.16、【答案】A【考点】三角形的特性【解析】【解答】解:因为三角形具有不易变形的特点,平行四边形具有容易变形的特点,图中只有A中有三角形,所以选择A.故选:A.【分析】根据三角形和平行四边形的知识,知道三角形具有不易变形的特点,平行四边形具有容易变形的特点,图中只有A中有三角形,据此判断.17、【答案】B【考点】正方体的展开图【解析】【解答】解:根据正方体展开图的特征,选项A、C、D不能折成正方体;选项B能折成一个正方体.故选:B.【分析】根据正方体展开图的11种特征,选项A、C、D都不是正方体展开图,不能折成正方体;只有选项B属于正方体展开图的“1﹣4﹣1”型,能折成一个正方体.18、【答案】D【考点】简单的立方体切拼问题【解析】【解答】解:9×6×4=216(平方厘米),答:表面积最大可增加216平方厘米.故选:D.【分析】根据长方体切割小长方体的特点可得:要使切割后表面积增加的最大,可以平行于原长方体的最大面,即9×6面,进行切割,这样表面积就会增加4个原长方体的最大面;据此解答.三、<b >计算题:(共24</b><b >分)</b>19、【答案】(1)解:69.58﹣17.5+13.42﹣2.5=(69.58+13.42)﹣(17.5+2.5)=83﹣20=63;(2)解:×(×19﹣)= × ×(19﹣1)= × ×18=9(3)解:+ + += ×(﹣+ ﹣+ ﹣+ ﹣)= ×(﹣)= ×= ;(4)解:[1﹣(﹣)]÷=[1﹣]÷= ÷=1【考点】运算定律与简便运算,分数的四则混合运算【解析】【分析】(1)利用加法交换律与减法的性质简算;(2)利用乘法分配律简算;(3)把分数拆分简算;(4)先算小括号里面的减法,再算中括号里面的减法,最后算除法.20、【答案】(1)解::x=15%:0.1815%x=0.18×15%x=0.2715%x÷15%=0.27÷15%x=1.8;(2)解:x﹣x﹣5=18x﹣5=18x﹣5+5=18+5x=23x×3=23×3x=69【考点】方程的解和解方程,解比例【解析】【分析】(1)先根据比例的基本性质:两内项的积等于两外项的积,把方程转化为15%x=0.18×,再依据等式的性质,方程两边同除以15%求解;(2)先化简方程得x﹣5=18,再依据等式的性质,方程两边同加上5再同乘上3求解.四、<b >动手操作题:</b>21、【答案】(1)解:长方形的长是:2×4=8(厘米),宽是2厘米,重叠的面积是:8×2=16(平方厘米);答:运行4秒后,重叠面积是16平方厘米。
2018-2019深圳市小学毕业数学总复习小升初模拟训练试卷20-22(共3套)附详细试题答案

小升初数学综合模拟试卷20一、填空题:1.13×99+135×999+1357×9999=______.2.一个两位数除以13,商是A,余数是B,A+B的最大值是_______.3.12345678987654321除本身之外的最大约数是______.4.有甲、乙两桶油,甲桶油比乙桶油多174千克,如果从两桶中各取5.图中有两个正方形,这两个正方形的面积值恰好由2、3、4、5、6、7这六个数字组成,那么小正方形的面积是______,大正方形的面积是______.6.如图,E、F分别是平行四边形ABCD两边上的中点,三角形DEF的面积是7.2平方厘米,平行四边形ABCD的面积是_______平方厘米.7.一辆公共汽车由起点到终点站共有10个车站,已知前8个车站共上车93人,除终点外前面各站共计下车76人.从前8个车站上车且在终点站下车的共有______人.9.某人以分期付款的方式买一台电视机,买时第一个月付款750元,以后每月付150元;或者前一半时间每月付300元,后一半时间每月付100元.两种付款方式的付款总数及时间都相同,这台电视机的价格是______元.10.一辆长12米的汽车以每小时36千米的速度由甲站开往乙站,上午9点40分,在距乙站2000米处遇到一行人,1秒后汽车经过这个行人,汽车到达乙站休息10分后返回甲站,汽车追上那位行人的时间是______.二、解答题:2.小明拿一些钱到商店买练习本,如果买大练习本可以买8本而无剩余;如果买小练习本可以买12本而无剩余,已知每个大练习本比小练习本贵0.32元,小明有多少元钱?3.某工厂的一只走时不够准确的计时钟需要69分(标准时间)时针与分钟才能重合一次,工人每天的正常工作时间是8小时,在此期间内,每工作1小时付给工资4元,而若超出规定时间加班,则每小时付给工资6元,如果一个工人照此钟工作8小时,那么他实际上应得到工资多少元?4.某次比赛中,试题共六题,均为是非题.正确的画“+ ”,错误的画“-”,记分方法是:每题答对的得2分,不答的得1分,答错的得0分,已知赵、钱、孙、李、周、吴、郑七人的答案及前六个人的得分记录如下表所示,请计算姓郑的得分.答案一、填空题:1.13704795原式=1300-13+135000-135+13570000-1357=13706300-1505=137047952.18因为余数最大是12,且99÷13=7…8,所以90÷13=6…12,A+B=6+12=18.3.4115226329218107因为12345678987654321除去1以外的最小约数是3,则12345678987654321的最大约数为12345678987654321÷3=4115226329218107174×3+4=526(千克)因此两桶油共重526+(526-174)=878(千克)5.273,546根据图形可以看出,大正方形面积是小正方形面积的2倍.经试验可知:273×2=546,所以小正方形面积为273,大正方形的面积为546.6.19.27.17因为在第9个车站上车的人,决不会在第9站下车,因此除终点外前面各站下车的76人都是在前8个车站上车的,所以从前8个车站上车且在终点下车的共有93-76=17(人)8.153因为总人数应是18,7,4的公倍数,而18,7,4的最小公倍数是252,所以参加考试的人数为252人.9.2400750+150x-150=200x50x=600x=12所以电视机的价格是根据题意可知,汽车的速度是每秒10米.行人的速度是每秒(12÷1-10=)2米.汽车到达乙站,休息10分后,行人又走了2×(2000÷10+60×10)=1600(米)汽车追上行人共需时间2000÷10+60×10+(2000+1600)÷(10-2)=1250(秒)=20分5秒9点40分+20分5秒=10点05秒.二、解答题:1.12.7.68元根据题意可知,如果买8个小练习本会剩下(0.32×8=)2.56元,而这2.56元正好可以再买4个小练习本,所以小明共有2.56×(12÷4)=7.68(元)正常钟表的时针和分针重合一次需要不准确的钟表走8小时,实际上是走应得工资为=32+2.6=34.6(元)4.8分从周做5题得9分可以看出,周做对了4道题,下面分别讨论:(1)假设第一题错,则第二、三、四、六题对,此时赵无法得到7分.(2)假设第二题错,则第一、三、四、六题对,此时赵无法得到7分.(3)假设第三题错,则第一、二、四、六题对,此时吴无法得到7分.(4)假设第四题错,则第一、二、三、六题对.此时第5题若填“十”,则赵、吴都可得到7分,钱、孙、李可得5分,由此推出郑得8分.(5)假设第六题错,则第一、二、三、四题对,则赵、吴无法同时得到7分.所以只有(4)满足条件.小升初数学综合模拟试卷21一、填空题:2.某班学生参加一次考试,成绩分为优、良、及格、不及格四等.已知人数不超过60人,则该班不及格的学生有______人.3.六个自然数的平均数是7,其中前四个数的平均数是8,第4个数是11,那么后三个数的平均数是______.4.在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数.某些两位数中间插入某个数码后变成的三位数,是原来两位数的9倍.这样的两位数共有______个.5.10个连续偶数的和是从1开始的10个连续奇数和的3.5倍,其中最大的偶数是______.6.一堆草,可以供3头牛或4只羊吃14天,或者供4头牛和15只羊吃7天.将这堆草供给6头牛和7只羊吃,可以吃______天.7.将一根长为1997厘米的铁丝截成199厘米和177厘米两种长度的铁丝,剩余部分最少是______厘米.8.如图,在长方形ABCD中,AB=6厘米,BC=8厘米,四边形EFHG的面积是3平方厘米,阴影部分的面积和是______平方厘米.9.分子小于6,而分母小于60的不可约真分数有______个.10.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明,如果公共汽车从始发站每次间隔同样的时间发一辆车,那么相邻两车间隔______分.二、解答题:2.一个分数,分母是901,分子是一个质数,现在有下面两种方法:(1)分子和分母各加一个相同的一位数;(2)分子和分母各减一个相同的一位数.子.3.1997个数排成一行,除两头的两个数之外,其余每数的3倍恰好等于与它相邻前后两数之和,这一行数最左边的几个数是:0,1,3,8,…,问最右边那个数除以6余几?4.有一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管.开始进水管以均匀的速度不停地向这个蓄水池蓄水.池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光.如果把8根出水管全部打开,需要3小时可将池内的水排光;而若仅打开3根出水管,则需要18小时.问如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?答案一、填空题:1.42.1根据题意可知,该班人数应是2、3、7的公倍数.由于该班人数不超过60,所以该班人数为42.不及格人数为3.7后三个数的和为11+(7×6-8×4)=21所以后三个数的平均数为7.4.4可将原题转化为数字谜问题:其中A、B可以取相同的数字,也可以取不同的数字.显然B只能取5,A×9+4后必须进位,所以A=1,2,3,4.两位数分别是15、25、35、45.5.44从1开始的10个连续奇数的和是100,10个连续偶数的和是(100×3.5=)350,最大的偶数是350÷10+9=44根据题意,3头牛、4只羊吃14天,可推出6头牛、8只羊吃7天.对比4头牛、15只羊吃7天,可知2头牛与7只羊吃草量相同,即1头牛相当于3.5只羊的吃草量.所以4头牛、15只羊吃7天相当于3.5×4+15=29(只)羊吃7天,6头牛、7只羊相当于3.5×6+7=28(只)羊,可以吃7.6长度为199厘米的铁丝最少截1根,最多截9根,列表计算.8.15平行四边形面积为(6×8=)48平方厘米,三角形BEC面积为(48÷2=)24平方厘米,三角形BHC面积为(48÷4=)12平方厘米.因为S△BDC=S△BEC,所以S△DGC=S△BEG同理,S△ABF=S△FCE因此S阴=S△BEC-S△HBC+S四边形EFHG=24-12+3=15(平方厘米)9.197以分子为1、2、3、4、5分类计算.(1)分子是1的分数有58个;(2)分子是2的分数有29个;(3)分子是3的分数有38个;(4)分子是4的分数有28个;(5)分子是5的分数有44个.共有58+29+38+28+44=197(个)10.8设汽车速度为a,小光的速度为b,则小明的速度为3b,因为汽车之间的间隔相等,所以可列方程(a-b)×10=(a-3b)×20即a-b=(a-3b)×2整理后有a=5b这说明汽车的速度是小光速度的5倍.所以在相同的距离中,小光所用时间是汽车所用时间的5倍.即小光走10分,汽车行2分.由于每10分有一辆车超过小光,所以汽车间隔(10-2=)8分钟.二、解答题:1.82.487因为901=13×69+4,所以可分两种情况讨论:(1)分母加9后是13的倍数,此时分子为7×(69+1)-9=481但481=13×37不是质数,舍.(2)分母减4后是13的倍数,此时分子为7×69+4=487由于487是质数,所以487为所求.3.3设相邻的三个数为a n-1,a n,a n+1.根据题设有3a n=a n-1+an+1,所以an+1=3a n-a n-1.设a n=6q1+r1,a n-1=6q2+r2.则a n+1=3×(6q1+r1)-6q2+42=6(3q1-q2)+(3r1-r2)由此可知,a n+1除以6的余数等于(3r1-r2)除以6的余数.所以这一行数中被6除的余数分别为:0,1,3,2,3,1,0,5,3,4,3,5,0,可以发现,12个数为一个循环,所以1997÷12=166 (5)由此可知第 1997个数除以 6余 3.4.5根设1根出水管每小时的排水量为1份,则8根出水管3小时的排水量为(8×3=)24份, 3根出水管18小时的排水量为(3×18=)54份.所以进水管每小时的进水量为(54-24)÷(18-3)=2(份)蓄水池原有水最为24-2×3=18(份)要想在8小时放光水,应打开水管18÷8+2=4.25(根)所以至少应打开5根排水管.小升初数学综合模拟试卷22一、填空题:2.设A=30×70×110×170×210,那么不是A的约数的最小质数为______.3.一张试卷共有15道题,答对一道题得6分,答错一道题扣4分,小明答完了全部的题目却得了0分,那么他一共答对了______道题.4.一行苹果树有16棵,相邻两棵间的距离都是3米,在第一棵树旁有一口水井,小明用1只水桶给苹果树浇水,每棵浇半桶水,浇完最后一棵时,小明共走了______米.5.有一个四位数,它的个位数字与千位数字之和为10,且个位既是偶数又是质数,去掉个位数字和千位数字,得到一个两位质数,又知道这个四位数能被72整除,则这个四位数是______·6.甲、乙二人分别以每小时3千米和5千米的速度从A、B两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达B地共行4小时,那么A、B两地相距______千米.7.如图,在△ABC中,DC=3BD,DE=EA,若△ABC面积是2,则阴影部分的面积是______.8.小朋从1997年的日历中抽出14张,是从5月14日到5月27日连续14天的.这14天的日期数相加是287.小红也抽出连续的14天的日历14张,这14天的日期数虽然与小明的不相同,但相加后恰好也是287.小红抽出的14张是从______月______日到______月______日的.9.今有五个自然数,计算其中任意三个数的和,得到了10个不同的自然数,它们是:15、16、18、19、21、22、23、26、27、29,这五个数的积是______.10.某工厂的记时钟走慢了,使得标准时间每70分钟分针与时针重合一次.李师傅按照这慢钟工作8小时,工厂规定超时工资要比原工资多3.5倍,李师傅原工资每小时3元,这天工厂应付给李师傅超时工资______元.二、解答题:1.计算问参加演出的男、女生各多少人?3.国际象棋比赛的奖金总数为10000元,发给前五名.每一名次的奖金都不一样,名次在前的钱数是比名次在后的钱数多,每份奖金钱数都是100元的整数倍.现在规定,第一名的钱数是第二、三名两人之和,第二名的钱数是第四、五名两人之和,那么第三名最多能得多少元?4.在一条公路上,甲、乙两地相距600米,小明和小强进行竞走训练,小明每小时行走4千米,小强每小时行走5千米.9点整,他们二人同时从甲、乙两地出发相向而行,1分后二人都调头反向而行,又过3分,二人又都调头相向而行,依次按照1、3、5、7、…(连续奇数)分钟数调头行走,那么二人相遇时是几点几分?答案一、填空题:1.1002.13根据A=30×70×110×170×210,可知2,3,5,7,11都是A的约数,而13不是A的约数.3.6因为小明答完了全部题目后得0分,所以他答对的题数与答错的题数之比为4∶6=2∶3,小明答对了15÷(2+3)×2=6(道)4.339(3+9+15+21+27+33+39)×2+45=339(米)能被8和9整除(8×9=72).因此8+a+b+2=10+a+b是9的倍数,由此可知a+b=8或a+b=17.53三种可能.若a+b=17,根据8+9=17,只有89一种可能.在四位数8172,8712,8532,8892中只有8712能被8整除,所以8712为所求.6.19.2因为甲、乙二人的速度比是3∶5,所以甲、乙二人在相同路程上所用的时间比是5∶3,因此A、B两地相距连结FD,由AE=ED可知:S△AFE=S△EFD,S△AEC=S△DCE由DC=3BD,可知:S△DCF=3S△BDF.因此S△ABC=(1+3+3)×S△BDF=7S△BDF8.2月16日,3月1日14+15+16+…+27=287,如果再找出14个连续的自然数之和为287是不可能的.需要调整,找出另外14个数的和为287,试验:(1)如果前面去掉14日,后面增加28日,显然和大于287;(2)如果前面去掉14、15日,后面增加2天,和为29,只能增加28日、 1日,这说明这个月的最后一天为28日.(3)如果前面去掉三天或三天以上,无论后面如何排,其和都不是287.所以小红抽出的14张是从2月16日到3月1日.9.5184因为计算其中任意三个数的和,所以每个数都使用了6次,因此这六个数的总和为(15+16+18+19+21+22+23+26+27+29)÷6=36设五个数从小到大依次为A、B、C、D、E,则所以 C=15+29-36=8.根据A+B+D=16,C=8,可推出D=9.所以E=29-(C+D)=12.根据B+D+E=27,可推出B=27-(D+E)=6.所以A=15-(B+C)=1.这五个数的乘积为1×6×8×9×12=5184.10.10.5走时正常的钟时针与分针重合一次需要慢钟走8小时,实际上是走所以应付超时工资二、解答题:1.22.男生16人,女生30人.因此女生人数为(46-16=)30人.3.1700为叙述方便,将100元作为计算单位,10000元就是100.根据题目条件可知五个人的奖金实际上是3个第二名与2个第三名的奖金之和.取偶数,因此第三名至多是(100-22×3)÷2=174.9点24分.如果不掉头行走,二人相遇时间为600÷[(4+5)×1000÷60]=4(分)两人相向行走1分后,掉头背向行走3分,相当于从出发地点背向行走(3-1=)2分;两人又掉头行走5分,相当于从出发地点相向行走(5-2=)3分;两人又掉头行走7分,相当于从出发地点背向行走(7-3=)4分;两人又掉头行走9分,相当于从出发地点相向行走(9-4=)5分.但在行走4分时二人就已经相遇了.因此共用时间1+3+5+7+8=24(分)相遇时间是9点24分.。
【精品】2018-2019学年广东省深圳市小升初数学试卷(逐题解析版)

= 5400÷ 108%
= 5000(元) 答:该商品的进货价是 5000 元.
故答案为: 5000.
【点评】 解答此题的关键是分清两个单位“ 1”的区别,求单位“ 1”的百分之几用乘法
计算;已知单位“ 1”的百分之几是多少,求单位“ 1”用除法计算.
4.( 2 分)比与除法、分数比较,比的前项相当于除法的
元.
15.( 2 分)“春运”期间,从 A 城开往 B 城的长途客运汽车票价从 20 元提高到 25 元,提
高
%,“春运”后,价格恢复原价,又降价
%.
二、判断题. (对的画“√” ,错的画“ ? ”,每小题 2 分,共 12 分.)
16.( 2 分)正方形、等腰梯形、三角形和圆都是轴对称图形.
17.( 2 分)把 2.4:1.2 化简比,结果是 2.
A .6: 5
B .6: 11
C. 5: 11
24.( 2 分) 200 克药水中,含药 20 克,药与水的比是(
)
A .1: 9
B .1: 10
C. 1: 11
25.( 2 分)在 4: 5 中,比的前项除以 8,要使比值不变,比的后项应(
)
A .加上 8
B .乘 8
C.除以 8
26.( 2 分)一段路,甲 3 时走完,乙 4 时走完,甲、乙两人速度的最简整数比是(
8% ,则该笔记本电脑
4.( 2 分)比与除法、分数比较,比的前项相当于除法的
当于除法的
,分数的
,比值 相当于除法的
,分数的 ,分数的
,后项相 .
5.(2 分)已知小圆的半径是 2 厘米,大圆的半径是 3 厘米,小圆和大圆周长的比是
2019年深圳市小升初数学模拟试题(共4套)详细答案12

2019 年深圳市小升初数学模拟试题(共 4 套 )详尽答案12答案:小升初数学试卷一、专心思虑,真填写1、我国香港特行政区的面是十一零四百万平方米,写作________平方米,改写成用“ ”作位的数是 ________平方米.2、________: 20=0.6=________=________%=________折.3、m=n+1( m、 n 非零 0 自然数),m 和 n 的最大公因数是________, m 和 n 的最小公倍数是 ________.4、假如小明向南走80 米,作+80米,那么小从同一地址向北走50 米,作________米,他两人相距________米.5、在一个比率中,两个外的是8,一个内是,另一个内是________.6、把段比率改写成数比率尺是________,从上量得A、 B 两地的距离是 5.5 厘米, A、 B 两地的距离是________千米.7、一根柱形的木材 4 米,把它成 3 段,表面增添了12 平方分米,根木材的体是________立方分米.假如成 3 段用了 3 分,那么把它成 6 段要用 ________分.8、一个方形的周是72 厘米,和的比是2: 1,个方形的面是________平方厘米.9、仔察如表中两种量x 和 y 的化状况.用一个含x、y 的式子表示它之的关系是________, x 和 y 是成 ________比率关系的量.x 6 12 18 24⋯y 30 15 10 7.5⋯10、中,平行四形的面是分红 3 个三角形,中甲、乙、丙三个三角形的面比是________.二、仔斟酌,真辨析11、某今年比昨年量增添了25%,昨年就比今年量减少了20%________(判断).12、 2100 年整年有365 天 ________.13、要反应某厂今年前五个月增减化状况,合适条形(判断).14、把 3 均匀分15、某种券的中率4 个小朋友,每人分得________.(判断)1%, 100 不必定能中________(判断).三、频频比,谨慎16、的直径必定,的周和周率()A、成正比率B、成反比率C、不可比率17、一个角是60°,画在1: 3 的上,画()A、 20°B、60°C、 180 °D、没法确立18、爸爸骑摩托车送小雅去看电影,看完电影后,小雅步行回家,下边()图表示了小雅的状况.A、B、C、D、19、下边各比,能与0.4:构成比率的是()A、 3:4B、4: 3C、:D、0.2: 0.320、同时掷 2 枚硬币, 2 枚硬币都是正面向上的可能性是()A、B、C、D、四、认真审题,仔细计算21、直接写出计算结果.6.7+4.3=________0.3 2=________123%× 5%=________=________8÷ 0.02=________3a× 4a=________=________=________22、算下边各,能便的用便方法算.560 ÷ 16÷ 56÷ 611×()×7[() ] ×.23、求下边未知数x 的50%x 0.2x=15;x=12;6: 30=x: 0.5.24、如的直角三角形中的空白部分是正方形,正方形的一个点将个直角三角形的斜分红二部分,求暗影部分的面.(位:厘米)五、察思虑,手操作25、依据要求答:(1)如中方形的 A 点在( ________ , ________ )(2)①将本来的方形 C点旋 90°,画出旋后的形.②将本来的方形按 1:2 小,并将小后的形画在方格内.26、探究律.正方体个数 1 2 3 4 5 6 ⋯N ⋯正方形个数 6 10 14 18⋯ 62⋯六、灵巧运用,解决27、果园里有桃500 棵,杏比桃的 2 倍少 250 棵,杏有多少棵?28、修路修一条 600 米的路,第一天修了全的 20%,次日再修多少米就正好修完好的一半?29、甲乙两同从相距120 千米的A、B 两地相开出,小相遇,甲每小行100千米,乙每小行多少千米?30、一个形小麦堆,把堆小麦装柱形粮屯正好装,粮屯的底面直径是 4 米,高3米,个形小麦堆的体是多少立方米?31、某校六年有甲、乙两个班,甲班学生人数是乙班的.假如从乙班 3 人到甲班,甲班人数是乙班的.甲、乙两班本来各有学生多少人?答案分析部分一、专心思虑,认真填写1、【答案】 1104000000 ; 11.04【考点】整数的读法和写法,整数的改写和近似数【分析】【解答】解:( 1)十一亿零四百万:在十亿位上写1,在亿位数上写1,在百万位数上写 4,剩下的数位上都写0,故写作: 1104000000 ;( 2) 1104000000=11.04 亿.故答案为: 1104000000 , 11.04.【剖析】( 1)整数的写法:整数的写法是从高位写起,一级一级地往下写,哪个数位上有几个单位就在那个数位上写几,一个单位也没有时用“0来”占位;( 2)把一个数改写成用“亿”作单位的数,从个位数到亿位,在亿位的右下角点上小数点,末端的零去掉,再添上一个“亿”字.2、【答案】 12;25; 60;六【考点】比与分数、除法的关系【分析】【解答】解: 12: 20=0.6==60%=六折.故答案为: 12, 25, 60,六.【剖析】把 0.6 化成分数并化简是,依据分数的基天性质分子、分母都乘 5 就是;根据比与分数的关系=3: 5,再依据比的基天性质比的前、后项都乘 4 就是 12: 20;把 0.6的小数点向右挪动两位添上百分号就是60%;依据折扣的意义 60%就是六折.3、【答案】 1; mn【考点】求几个数的最大公因数的方法,求几个数的最小公倍数的方法【分析】【解答】解:假如m=n+1( m、 n 为非零 0 自然数), m 和 n 互质,所以 m 和 n 的最大公因数是1,最小公倍数是 mn.故答案为: 1, mn.【剖析】假如 a+1=b( a 和 b 都是不为0 的自然数),则说明这两个数是相邻的自然数,如 5、6,那么这两个数互质,那么 a 和 b 的最大公因数是1,最小公倍数是它们的积;据此解答.4、【答案】﹣50; 130【考点】负数的意义及其应用【分析】【解答】解:假如小明向南走80 米,记作 +80 米,那么小华从同一地址向北走50米,记作﹣ 50 米,这时他们两人相距80+50=130 米;故答案为:﹣ 50, 130.【剖析】本题主要用正负数来表示具存心义相反的两种量:向南走记为正,则向北走就记为负,直接得出结论即可.5、【答案】 18【考点】比率的意义和基天性质【分析】【解答】解: 8÷ =18;答:另一个内项是18.故答案为: 18.【剖析】由“在一个比率里,两个外项的积是8”,依据比率的性质“两外项的积等于两内项的积”,可知两个内项的积也是8;再依据“此中一个内项是”,从而用两内项的积8 除以一个内项即得另一个内项的数值.6、【答案】 1: 5000000 ; 275【考点】比率尺,图上距离与实质距离的换算(比率尺的应用)【分析】【解答】解:( 1)由线段比率尺知道图上的 1 厘米表示的实质距离是50 千米,数值比率尺是: 1 厘米: 50 千米,=1 厘米: 5000000 厘米,=1: 5000000 ,( 2)因为,图上的 1 厘米表示的实质距离是50 千米,所以, A、 B 两地的实质距离是: 5.5 ×50=275(千米).故答案为: 1: 5000000 , 275.【剖析】( 1)依据数值比率尺的意义作答,即图上距离与实质距离的比;(2)从线段比率尺知道图上的 1 厘米表示的实质距离是50 千米,由此得出A、 B 两地的实质距离.7、【答案】 12;7.5【考点】简单的立方体切拼问题,圆柱的侧面积、表面积和体积【分析】【解答】解:( 1) 12÷(2×2)×4,=12 ÷ 4×4,=12(立方分米);( 2)3÷( 3﹣ 1)×( 6﹣ 1),=3÷ 2×5,=1.5 ×5,=7.5(分钟);答:这根木材的体积是12 立方分米.假如锯成 3 段用了 3 分钟,那么把它锯成 6 段要用 7.5分钟.故答案为: 12; 7.5.【剖析】(1 )锯成 3 段,就增添了12 平方分米,也就是增添了2×2=4个圆柱的底面积,由此能够求得这个圆柱的底面积解决问题;( 2)锯成 3 段,实质锯了3﹣ 1=2 次,由此能够求得锯一次用时:3÷2=1.5分钟,则锯成 6 段需要锯6﹣ 1=5 次,由此即可解决问题.8、【答案】 288【考点】长方形的周长,长方形、正方形的面积【分析】【解答】解: 2+1=3(份)长是: 72÷2×=36 ×=24(厘米)宽是: 72÷2×=36 ×=12(厘米)面积: 24×12=288(平方厘米)答:这个长方形的面积是288 平方厘米.故答案为: 288.【剖析】第一依据长方形的周长公式:c=( a+b)×2,求出长与宽的和,已知长与宽的比是2:1,依据按比率分派的方法分别求出长、宽,而后依据长方形的面积公式:s=ab,把数据代入公式进行解答.9、【答案】 xy=180;反【考点】辨别成正比率的量与成反比率的量【分析】【解答】解:因为:6×30=12×15=18×10=24×7.5=180,是乘积必定,用含x、 y 的式子表示它们之间的关系是xy=180,x 和 y 是成反比率;故答案为: xy=180,反.【剖析】判断两个有关系的量之间成什么比率,就看这两个量是对应的比值必定,仍是对应的乘积必定;假如是比值必定,就成正比率;假如是乘积必定,则成反比率.10、【答案】 5: 2: 3【考点】三角形面积与底的正比关系【分析】【解答】解:因为甲、乙、丙三个三角形的高相等,即平行四边形的高,设为h,又因为甲的底是平行四边形的边,即乙和丙的底的和:2+3=5,所以甲的面积 =5h÷2= h,乙的面积 =2h÷2=h,丙的面积=3h÷2= h,所以:甲:乙:丙= h: h:h=5: 2:3.答;甲、乙、丙三个三角形的面积比是5: 2: 3.故答案填 5 :2: 3.【剖析】由图知:平行四边形的面积是分红 3 个三角形,图中三个三角形的高都相等,都是平行四边形的高,设为h ,甲的底是平行四边形的边,即乙和丙的底的和,依据三角形的面积公式是:底×高÷2,能分别表示出甲、乙、丙 3 个三角形的面积,从而算出它们面积的比.二、认真斟酌,认真辨析11、【答案】正确【考点】百分数的实质应用【分析】【解答】解: 25%÷( 1+25%)=25%÷ 125%=20%,答:昨年就比今年产量减少了20%.故答案:正确.【剖析】依据“今年比昨年量增添了25%”把昨年的量看作位“1,”即今年是昨年的(1+25%);要求昨年量比今年减少百分之几,用昨年量比今年少的量除以今年的量即可.12、【答案】正确【考点】年、月、日及其关系、位算与算,平年、年的判断方法【分析】【解答】解: 2100÷400=5⋯2,不可以整除,所以 2100 年不是年是平年,整年有365 天.故答案:正确.【剖析】年的判断方法是:一般年份的除以4,整百年份、整千整百年份除以400,假如能整除,一年是年. 2100 是整百年份,要除以 400 来判断.平年整年有365 天,年整年有 366 天.13、【答案】【考点】的【分析】【解答】解:依据的特色可知:要反应某厂今年前五个月增减化状况,合适折.故答案:.【剖析】条形能很简单看出数目的多少;折不简单看出数目的多少,并且能反应数目的增减化状况;扇形能反应部分与整体的关系;由此依据状况即可.14、【答案】【考点】分数的意、写及分【分析】【解答】解:3÷4= (),答:把 3 均匀分 4 个小朋友,每人分得;故答案:.【剖析】把 3 均匀分 4 个小朋友,求每人分得的数,均匀分的是详细的数目 3 ,求的是详细的数目;用除法算.15、【答案】正确【考点】事件生的可能性求解【分析】【解答】解:由剖析知:某种券的中率1%, 100 不必定能中;√故答案:正确.【剖析】一种彩票的中率是1%,属于不确立事件,可能中,也可能不中,了100彩票只好明比 1 的中的可能性大.三、频频比,谨慎16、【答案】 C【考点】辨成正比率的量与成反比率的量【分析】【解答】解:因的周C=πd,在本题中圆的直径必定,圆周率也是必定的,所以周长也是必定的,即三个量都是必定的,不存在变量问题,所以圆的周长和圆周率不可比率;应选: C.【剖析】判断圆的周长和圆周率之间成什么比率,就看这两个量是对应的比值必定,仍是对应的乘积必定;假如是比值必定,就成正比率;假如是乘积必定,则成反比率.17、【答案】 B【考点】角的观点及其分类,图形的放大与减小【分析】【解答】解:依据剖析可得:一个角是 60°,画在 1: 3 的图上,还应该画60°.应选: B.【剖析】依据角的大小与两边张口的大小有关,张口越大,角越大;张口越小,角越小,和两边的长短没关,更和图形的放大与减小没关,据此即可作出选择.18、【答案】 C【考点】从统计图表中获守信息【分析】【解答】解:爸爸骑摩托车送小雅去看电影,看完电影后,小雅步行回家,图C 表示了小雅的状况;应选: C.【剖析】依据“爸爸骑摩托车送小雅去看电影,看完电影后,小雅步行回家”,可知骑摩托车的速度快,坡度大,地点有变化;步行回家的速度慢,坡度小,地点也有变化;看电影的位置不变.据此进行选择.19、【答案】 D【考点】比率的意义和基天性质【分析】【解答】解: 0.4:=0.4: 0.6,=2: 3,0.2:0.3=2: 3;故应选: D.【剖析】求出0.4:的比再进行选择即可.20、【答案】 C【考点】简单事件发生的可能性求解【分析】【解答】解:随意投掷两枚硬币,出现的结果有:正正,正反,反正,反反,所以随意投掷两枚硬币,两枚都是正面向上的可能性:1÷ 4=应选: C.【剖析】随意投掷两枚硬币,出现的结果有:正正,正反,反正,反反,而后依据求可能性的方法:求一个数是另一个数的几分之几,用除法列式解答即可.四、认真审题,仔细计算21、【答案】 11①0.09 ②18③0.0015 ④400⑤⑥ ⑦12a 2【考点】分数的四则混淆运算,小数四则混淆运算【分析】【剖析】依据小数、分数四则运算的法例及混淆运算的运算次序计算即可.22、【答案】解:①560÷16÷5=560 ÷( 16×5)=560 ÷ 80=7;② 6 ÷ ﹣÷ 6=7﹣=;③ 11×()× 7=11× × 7+× 7× 11=14+11=25;④[﹣()]×=[﹣] ×=×=.【考点】运算定律与简易运算【分析】【剖析】依据除法的性质简算;23、【答案】解:①50%x ﹣ 0.2x=150.3x=150.3x ÷ 0.3=15 ÷ 0.3x=50;②x÷=12x=12 ×x=8x=32;③6: 30=x: 0.530x=6 × 0.530x ÷ 30=3 ÷ 30x=0.1.【考点】方程的解和解方程【分析】【剖析】( 1)先化简方程,再依据等式的性质,两边同时除以0.3 求解;( 2)依据330x=6 0.5再依据等式的性质,方程两边同时除以30 求解.24、【答案】解:如图:2019年深圳市小升初数学模拟试题(共4套)详细答案12三角形AFE绕点E 逆时针旋转90°,与三角形EDC构成一个直角三角形,两直角边分别是6厘米、8 厘米,其面积是:×6×8=24(平方厘米);答:暗影部分的面积是24 平方厘米.【考点】组合图形的面积【分析】【剖析】如图,因为BDEF是正方形,所以EF=ED,∠ DEF=90°,三角形AFE 绕点 E 逆时针旋转 90°,与三角形 EDC构成一个直角三角形,直角边分别是 6 厘米、 8 厘米,由此即可求出暗影部分的面积.五、察看思虑,着手操作25、【答案】(1) 2; 5(2)①以下图红色部分:②以下图绿色部分:【考点】作旋转必定角度后的图形,图形的放大与减小,数对与地点【分析】【解答】解: (1)如图中长方形的 A 点在( 2, 5)处.2019年深圳市小升初数学模拟试题(共4套)详细答案12【剖析】( 1)依据用数表示点的地点的方法,第一个数字表示列数,第二个数字表示行数,即可用数表示出点 A 的地点.( 2)依据旋的特色,方形点 C 旋90°后,点C 的地点不,其他各部分均此点按相同方向旋相同的度数即可画出旋后的形.(3)依据形放大与小的意,把个方形的各小到本来的,即可获得按1:2 小后的形.26、【答案】解:依据剖析:第五个正方体:6+( 5 1)×4=22第六个正方体:6+(6 1)×4=26有62 个正方形: 6+(N 1)×4=624N=62 2N=15第 N 个正方体: 6+( N 1)×4如:探究律.正方体个数123456⋯15N正方形个数61014182226⋯626+( N 1)【考点】数与形合的律【分析】【剖析】通剖析可知:每增添一个正方体,正方形的个数增添 4 个, 10=6+4,14=6+2 ×4,18=6+3 ×4,所以 N 个正方体的正方形的个数是6+( N 1)×4,据此解答即可.六、灵巧运用,解决27、【答案】解: 500×2 250=1000250=750(棵)答:杏有750 棵【考点】整数的乘法及用【分析】【剖析】第一依据求一个数的几倍是多少,用乘法求出桃棵数的 2 倍,再依据求比一个数少几用减法解答.28、【答案】解: 600×( 50%﹣20%)=600 × 30%=180(米)答:次日再修180 米就正好修完好长的一半【考点】百分数的实质应用【分析】【剖析】把全长看作单位“1,”则次日再修 50%﹣20%时正好修完好长的一半,已知全长 600 米,运用乘法即可求出次日再修多少米.29、【答案】解:( 120﹣ 100×)÷=( 120﹣)÷=×=80(千米)答:乙车每小时行80 千米【考点】简单的行程问题【分析】【剖析】先依据行程=速度×时间,求出甲车小时行驶的行程,再求出乙车行驶的行程,最后依据速度=行程÷时间即可解答.30、【答案】解: 3.14 ×( 4÷2)2× 3=3.14 × 12=37.68(立方米),答:这个圆锥形小麦堆的体积是137.68 立方米【考点】对于圆锥的应用题【分析】【剖析】依据题干,本题就是求底面直径为 4 米,高为 3 米的圆柱的体积,利用圆柱的体积 =底面积×高,代入数据计算即可.31、【答案】解:﹣==;3=108(人),108 ×=45(人),108﹣45=63(人);答:甲班原有人数45 人,乙班原有人数63 人.【考点】分数除法应用题【分析】【剖析】设甲、乙两班学生数的和为单位“1,”本来:甲班人数就是所有人数的,调整后:甲班就是就是所有人数,从乙班调到甲班 3 人就是甲班增添的人数,它对应的分数就是,用除法求出单位“1.”再求单位“1的”就是甲班的人数,从而求出乙班的人数.小升初数学综合模拟试卷一、填空。
2018年深圳市小学毕业小升初模拟数学试题(共4套)附详细答案

小升初数学试卷57一、填空.(每空1分,共22分)1、一个九位数,最高位亿位上是最小的奇数,十万位上是最小的质数,万位上是最大的一位数,千位上是最小的合数,其余各位都是0,这个数写作________,改写成用“万”作单位的数是________.2、0.4=2:________=________ 5________%=________折3、如果3a=6b,那么a:b=________。
4、明年二月有________天.5、丽丽比亮亮多a张画片,丽丽给亮亮________张,两人画片张数相等.6、一个直角三角形的两个锐角的度数比是3:2.这两个锐角分别是________度和________度.7、红、黄、蓝三种颜色的球各8个,放到一个袋子里,至少摸________个球,才可以保证有两个颜色相同的球,若任意摸一个球,摸到黄色球的可能性是________.8、一个长为6cm,宽为4cm的长方形,以长为轴旋转一周,将会得到一个底面直径是________cm,高________cm的圆柱体.9、一个面积是________平方米的半圆的周长是15.42米.10、保定市某天中午的温度是零上5℃;记作+5℃;到了晚上气温比中午下降了7℃,这天晚上的气温记作________.11、假设你的计算器的一个键“4”坏了,你怎样计算49×76,用算式表示计算过程________.12、琳琳2014年把500元存入银行,年利率2.25%,2016年到期时可以从银行取出________元.13、甲数=2×2×2×3,乙数=2×2×3,这两个数的最小公倍数是________.14、小明每天上午8时到校,11时30分放学,下午2时到校,4时30分放学,她在校的时间占1天的________.15、如图,正方形的面积是20平方厘米,则圆的面积是________平方厘米.二、判断正误.16、两条永不相交的直线叫做平行线.________(判断对错)17、互为倒数的两个分数中,如果其中一个是真分数,那么另一个一定是假分数.________(判断对错)18、两个分数中,分数值大的那个分数单位也大.()19、平行四边形都可以画出对称轴________.20、一个不为0的数除以真分数,所得的商大于被除数.________三、认真选择.(将正确答案的序号填在括号内)21、两个数是互质数,那么它们的最大公因数是()A、较大数B、较小数C、1D、它们的乘积22、3.1与3. 相比()A、3.1 大B、3. 大C、一样大23、男生与女生的人数比是6:5,男生比女生多()A、B、C、24、给分数的分母乘以3,要使原分数大小不变,分子应加上()A、3B、7C、14D、2125、车轮的直径一定,所行驶的路程和车轮的转数()A、成正比例B、反比例C、不成比例四、仔细计算.(5+12+12+4=33分)26、直接写出得数=________ 7÷0.01=________﹣=________ 27、脱式计算(能简算的要简算)÷9+ ×12.69﹣4.12﹣5.880.6×3.3+ ×7.7﹣0.6(+ )×24× .28、解方程(比例)2x+3×0.9=24.73:(x+1)=4:7x+ x= .29、列式计算(1)一个数的是60的,求这个数?(2)乘的倒数,所得的积再减去3个,差是多少?五、操作题:(第2题的第(3)小题2分,其余的每题1分,共6分)30、利用﹣= ,﹣= ,﹣= ,﹣= ,这些规律,计算:1﹣+ ++ + =________.31、按要求答题:(1)三角形的一个顶点A的位置在________ .(2)三角形的另一个顶点B在顶点A正东方3厘米处,在图中标出B点的位置。
2018--2019学年度小升初数学模拟试卷及答案(3)

2018--2019学年度小升初数学模拟试卷及答案(3)班级姓名成绩1.(4分)198厘米= 分米= 米, 15日= 小时,650公顷= 平方千米.2.(2分)学校举行庆祝“六一”文艺表演,从晚上7时30分开始,经过1小时20分结束,结束时是时分.3.(1分)小红三次考试的平均成绩是92分,已知第一次和第二次的平均成绩是91,她的第三次成绩是分.(2分)用一根长28厘米的铁丝围成一个正方形,正方形的边长是,4.面积是.5.(2分)十亿五千九百四十万写作,四舍五入到“亿”位约是.6.(2分)10个0.1是,8.5里有个十分之一.7.(1分)近似数3.0的取值范围是.8.(1分)照样子填一填:下午2时15分.9.(2分)小明买2只鸡的钱可以买6条鱼,买3条鱼的钱可买l0本一样的书,买30本书的钱可以买只鸡.(1分)一件衣服单价100元,先降低10%,再提价10%,现在是元.10.11.(1分)一个分数约分之后是,原分数的分子与分母的和是72,则原分数是.12.(1分)一根2米长的圆柱体木材,锯成3段小圆柱后,它们的表面积总和比原来增加了12.56平方分米,原来这根木材的体积是立方分米.13.(1分)如图,把一个平行四边形分成四个三角形,其中三角形甲的面积是15平方厘米,三角形乙的面积占平行四边形面积的,平行四边形的面积是平方厘米.14.(1分)一个正方形的边长是4米,它的周长和面积相等..(判断对错)15.(1分)10.20读作:十点二十..(判断对错)16.(1分)一个数除以8,有余数,那么余数最大可能是7..(判断对错).17.(1分)用16个面积是1平方分米的正方形拼图,无论拼成什么样的图形,它的面积都是16平方分米..(判断对错)18.(1分)1000千克的棉花比一吨的铁轻..(判断对错)19.(1分)篮球场长是28米,宽是15米,半个球场的面积是()平方米.A.210B.240C.8620.(1分)下列年份中是闰年的是()A.2006B.2007C.2008D.200921.(1分)250×8的积的末尾有()个0.A.1B.2C.322.(1分)4包同样的饼干重1千克,2袋同样的盐也是重1千克,1包盐与()饼干同样重.A.4包B.5包C.3包D.2包23.(1分)钟面上,时针的转速与分针的转速之比是()A.1:60B.1:12C.12:1D.60:124.(10分)直接写出得数.1÷0.375= +1= ×24= += 3×﹣×3=360×0.02= 10÷= ﹣= 476×3≈ 412÷7≈25.(12分)能简算的要简算(1)(2)1.2﹣3.79+8.8(3)÷〔(+)×〕(4)7.8÷[32×(1﹣)+3.6].26.(9分)求未知数x的值(1)x﹣x=4.9(2)0.36×5﹣x=(3):0.8=x:48.27.(3分)看图列式计算:求如图椭圆形操场的周长和面积:28.(3分)看图填空(单位:厘米):圆的周长是,半圆的周长是,长方形的周长是.29.(2分)给如图涂上颜色表示0.3的部分.30.(3分)图中每一方格代表1平方厘米,请在图上分别画出3个不同的长方形,使它们的面积都是12平方厘米.31.(4分)只列式,不计算(1)男生有28人,女生人数是男生人数的,女生有多少人?(2)一件衣服售价400元,比原价降低了20%,原价是多少元?32.(5分)5箱蜜蜂一年可以酿375千克的蜂蜜.照这样计算,24箱蜜蜂2年可以酿多少千克的蜂蜜?33.(5分)张老师家新买的一套住房,平面图如图:(单位:米)(1)请你算一算这套住房一共有多少平方米?(2)对厨房之外的地面进行简单的装修,铺上边长是50厘米的正方形地板砖要288块(墙体占地面积忽略不计),如果换成边长是60厘米的正方形地板砖,需要地板砖多少块?34.(5分)一个底面半径是6厘米的圆柱形玻璃器皿里装有一部分水,水中浸没着一个高9厘米的圆锥形铅锤.当铅锤从水中取出后,水面下降了0.5厘米.这个圆锥形铅锤的底面积是多少平方厘米?35.(5分)一个长方体木块的长、宽、高分别是5厘米、4厘米、3厘米.如果用它锯成一个最大的正方体,体积要比原来减少百分之几?36.(3分)甲、乙、丙、丁四人共同购买一只价值4200元的游艇,甲支付的现金是其余三人所支付现金总数的,乙支付的现金比其他三人所支付的现金总数少50%,丙支付的现金占其他三人所支付的现金总数的,那么丁支付的现金是多少元?参考答案1.19.8;1.98;360;6.5.【解析】试题分析:(1)把198厘米换算成分米数,用198除以进率10得19.8分米;再把19.8分米换算成米数,用19.8除以进率10得1.98米;(2)把15日换算成小时数,用15乘进率24得360小时;(3)把650公顷换算成平方千米数,用650除以进率100得6.5平方千米.解:(1)198厘米=19.8分米=1.98米;(2)15日=360小时;(3)650公顷=6.5平方千米.故答案为:19.8,1.98,2,15,360,6.5.点评:此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率;把低级单位的名数换算成高级单位的名数,就除以单位间的进率.2.20时50分.【解析】试题分析:晚上7时30分用24时计时法是19时30分,用开始的时刻19:30加上经过的时间就是结束的时刻.解:晚上7时30分用24时计时法是19时30分19时30分+1小时20分=20时50分.答:结束时刻是20时50分.故答案为:20,50.点评:本题的时刻都在同一天之内,开始的时刻+经过的时间=结束的时刻.3.94【解析】试题分析:根据“平均成绩×测验次数=总成绩”分别求出前三次考试的成绩和及前两次考试的成绩和,进而根据“前三次考试的成绩和﹣前两次考试的成绩和=第三次考试的成绩”进行解答即可.解:92×3﹣91×2,=276﹣182,=94(分);答:第三次得94分;故答案为:94.点评:解答此题的关键:先根据平均成绩、测验次数和总成绩三者之间的关系求出三次考试的成绩和及前两次考试的成绩和,再相减.4.7厘米;49平方厘米.【解析】试题分析:根据正方形的周长公式:a=C÷4可求出正方形的边长,再根据正方形的面积公式:S=a2,即可求出正方形的面积.解:28÷4=7(厘米),7×7=49(平方厘米),答:这个正方形的边长是7厘米,面积是49平方厘米;故答案为:7厘米;49平方厘米.点评:此题主要考查正方形的周长和面积公式的灵活应用.5.1059400000,11亿.试题分析:这是一个十位数,最高位十亿位上是1,亿位和千万位上都是5,百位上是9,十万位上是4,其余位上都是0,写这个数时,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0;四舍五入到“亿”位就是省略“亿”后面的尾数就是四舍五入到亿位,就是把亿位后的千万位上的数进行四舍五入,再在数的后面写上“亿”字.解:十亿五千九百四十万写作:1059400000;1059400000≈11亿;故答案为:1059400000,11亿.点评:本题主要考查整数的写法、改写和求近似数,注意改写和求近似数时要带计数单位.6.1,85.【解析】试题分析:(1)每相邻两个计数单位间的进率是10,小数点后的计数单位从左到右依次是十分位,百分位,千分位….据此可解答.(2)求8.5里面有几个十分之一(0.1),用除法解答即可.解:(1)10个0.1是 1;(2)8.5÷0.1=85.故8.5里有 85个十分之一.故答案为:1,85.点评:(1)本题考查了学生对小数的计数单位及单位间进率知识的掌握情况.(2)解答此题用根据求一个数里面含有几个另一个数,用除法解答即可.7.2.95~3.04.【解析】试题分析:要考虑3.0是一个两位数的近似数,有两种情况:“四舍”得到的3.0最大是3.04,“五入”得到的3.0最小是2.95,由此解答问题即可.解:“五入”得到的3.0最小是2.95,因此这个数必须大于或等于2.95;“四舍”得到的3.0最大是3.04,因此这个数小于等于 3.04.所以取值范围为:大于或等于2.95,并且小于等于3.04;故取值范围为:2.95~3.04.点评:取一个数的近似数,有两种情况:“四舍”得到的近似数比原数小,“五入”得到的近似数比原数大,根据题的要求灵活掌握解答方法.8.上午8时30分.【解析】试题分析:把24时记时法换算成用普通计时法表示,上午的时刻不变,下午时刻减12,要在时间的前面加上午、下午等修饰词.解:照样子填一填:下午2时15分上午8时30分;故答案为:上午8时30分.点评:此题考查了把24时记时法换算成用普通计时法表示,上午的时刻不变,下午时刻减12,要在时间的前面加上午、下午等修饰词.9.3.试题分析:买2只鸡的钱可以买6条鱼,那么1只鸡就可以买3条鱼,也就可以买10本书,所以30本书就可以买3只鸡.解:6÷2=3(条);3条鱼=10本数=1只鸡,30÷10=3(只);答:买30本书的钱可以买3只鸡.故答案为:3.点评:本题把鱼作为中间量,从中找出1只鸡的价钱相当于多少本书,再根据除法的意义求解即可.10.99.【解析】试题分析:要据题意要把这件衣服的单价看作是单位“1”,先降低10%,就是原价的(1﹣10%),再提价10%,就是原价(1﹣10%)的(1+10%),然后再根据分数乘法的意义进行列式解答.解:100×(1﹣10%)×(1+10%),=100×0.9×1.1,=99(元).答:现在是99元.故答案为:99.点评:本题的关键是第一次降价,是把这件衣服的单价100看作单位“1”,再提价,是把降价后的价格100×(1﹣90%)看作单位“12”,然后再根据分数乘法的意义列式解答.11..【解析】试题分析:根据“一个分数约分之后是”,可求出分子与分母的总份数,再根据“原分数的分子与分母的和是72”,就是原分数的分子占和72的,分母占和72的,进而写出原分数即可.解:总份数:5+7=12(份),原分数的分子:72×=30,原分数的分母:72×=42或72﹣30=42,原来的分数是:;故答案为:.点评:此题属于按比例分配的应用题,解决关键是要找准被分配的总量是多少,然后搞清是按什么比例进行分配的,再用按比例分配的方法解答.12.62.8.【解析】试题分析:首先要明确的是:将这根木材锯成3段小圆柱后,增加了4个底面,增加的面积已知,于是就可以求出这根木材的底面积,从而利用圆柱的体积V=Sh,即可求出这根木材的体积.解:2米=20分米,12.56÷4=3.14(平方分米),3.14×20=62.8(立方分米);答:原来这根木材的体积是62.8立方分米.故答案为:62.8.点评:解答此题的关键是明白:将这根木材锯成3段小圆柱后,增加了4个底面,求出木材的底面积,即可利用圆柱的体积公式求解.13.150.【解析】试题分析:由图意和乘法分配律可知:甲的面积+乙的面积=平行四边形的面积×,由此可以求出甲的面积占平行四边形的面积的分率,又由于甲的面积是15平方厘米,进而可求出平行四边形的面积.解:由分析可得平行四边形的面积是:15÷(﹣),=15÷,=150(平方厘米).答:平行四边形的面积是150平方厘米.故答案为:150.点评:此题主要考查平行四边形的面积,三角形的面积.由等底的图形面积大小及乘法分配律的应用得到甲的面积+乙的面积=平行四边形的面积×是解题的关键.14.错误【解析】试题分析:面积单位和周长单位是两种不同的计量单位,无法比较.解:边长4米的正方形面积和周长无法比较.故答案为:错误.点评:考查了正方形的周长和面积的比较,是基础题型,比较简单.15.错误.【解析】试题分析:根据小数的读法:整数部分按整数的读法来读,小数点读作点,小数部分要依次读出每个数字.解:10.20读作:十点二零故答案为:错误.点评:此题考查小数的读法,注意小数点后面数的读法.16.错误.【解析】试题分析:根据除法各部分间的关系可以知道余数必须比除数小,此题中一个数除以8说明8是除数,那么余数必须小于8,所以余数最大只能是7,由此可以进行判断.解:根据除法各部分间的关系可以知道余数必须比除数小,此题中一个数除以8说明8是除数,那么余数必须小于8,所以余数最大只能是7,而不是可能是7,所以此题说法错误.故答案为:错误.点评:在有余数的除法中,余数必须比除数小.17.正确.【解析】试题分析:在拼图中无论怎样拼,它们的面积不变,改变的只是它们的形状和周长,据此可判断.解:因在拼图中无论怎样拼,它们的面积不变,所以用16个面积是1平方分米的正方形拼图,无论拼成什么样的图形,它的面积都是16平方分米.故答案为:正确.点评:本题考查了学生拼组图形时,面积不变的知识.18.错误【解析】试题分析:1000千克=1吨,棉花和铁都是1000千克(或1吨),质量相同,一样重.解:1吨=1000千克棉花和铁都是1000千克(或1吨),一样重.故答案为:错误.点评:铁和棉花的名数相同,就是质量相同,由于铁和棉花的密度不同,相同质量的铁和棉花体积不同,不要被这一表象所迷惑.19.A.【解析】试题分析:根据长方形的面积公式S=ab,求出整个篮球场的面积,再除以2求出半个球场的面积.解:28×15÷2,=420÷2,=210(平方米),答:半个球场的面积是210平方米;故选:A.点评:本题主要是灵活利用长方形的面积公式S=ab解决问题.20.C.【解析】试题分析:用选项中的年份除以4,看是否有余数,有余数就是平年,没有余数就是闰年.解:2006÷4=501…2,2007÷4=501…3,2008÷4=502.2009÷4=502…1;2008能被4整除,2008年就是闰年,2006、2007、2009不能被4整除,就是平年.故选:C.点评:闰年的判断方法:普通年份看是否能被4整除,如果能,就是闰年,否则就是平年;整百的年份看是否能被400整除,如果能,就是闰年,否则就是平年21.C.【解析】试题分析:要求250×8的积的末尾有几个0,可以先计算出得数,进而确定积末尾的0的个数.解:因为250×8=2000;所以250×8,积的末尾有3个0.故选:C.点评:此题考查积末尾有0的乘法,看积的末尾有几个0,一定要先计算再确定,不能只看两个因数的末尾的0的个数,就加以判断.22.D.【解析】试题分析:根据4包同样的饼干重1千克,2袋同样的盐也是重1千克,可得2包盐与4包饼干同样重,所以1包盐与2包饼干同样重,据此解答即可.解:根据4包同样的饼干重1千克,2袋同样的盐也是重1千克,可得2包盐与4包饼干同样重,4÷2=2,所以1包盐与2包饼干同样重.故选:D.点评:此题主要考查简单的等量代换问题,解答此题的关键是判断出2包盐与4包饼干同样重.23.B.【解析】试题分析:分针转1圈是1小时,它走了60个小格,1小时时针走5小格,用时针走的格数比分针走的格数即可.解:5:60=1:12;故选B.点评:本题也可以这样想:时针1小时走1大格,分针1小时走12大格,它们的速度比就是1:12.24.;2;20 ;;0;7.2 ;25 ;;1440 ;60;【解析】试题分析:按照小数、分数四则运算的计算法则直接计算即可;最后两题,利用整数运算的估算方法计算.解:1÷0.375=+1=2×24=20 +=3×﹣×3=0360×0.02=7.2 10÷=25 ﹣=476×3≈1440 412÷7≈60点评:掌握四则运算的计算法则是正确计算的前提,注意估算取整的方法.25.16 ;6.21 ;;0.5;【解析】试题分析:(1)运用乘法交换律与结合律简算.(2)运用加法交换律与结合律简算.(3)先算小括号内的,再算中括号内的,最后算括号外的.(4)先算小括号内的,再算中括号内的乘法,然后算中括号内的加法,最后算括号外的除法.解:(1)=(×)×(8×1.25)=×10=16(2)1.2﹣3.79+8.8=(1.2+8.8)﹣3.79=10﹣3.79=6.21(3)÷[(+)×]=÷[×]=÷=×=(4)7.8÷[32×(1﹣)+3.6]=7.8÷[32×+3.6]=7.8÷[12+3.6]=7.8÷15.6=0.5点评:查了小数、分数的四则运算,注意运算顺序和运算法则,灵活运用所学的运算定律简便计算.26.(1)x=10.5;(2)x=1.6;(3)x=10【解析】试题分析:(1)运用乘法分配律改写成(﹣)x=4.9,即x=4.9,根据等式的性质,两边同乘即可;(2)先求出0.36×5=1.8,原式变为1.8﹣x=,根据等式的性质,两边同加上x,得0.6+x=1.8,两边同减去0.6,再同乘即可;(3)先根据比例的性质改写成0.8x=×48,再根据等式的性质,两边同除以0.8即可.解:(1)x﹣x=4.9,(﹣)x=4.9,x=4.9,x×=4.9×,x=10.5;(2)0.36×5﹣x=,1.8﹣x=,1.8﹣x+x=+x,0.6+x=1.8,0.6+x﹣0.6=1.8﹣0.6,x=1.2,x×=1.2×,x=1.6;(3):0.8=x:48,0.8x=×48,0.8x÷0.8=8÷0.8,x=10.点评:此题考查了根据等式的性质解方程,即等式两边同加、同减、同乘或同除以一个数(0除外),等式的左右两边仍相等;注意等号上下要对齐.27.周长是400.96m,面积是9615.36m2.【解析】试题分析:(1)椭圆形操场的周长等于两个圆弧的长加上长方形的两条长,即半径是32米的圆的周长加上长方形的两条长.(2)椭圆形操场的面积等于长方形的面积加上两个半圆,即长方形的面积加上半径是32米的圆的面积.解:(1)椭圆形操场的周长为:2×3.14×32+100×2=200.96+200=400.96(m)(2)椭圆形操场的面积为:3.14×322+100×(32×2)=3215.36+6400=9615.36(m2)答:椭圆形操场的周长是400.96m,面积是9615.36m2.点评:此题主要考查了组合图形的周长和面积的求法,解答此题的关键是熟练掌握长方形、圆的周长和面积公式.28.9.42厘米,7.71厘米,21厘米.【解析】试题分析:根据:圆的周长=2πr,半圆的周长=πr+2r,分别求出圆的周长和半圆的周长;然后求出长方形的长和宽,根据:长方形的周长=(长+宽)×2,即可求出长方形的周长.解:圆的周长:2×3.14×1.5=9.42(厘米);半圆的周长:3.14×1.5+2×1.5=7.71(厘米);长方形的周长:(1.5×5+1.5×2)×2=10.5×2=21(厘米)答:圆的周长是9.42厘米,半圆的周长是7.71厘米,长方形的周长是21厘米;故答案为:9.42厘米,7.71厘米,21厘米.点评:明确圆的周长和长方形的周长的计算方法,是解答此题的关键;应明确:半圆的周长即圆周长一半加上一条直径的和.29.【解析】试题分析:根据小数的意义可知0.3,表示把一个整体平均分成10,表示其中三份的数.据此解答.解:点评:本题主要考查了学生对小数意义的掌握情况.30.【解析】试题分析:依据长方形的面积公式可得:长方形的长和宽分别为12厘米与1厘米的长方形和6厘米与2厘米的长方形和长和宽分别为4厘米与3厘米的长方形的面积是12平方厘米,依据长方形的长和宽即可画出符合要求的长方形.解:如图所示,即为所要求画的面积为12平方厘米的长方形:点评:解答此题的关键是,先依据长方形的面积,确定出长方形的长和宽,从而画出符合要求的图形.31.(1)20人(2)500元.【解析】试题分析:(1)求女生有多少人,就是求28的是多少,用28×解答.(2)把原价看作单位“1”,现价是原价的1﹣20=80%.现在的售价是400元,就是原价的80%是400元.求原价是多少,用除法即可.解:(1)28×=20(人)答:女生有20人.(2)400÷(1﹣20%)=400÷0.8=500(元)答:原价是500元.点评:本题考查分数的乘法和除法的意义及应用.32.3600千克【解析】试题分析:根据“照这样计算”是指每箱蜜蜂每年酿蜂蜜数量一定,先求每箱蜜蜂每年酿蜂蜜的数量乘24,求出24箱蜜蜂1年可以酿蜂蜜的重量,然后乘2即可.解:375÷5×24×2=75×24×2=3600(千克).答:24箱蜜蜂2年可以酿3600千克蜂蜜.点评:先求出每箱蜜蜂酿蜂蜜数量是解决此题的关键.33.78.28平方米;200块【解析】试题分析:(1)观察图形可知,这套住房的面积是长5+7=12米,宽3+3=6米的长方形答面积与直径是6﹣2=4米的半圆的面积之和,据此利用长方形和半圆的面积公式计算即可解答.(2)先计算出厨房之外的地面的总面积,然后求出后来正方形地板砖的面积,用厨房之外的地面的总面积除以后来正方形地板砖的面积,即可求出所需的块数.解:(5+7)×(3+3)+3.14×()2÷2=12×6+3.14×4÷2=72+6.28=78.28(平方米);答:这套房子的总面积是78.28平方米.(2)288×(50×50)÷(60×60)=288×2500÷3600=200(块)答:需要200块.点评:此题主要考查组合图形的面积的计算方法,明确包括哪几部分面积是解决本题的关键.34.18.84平方厘米【解析】试题分析:圆锥铅锤的体积等于圆柱容器水面下降的那部分水的体积,先根据圆柱的体积公式,求出容器中水下降的体积(即圆锥的体积),已知圆锥的高是6厘米,用体积×3,再除以高即可求出底面积.由此列式解答解:容器水下降的体积:3.14×62×0.5,=3.14×36×0.5,=56.52(立方厘米);圆锥的底面积是:56.52×3÷9=18.84(平方厘米),答:圆锥的底面积是18.84平方厘米.点评:此题解答关键是理解容器中水下降的那部分水的体积等于圆锥的体积,利用圆柱、圆锥的体积计算方法解决问题.35.55%.【解析】试题分析:抓住正方体的特征,这个最大的正方体的棱长就是这个长方体最短的棱长,利用长方体和正方体的体积公式即可解决问题.解:5×4×3=60,3×3×3=27,(60﹣27)÷60,=33÷60,=0.55,=55%,答:体积要比原来减少55%.点评:正确找出这个最大正方体的棱长是解决本题的关键.36.910元【解析】试题分析:甲支付的现金是其余三人所支付现金总数的,那么甲:其余=1:4,那么甲就付了全部的,同理可得乙占全部的,丙占全部的,那么丁就占全部的:1﹣﹣,用总钱数乘丁占的分数就是丁付的钱数.解:甲:其余三人=1:4,甲占总数的,乙:其余三人=(1﹣50%):1=1:2,那么乙占总数的,丙:其余三人=1:3,丙占总数的,丁应支付现金:4200×(1﹣﹣)=4200×,=910(元);答:丁付的现金是910元.点评:本题先通过甲、乙、丙与它们之外的三人之间的关系找出它们分别占总数的几分之几,总数减去这三人的就是丁的.。
2018年深圳市小学毕业小升初模拟数学试题(共6套)附详细答案

小升初数学试卷64一、判断题1、甲数比乙数少,乙数比甲数多.________(判断对错)2、分针转180°时,时针转30°________(判断对错)3、一个圆的周长小,它的面积就一定小.________(判断对错)4、495克盐水,有5克盐,含盐率为95%.________.(判断对错)5、一根木棒截成3段需要6分钟,则截成6段需要12分钟________(判断对错)6、要剪一个面积是9.42cm2的圆形纸片,至少要11cm2的正方形纸片.()(判断对错)二、选择题加填空题加简答题7、定义前运算:○与?已知A○B=A+B﹣1,A?B=A×B﹣1.x○(x?4)=30,求x.()A、B、C、8、一共有几个三角形________.9、一款东西120元,先涨价30%,再打8折,原来(120元),利润率为50%.则现在变为________%.10、水流增加对船的行驶时间()A、增加B、减小C、不增不减D、都有可能11、教室里有红黄蓝三盏灯,只有一个拉环,拉一次红灯亮,拉两次亮红灯和黄灯,拉三次三灯全亮,拉四次全部灭,现有编号1到100的同学,每个同学拉开关拉自己编号次灯.比如第一个同学拉一次,第二个同学拉两次,照此规律一百个同学拉完灯的状态是________.12、跳蚤市场琳琳卖书,两本每本60元,一本赚20%,一本亏20%,共()A、不亏不赚B、赚5元C、亏2元D、亏5元13、一张地图比例尺为1:30000000,甲、乙两地图上距离为6.5cm,实际距离为________千米.14、一个长方形的长和宽都为整数厘米,面积160有几种可能?15、环形跑道400米,小百、小合背向而行,小百速度是6米/秒,小合速度是4米/秒,当小百碰上小合时立即转向跑,小合不改变方向,小百追上小合时也立即转向跑,小合仍不改变方向,问两人第11次相遇时离起点多少米?(按较短距离算,追上和迎面都算相遇)16、甲、乙、丙合作一项工程,4天干了整个工程的,这4天内,除丙外,甲又休息了2天,乙休息了3天,之后三人合作完成,甲的效率是丙的3倍,乙的效率是丙的2倍.问工程前后一共用了多少天?17、以BD为边时,高20cm,以CD为边时,高14cm,▱ABCD周长为102厘米,求面积?18、100名学生去离学校33公里的地方,只有一辆载25人的车,车每小时行驶55公里,学生步行速度5km/h,求最快要多久到目的地?19、A、B、C、D四个数,每次计算三个数的平均值,这样计算四次,得出的平均数分别为29、28、32、36(未确定),求四个数的平均值.20、一根竹竿,一头伸进水里,有1.2米湿了,另一头伸进去,现没湿部分是全长的一半少0.4米,求没湿部分的长度.21、货车每小时40km,客车每小时60km,A、B两地相距360km,同时同向从甲地开往乙地,客车到乙地休息了半小时后立即返回甲地,问从甲地出发后几小时两车相遇?22、欢欢与乐乐月工资相同,欢欢每月存30%,乐乐月开支比欢欢多10%,剩下的存入银行1年(12个月)后,欢欢比乐乐多存了5880元,求欢欢、乐乐月工资为多少?23、小明周末去爬山,他上山4千米/时,下上5千米/时,问他上下山的平均速度是多少?24、一个棱长为1的正方体,按水平向任意尺寸切成3段,再竖着按任意尺寸切成4段,求表面积.25、一个圆柱和一个圆锥底面积比为2:3,体积比为5:6,求高的比.三、计算题26、计算题.0.36:8=x:2515÷[()]﹣0.591× ﹣1÷13×100+9× +11 ÷11[22.5+(3 +1.8+1.21× )]+ + + +…+答案解析部分一、<b >判断题</b>1、【答案】错误【考点】分数的意义、读写及分类【解析】【解答】解:把乙数看作5份数,甲数就是5﹣3=2份数(5﹣2)÷2= .答:乙数比甲数多.故答案为:错误.【分析】甲数比乙数少,把乙数看作5份数,那么甲数就是5﹣3=2份数;要求乙数比甲数多几分之几,需把甲数看作单位“1”,也就是求乙数比甲数多的部分占甲数的几分之几,列式计算后再判断得解.2、【答案】错误【考点】角的概念及其分类【解析】【解答】解:180÷6×0.5=30×0.5=15(度)答:分针转180°时,时针转15度.故答案为:错误.【分析】1分钟分针旋转的度数是6度,依此先求出分针转180度需要的时间,时针1分钟旋转的度数是0.5度,乘以求出的分钟数,即可得到时针旋转的度数.3、【答案】正确【考点】圆、圆环的周长,圆、圆环的面积【解析】【解答】解:半径确定圆的大小,周长小的圆,半径就小,所以面积也小.所以原题说法正确.故答案为:正确.【分析】圆的半径的大小确定圆的面积的大小;半径大的圆的面积就大;圆的周长=2πr,周长小的圆,它的半径就小.由此即可判断.4、【答案】错误【考点】百分率应用题【解析】【解答】解:5÷495×100%≈1%答:含盐率约是1%.故答案为:错误.【分析】495克盐水,有5克盐,根据分数的意义可知,用含盐量除以盐水总量即得含盐率是多少.5、【答案】错误【考点】整数四则混合运算,整数、小数复合应用题,比例的应用【解析】【解答】解:6÷(3﹣1)=6÷2=3(分钟)3×(6﹣1)=3×5=15(分钟)15>12故答案为:错误.【分析】截成3段需要需要截2次,需要6分钟,由此求出截一次需要多少分钟;截成6段,需要截5次,再乘截一次需要的时间就是截成6段需要的时间,然后与12分钟比较即可.6、【答案】错误【考点】长方形、正方形的面积,圆、圆环的面积【解析】【解答】解:小正方形的面积(半径的平方):9.42÷3.14=3(平方厘米),大正方形的面积:3×4=12(平方厘米);答:至少需要一张12平方厘米的正方形纸片.故答案为:错误.【分析】要剪一个面积是9.42平方厘米的圆形纸片,需要的正方形纸片的边长是圆的直径,知道圆的面积可以求半径的平方,把正方形用互相垂直的圆的两个直径分成4个小正方形,则每个小正方形的面积都为圆的半径的平方,进而可求大正方形的面积.二、<b >选择题加填空题加简答题</b>7、【答案】B【考点】定义新运算【解析】【解答】解:x○(x?4)=30x○(4x﹣1)=30x+4x﹣1﹣1=305x=32x= .故选:B.【分析】根据题意可知,A○B=A+B﹣1,表示两个数的和减1,A?B=A×B﹣1表示两个数的积减1;根据这种新运算进行解答即可.8、【答案】37【考点】组合图形的计数【解析】【解答】解:根据题干分析可得:顶点O在上面的三角形,一共有5+4+3+2+1=15(个)顶点O在左边的三角形一共有6+5+4+3+2+1=21(个)15+21+1=37(个)答:一共有37个三角形.故答案为:37.【分析】先看顶点O在上面的三角形,一共有5+4+3+2+1=15个三角形,再看顶点O在左边的三角形一共有6+5+4+3+2+1=21个,据此加起来,再加上大三角形即可解答问题.9、【答案】56【考点】百分数的实际应用【解析】【解答】解:120×(1+30%)×80%=120×130%×80%=124.8(元)120÷(1+50%)=120÷150%=80(元)(124.8﹣80)÷80=44.8÷80=56%答:现在利润率是56%.故答案为:56.【分析】将原价当作单位“1”,则先涨价30%后的价格是原价的1+30%,再打八折,即按涨价后价格的80%出售,则此时价格是原价的(1+30%)×80%,又原来利润是50%,则原来售价是进价的1+50%,则进价是120÷(1+50%)=80元,又现在售价是120×(1+30%)×80%=124.8元,则此时利润是124.8﹣80元,利润率是(124.8﹣80)÷80.10、【答案】D【考点】简单的行程问题【解析】【解答】解:分三种情况:1.小船船头垂直于河岸时,小船行驶时间不增不减,所以C正确;2.当小船顺水而下时,船速加快,时间减少,所以B正确;3.当小船逆水而上时,船速减慢,时间增加,所以A正确;故选:D.【分析】此题分几种情况:1.小船船头垂直于河岸时,由于船的实际运动与沿船头指向的分运动同时发生,时间相等,故水流速度对小船的渡河时间无影响,2.当小船顺水而下时,船速等于静水速度加水速,速度加快,路程不变时,时间减少,3.当小船逆水而上时,船速等于静水时速度减水速,所以船速减慢,时间增加.所以三种情况都可能出现,据此解答.11、【答案】第100个同学拉之前,灯不可能全灭.应该是总次数1+2+3+.+100=5050 5050÷4=1262.2就是第二次的状态,红灯和黄灯亮【考点】奇偶性问题【解析】【解答】解:第100个同学拉之前,灯不可能全灭.应该是总次数1+2+3+.+100=5050,5050÷4=1262(次)…2,就是第二次的状态,红灯和黄灯亮.故答案为:第100个同学拉之前,灯不可能全灭.应该是总次数1+2+3+.+100=5050 5050÷4=1262.2就是第二次的状态,红灯和黄灯亮.【分析】把按4次看成一次操作,这一次操作中按第一次第一盏灯亮,按两次第二盏灯亮,按三次两盏灯全亮,再按一次两盏灯全灭;求出100里面有几个这样的操作,还余几,然后根据余数推算.12、【答案】D【考点】百分数的实际应用【解析】【解答】解:设两本书的原价分别为x元,y元则:x(1+20%)=60y(1﹣20%)=60解得:x=50y=75所以两本书的原价和为:x+y=125元而售价为2×60=120元所以她亏了5元【分析】两本每本卖60元,一本赚20%,一本亏20%,要求出两本书的原价.13、【答案】1950【考点】比例尺【解析】【解答】解:6.5÷ =195000000(厘米),195000000厘米=1950千米;答:实际距离是19500千米.故答案为:1950.【分析】要求实际距离是多少千米,根据“图上距离÷比例尺=实际距离”,代入数值计算即可.14、【答案】解:因为160=1×160=2×80=4×40=5×32=8×20=16×10,所以这个长方形的长与宽有6种可能.答:面积是160有6种可能.【考点】长方形、正方形的面积【解析】【分析】根据长方形的面积公式S=长×宽,长×宽=160,根据160=1×160=2×80=4×40=5×32=8×20=16×10,据此即可解答问题.15、【答案】解:400÷(6+4)=400÷10=40(秒)40×4×11÷400=160×11÷400=1760÷400=4(圈)…160(米)答:第11次相遇时离起点160米.【考点】相遇问题【解析】【分析】根据题意可知小合一直是沿同一方向前进,每一次相遇用的时间根据时间=路程÷速度和可求出,再乘小合的速度信相遇次数,可知小合共行的路程,再除以环形跑道的长度,看余数可求出离起点的距离,据此解答.16、【答案】解:× ÷4 = ÷4= ,×3= ,×2= ,4+2+3+[1﹣﹣×(2+3)﹣×3﹣×2]÷(+ + )=9+[1﹣﹣﹣﹣]÷=9+5=14(天)答:完成这项工程前后需要14天【考点】工程问题【解析】【分析】由于甲的效率是丙的3倍,乙的效率是丙的2倍,将丙的工作效率当作单位“1”,则甲、乙、丙三人的效率比是3:2:1,又4天干了整个工程的,则丙完成了这4天内所做工程的= ,即完成了全部工程的× = ,所以丙每天能完成全部工作的÷4= ,则甲每天完成全部工程的×3= ,丙每天完成全部工程的×2= .又然后除丙外,甲休息了2天,乙休息了3天,则这2+3=5天内,丙完成了全部工程的×5= ,甲完成了全部工程的×3= ,乙完成全部工作的×2= ,此时还剩下全部的1﹣﹣﹣﹣,三人的效率和是+ + ,所以此后三人合作还需要(1﹣﹣﹣﹣)÷(+ + )天完成,则将此工程前后共用了4+2+3+(1﹣﹣﹣﹣)÷(+ + )天.17、【答案】解:CD边上的高与BD边上的高的比是:14:20= ;平行四边形的底CD为:102÷(1 )÷2=102=102×=30(厘米);平行四边形的面积为:30×14=420(平方厘米);答:平行四边形的面积是420平方厘米【考点】组合图形的面积【解析】【分析】平行四边形的对边平行且相等,平行四边形的面积=底×高,由CD边上的高与BD边上的高的比等于CD与BD的反比,已知周长求出平行四边形的底,再利用面积公式解答.18、【答案】解:(33÷9)×3÷5+(33÷9)×6÷55 = += (小时)答:最快要小时到目的地【考点】简单的行程问题【解析】【分析】如图:AB是两地距离33公里,100个人被分成4组,每组是25人,第一组直接从A开始上车被放在P1点;汽车回到C2接到第2组放在了P2点;下面都是一样,最后一组是在C4接到的,直接送到B点;我们知道,这4组都是同时达到B点,时间才会最短;那么其4个组步行的距离都是一样的;当第一组被送到P1点时,回到C2点这段时间,另外三个组都步行到了C2,根据速度比=路程之比=55:5=11:1;我们把接到每组之间的步行距离看作单位1,那么汽车从出发到返回P2就是11个单位;那么出发点A到P1就是(11+1)÷2=6个单位;因为步行的距离相等,所以2段对称;(例如第一组:步行的距离是P1到B点3份,最后一组是A到C4也是三段距离是3份);所以以第一组为例,它步行了后面的3份,乘车行了前面的6份,可见全程被分为9份,每份是33÷9=千米,步行速度是5千米每小时,时间就是(3×)÷5=小时;乘车速度是55千米每小时,时间就是(6× )÷55= 小时;合计就是小时.19、【答案】解:A、B、C、D四个数的和的3倍:29×3+28×3+32×3+36×3=87+84+96+108=375A、B、C、D四个数的和:375÷3=125;四个数的平均数:125÷4=31.25.答:4个数的平均数是31.25【考点】平均数问题【解析】【分析】根据余下的三个数的平均数:29、28、32、36,可求出A、B、C、D四个数的和的3倍,再除以3得A、B、C、D四个数的和,再用和除以4即得4个数的平均数.20、【答案】解:设这根竹竿长x米.则有x﹣1.2×2=﹣=2,则x=4,没浸湿的部分是:4÷2﹣0.4=1.6(米);答:这根竹竿没有浸湿的部分长1.6米【考点】整数、小数复合应用题【解析】【分析】设这根竹竿长x米,则两次浸湿部分都应是1.2米,两次共浸湿了1.2×2=2.4米,没浸湿的部分是(x﹣2.4)米;再由“没有浸湿的部分比全长的一半还少0.4米”可知,没浸湿的部分是(﹣0.4)米,没浸湿的部分是相等的,据此可得等式:x﹣2.4=﹣0.4,解出此方程,问题就得解.21、【答案】解:客车从甲地出发到达乙地后再停留半小时,共用的时间:360÷60+0.5=6+0.5=6.5(小时)(360﹣40×6.5)÷(60+40)=(360﹣260)÷100=100÷100=1(小时)6.5+1=7.5(小时)答:从甲地出发后7.5小时两车相遇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初数学综合模拟试卷24一、填空题:2.将1、2、3、4、5、6、8、9这八个数组成两个四位数,使这两个数的差最小,这个差是______.3.如图,将它折成一个正方体,相交于同一顶点的三个面上的数之和最大是______.4.将1至9这九个数分别填在下面九个方框中,使等式成立:5.如图,平行四边形ABCD的一边AB=8厘米,AB上的高等于3厘米,四边形EFOG的面积等于2平方厘米,则阴影部分的面积与平行四边形的面积之比是______.6.200个连续自然数的和是32300,取出其中所有的第偶数个数(第2个,第4个,……,第200个),将它们相加,则和是______.7.某人从甲地到乙地,如果每分钟走75米,迟到8分,如果每分钟走80米,迟到6分,他应以每分钟走______米的速度走才能准时到达.8.快慢两列火车的长分别是200米、300米,它们相向而行.坐在慢车上的人见快车通过此人窗口的时间是8秒,则坐在快车上的人见慢车通过此人窗口所用的时间是______秒.9.至少有一个数字是0,且能被4整除的四位数有______个.10.如图,九个小正方形内各有一个一位数,并且每行、每列及两条对角线上的三个整数的和相等,那么x=______.二、解答题:2.甲、乙、丙三人,甲每五天去李老师家,乙每四天去李老师家,丙每六天去李老师家。
三人在1997年元旦去了李老师家,下一次三人在李老师家相聚是几月几日?3.编号为1至7的7个盘子,每盘都放有玻璃球,共放有80个,其中第1号盘里放有18个,并且编号相邻的三个盘里的玻璃球数的和相等,问第6个盘中玻璃球最多可能是多少个?已知他骑车每小时行8千米,乘车每小时行16千米,则此人从家到单位的距离是多少千米?答案一、填空题:2.137要使差最小,被减数与减数应该尽量接近.被减数的千位与减数千位的差是1,它们的末三位数,被减数应该最小,是123,减数应该最大,是986,这样得到被减数是5123,减数是4986,差等于137.3.相交于同一顶点三个面上的数之和是13.6+3+4=134.73把4234分解质因数,然后进行计算和调整,有:4234=2×29×73=58×73=29×146所以最大的两位数是73.5.1∶3因为O是AC、BD的中点,所以S△AEF+S△BGE=S△AOB-S四边形EFOG=6-2=4(平方厘米)S阴影=S平ABCD-(S△AEF+S△BGE)=12-4=8(平方厘米)S阴影∶S平ABCD=8∶24=1∶36.16200连续自然数相邻两数之差是1,所以第2个数比第1个数大1,第4个数比第3个数大1,…,第200个数比第199个数大1,100个取出的数比没取出的100个数总共多100,因此所有的第偶数个数之和是(32300+100)÷2=162007.100设从甲地出发准时到达乙地需x分,则75×(x+8)=80×(x+6)80x-75x=600-480x=24甲、乙两地距离是:80×(24+6)=2400(米)从甲地准时到达乙地这人的速度是每分走:2400÷24=100(米)8.坐在慢车上的人见快车通过此人窗口时,两列火车共行了200米,用了8秒,得到两列火车的速度和是200÷8=(25米/秒),坐在快车上的人见慢车通过此人窗口时,两列火车共行了300米,所用时间是:300÷25=12(秒).9.792个一个数能被4整除的特征是末两位数能被4整除.末两位数应是00、04、08、12、16、20、 (92)96,共25个,其中含有数字0的有7个(00、 04、 08、 20、 40、 60、 80),其余 18个末两位都不含有数字0.一个四位数的末两位含有数字0,那么它的千位可以是1至9的任意一个,百位是0至9的任意一个,这个四位数的前两位数字共9×10=90个,则末两位含有数字0且能被4整除的四位数共有:90×7=630(个)如果末两位不含有数字0,那么要求四位数的百位是0,千位是1至9的任意一个,共有9个,则末两位不含数字0,前两位含有数字0,且能被4整除的四位数共有:9×18=162(个)所以至少有一个数字0,且能被4整除的四位数有 630+162=792(个).10. x=5如图所示,a+x+f=9+x+1,有a+f=10;同理d+x+c=9+x+1得d+c=10;所以 a+f+d+c=20又 a+9+d=9+x+1,得a+d=x+1;c+1+f=9+x+1,得c+f==x+9,则 a+d+c+f=2x+10.所以 2x+10=20,x=5.二、解答题:1.厂里现有工人120名所以厂里现有工人120名.2.3月1日[5,4,6]=60,60-(31+28)=1所以下一次三人在李老师家相聚是3月1日.3.第6个盘中的玻璃球最多是12个.由于相邻三个盘中的玻璃球相等,有编号为1、4、7的盘中玻璃球均相等,等于18个,于是2、3盘中的玻璃球数的和与5、6盘中的玻璃球数的和相等,所以5、6盘中玻璃球数之和是:(80-18×3)÷2=13(个)要使第6盘中的玻璃球数最多,第5盘至少是1个(每盘都有玻璃球),所以第6盘最多可能是12个.4.此人家到单位的距离是78千米.设此人家到单位的距离是s千米,他从单位回家用了t小时,则13t=12t+6t=6S=13×6=78(千米)所以此人家到单位的距离是78千米.小升初数学综合模拟试卷25一、填空题:2.三个不同的三位数相加的和是2993,那么这三个加数是______.3.小明在计算有余数的除法时,把被除数472错看成427,结果商比原来小5,但余数恰巧相同.则该题的余数是______.4.在自然数中恰有4个约数的所有两位数的个数是______.5.如图,已知每个小正方形格的面积是1平方厘米,则不规则图形的面积是______.6.现有2克、3克、6克砝码各一个,那么在天平秤上能称出______种不同重量的物体.7.有一个算式:五入的近似值,则算式□中的数依次分别是______.8.某项工作先由甲单独做45天,再由乙单独做18天可以完成,如果甲乙两人合作可30天完成。
现由甲先单独做20天,然后再由乙来单独完成,还需要______天.9.某厂车队有3辆汽车给A、B、C、D、E五个车间组织循环运输。
如图所示,标出的数是各车间所需装卸工人数.为了节省人力,让一部分装卸工跟车走,最少安排______名装卸工保证各车间的需要.10.甲容器中有纯酒精340克,乙容器有水400克,第一次将甲容器中的一部分纯酒精倒入乙容器,使酒精与水混合;第二次将乙容器中的一部分混合液倒入甲容器,这时甲容器中纯酒精含量70%,乙容器中纯酒精含量为20%,则第二次从乙容器倒入甲容器的混合液是______克.二、解答题:1.有红黄两种玻璃球一堆,其中红球个数是黄球个数的1.5倍,如果从这堆球中每次同时取出红球5个,黄球4个,那么取了多少次后红球剩9个,黄球剩2个?2.小明一家四口人的年龄之和是147岁,爷爷比爸爸大38岁,妈妈比小明大27岁,爷爷的年龄是小明与妈妈年龄之和的2倍,问小明一家四口人的年龄各是多少岁?3.A、B、C、D、E五人在一次满分为100分的考试中,A得94分,B是第一名,C得分是A与D的平均分,D得分是五人的平均分,E比C多2分,是第二名,则B得了多少分?4.甲乙两人以匀速绕圆形跑道相向跑步,出发点在圆直径的两端.如果他们同时出发,并在甲跑完60米时第一次相遇,乙跑一圈还差80米时俩人第二次相遇,求跑道的长是多少米?答案一、填空题:1.648原式=7.2×61.3+(61.3+12.5)×2.8=(7.2+2.8)×61.3+12.5×2.8=613+35=648由于2993÷3=997…2,这三个加数必然接近997,显然997、998、998的和是2993,但由于所求三个加数不同,经过调整应为996、998、999.3.4在这两种除法计算中,除数与余数没变,只是商比原来小5.设除数是a,余数是r,则472=a×商+r427=a×(商-5)+r有472-427=a×5,a=(472-427)÷5=9472÷9=52 (4)所以余数r=4.4.30因为4=1×4=2×2,有4个约数的数一定能表示成a3或ab,a、b是质数.对于a3,只有a=3时,a3=27是两位数,即有1个数符合条件.对于ab,当a=2,b=5、7、11、13、17、19、23、29、31、37、41、43、47时符合条件,有13个;当a=3,b取大于3且小于37的质数时,符合条件,有9个;同理当a=5时有5个;a=7时有2个.则自然数中恰有4个约数的所有两位数的个数是:1+13+9+5+2=30(个)5.19平方厘米所求图形是不规则图形,通过分割可以很容易求出图中标出1、2、3、4、5、6、7图形的面积,用整个大长方形面积减去这7个图形的面积即为所求,所以不规则图形面积为:8×6-3×2÷2×3-(1+3)×3÷2-2×4÷2-(2+4)×1÷2-(3+4)×2÷2=(19平方厘米)6.10这道题没有限制砝码只能放在天平的同一秤盘上,因此天平两边的秤盘上都可以放砝码,尽管只有2克、3克、6克砝码各一个,但是如果天平一边是2克,另一边是3克,就可称出1克重的物体,如果它俩放在同一边又可称出5克重的物体.同理,2克与6克砝码可称出4克或8克重的物体;3克与6克砝码可称出3克或9克重的物体,其中3克重物体可以直接用3克砝码称出;用2克、3克和6克可称出7克、5克、1克、11克重的物体;所以用这三个砝码可称出1、2、3、4、5、6、7、8、9、11克共10种不同重量的物体.7.1,3,3于是有150.15≤55×□+22×□+10×□≤151.14由于□里的数是整数,所以55×□+22×□+10×□=151只有 55×1+22×3+10×3=151所以□里数字依次填1,3,3.8.38由题意知甲乙两人合作30天可以完成这项工作.甲做45天,比30天多15天,乙可少做30-18=12(天)说明甲做15天相当于乙做12天.现在甲做20天,比30天少10天,这10天的工作量让乙来完成,需要天数:乙还需要单独做:30+8=38(天)9.21每个车间抽出3名装卸工,共抽出3×5=15人,每辆车上有3人,共需3×3=9人,这样可节约15-9=6(人).这时A有3人,B有2人,C有4人,D有0人,E有5人.再从A、B、C、E各抽出2人,每车上2人,这样又可省去2×4-2×3=2人.这样每辆车跟5人,共15人,A有1人,B有0人,C有2人,E 有3人,D还是0人.共需装卸工:5×3+1+2+3=21(人)第二次从乙容器里倒出一部分给甲容器,并不改变乙容器的酒精浓度,所以乙容器里酒精浓度是第一次甲容器倒入一部分纯酒精而得到的,因此乙容器中酒精与水之比是:20%∶(1-20%)=1∶4那么第一次从甲容器里倒出100克给乙容器,则乙容器中纯酒精与水之比恰好是:100∶400=1∶4第二次倒后,甲容器里酒精与水之比是70%∶(1-70%)=7∶3设第二次从乙容器中倒出x克酒精溶液,则第二次倒后,甲容器有纯酒所以第二次从乙容器里倒入甲容器的混合溶液是144克.二、解答题:1.取了6次后,红球剩9个,黄球剩2个.设取了x次后,红球剩9个,黄球剩2个.5x+9=(4x+2)×1.55x+9=6x+3x=6所以取6次后,红球剩9个,黄球剩2个.2.小明5岁,妈妈32岁,爸爸36岁,爷爷74岁妈妈与小明年龄之和:(147+38)÷(2×2+1)=37(岁)小明的年龄:(37-27)÷2=5(岁)妈妈的年龄:37-5=32(岁)爷爷的年龄: 37×2=74(岁)爸爸的年龄:74-38=36(岁)3.B得98分由D得分是五人的平均分知,D比A得分高,否则D成为五人中得分最低的,就不能是五人的平均分,由此得到五人得分从高到低依次是B、E、D、C、A.由C得分是A与D的平均分,因为A是94分,94是偶数,所以D的得分也应是偶数,但D不能得100分,否则B得分超过100分;D=98分,则C=96分,E=98分,B=98×5-(98+96+94+98)=104分,超过100分,不可能;所以D=96分,C=95分,E=97分,B得分是96×5-(97+96+95+94)=98(分)4.跑道长是200米第一次相遇甲、乙共跑了半圈,其中甲跑了60米.设半圈跑道长为x米,乙在俩人第一次相遇时跑了x-60米.从出发到甲乙第二次相遇共跑了3个半圈长,由于他俩匀速跑步,在3个半圈长里乙应跑3(x-60)米,而这个距离恰好是乙跑一圈还差80米,即2x-80米,所以3(x-60)=2x-803x-180=2x-80x=1002x=2×100=200(米)故圆形跑道的长是200米.小升初数学综合模拟试卷26一、填空题:1.(4.16×84-2.08×54-0.15×832)÷(0.3)2=______.2.如果两个自然数相除,商是16,余数是13,被除数、除数、商与余数的和是569,那么被除数是______.3.某项工作,甲单独干15天可完成.现甲做了6天后另有任务,剩下的工作由乙完成,用了8天.若这项工作全部由乙单独完成需______天.4.小刚晚上9点整将手表对准,可早晨7点起床时发现手表比标准时间慢了15分,那么小刚的手表每小时慢______分.5.如图,四边形ABCD的面积是42平方厘米,其中两个小三角形的面积分别是3平方厘米和4平方厘米,那么最大的一个三角形的面积是______平方厘米.的差最大是______.7.从1到1000的自然数中,有______个数出现2或4.8.小红与小丽在一次校运动会上,预测她们年级四个班比赛结果,小红猜测是3班第一名,2班第二名,1班第三名,4班第四名.小丽猜测的名次顺序是2班、4班、3班、1班.结果只有小丽猜到4班是第二名是正确的.这次运动会第一名是______班.9.将17分成几个自然数的和,再求出这些数的乘积,要使得到的乘积尽可能大,这个乘积是______.10.小于5且分母为12的最简分数有______个;这些最简分数的和是______.二、解答题:1.买6个足球和4个排球共需322元,如果每个足球比每个排球贵7元,每个足球与排球各是多少元?2.一批苹果装箱.如果已装了42箱,剩下的苹果是这批苹果的70%;如果装了85箱,则还剩下1540个苹果.这批苹果共有多少个?3.某旅游团安排住宿,若有5个房间,每间住4人,其余的3人住一间,则剩5人;若有2个房间,每间住4人,其余的5人住一间,则正好分完.求有多少个房间?旅游团有多少人?4.如图,将1.8,5.6,4.7,2.8,6.9分别填在五个○内,再在每个□中填上和它相连的三个○中的数的平均值,再把三个□中的数的平均值填在△中.找出一种填法,使三角内的数尽可能大,那么△中填的数是多少?答案一、填空题:1.1248原式=4.16×(84-4.16×27-15×2×4.16)÷0.09=4.16×(84-27-30)÷0.09=4.16×27÷0.09=4.16×300=12482.509设被除数是a,除数是b,则a=16b+13a+b+16+13=569有16b+13+b+16+13=56917b=527b=31所以被除数是a=16×31+13=5093.20设手表1小时时针转动一格为路程单位.小刚手表从晚9点到第二天早7点共转了10个格,标准时间应走时间为:所以小刚手表的时针每小时转动:5.20因为△DEC和△CEB等高,所以DE∶EB=S△DEC∶S△CEB=3∶4同理,△ADE与△EAB等高,所以S△ADE∶S△EAB=DE∶EB=3∶4又 S△ADB=42-3-4=35(平方厘米)=20(平方厘米)6.367.488从1到99含有数字2的数,一是个位数字是2的有2,12,22,32,…,92,共10个,二是十位数字是2的有20,21,22,…,29,共10个;同理1到99含有数字4的数共20个,其中22、24、42、44被重复计算,所以1到99的自然数中共有20×2-4=36个数出现2或4.从100到199、300到399、500到599、600到699、700到799、800到899、900到999情况与1到99完全相同,而从200到299这100个数的百位上全是2,从400到499这100个数的百位上全是4,而1000既不含2也不含4,所以1到1000含有数字2或4的自然数个数是:36×8+100×2=4888.1班是第一名已知4班是第二名,小红猜3班是第一名,小丽猜3班是第三名都不对,所以3班只能是第四名.小红猜2班第二名,小丽猜2班第一名也不对,2班应是第三名(如表),所以1班是第一名.9.486将17拆成n个自然数且乘积最大,拆的个数尽可能多,但不要拆成1,且拆成的数不要大于4,例如6拆成3与3比拆成4与2的两数之积要大,因此大于4的数尽可能拆,并且拆成的数2的个数不要超过2个,若多于2个,比如4个2,2+2+2+2=8=3+3+2,显然有3×3×2>2×2×2×2,所以尽可能多拆出3来,这样有17=3+3+3+3+3+2所以这个乘积是 3×3×3×3×3×2=48610.最简分数是20个,和为50.其中n=0,1, 2, 3, 4; r=1,5,7,11;且(12,r)=1.所以小于5且分母是12的最简分数共有5×4=20个这些最简分数的和是二、解答题:1.每个足球35元,每个排球28元.由于每个足球比每个排球贵7元,6个足球比 6个排球贵 7×6=42元,用总钱数 322元减去42元,相当于6+4=10个排球的价钱,得到每个排球的价钱是:(322-7×6)÷(6+4)=28(元)每个足球的价钱是:28+7=35(元)2.这批苹果共3920个已装箱的42箱苹果相当于这批苹果的1-70%=30%,所以这批苹果共装箱数:42÷(1-70%)=140(箱)剩下的1540个苹果恰好装满140-85=55箱,所以每箱苹果个数是1540÷(140-85)=28(个)这批苹果的总数是28×140=3920(个)3.房间6间,旅游团有28人“有5个房间,每间住4人,其余的3人住一间,则剩5人”转化成“每间住3人,还剩5+(4-3)×5=10人”;“有2个房间,每间住4人,其余的5人住一间,则正好分完”转化成“每间住5人,还差(5-4)×2=2人”.对比这两个条件知,每个房间相差5-3=2人,几个房间才能相差10+2=12人,可以求出房间数:[5+(4-3)×5+(5-4)×2]÷(5-3)=12÷2=6(间)旅游团的人数是4×2+5×(6-2)=28(人)或4×5+3×(6-5)+5=28(人)4.△中填5.1要使三角中的数尽可能大,就要使三个方框中的三个数的和尽可能大.为了便于说明,不妨设五个○中的数依次为 a、 b、 c、 d、 e,三个□中的数依次为x、y、z,△中的数为A.则有3x=a+b+c,3y=b+c+d,3z=c+d+e三个□里的数的 3倍之和,中间○中c算了 3次,两端○中的a、e各算1次,其余两个数各算2次,应将最大数放在中间○内,把最小和次小的数填在两端○内,剩下的两个数放在剩下的○内.所以3x+3y+3z=6.9×3+5.6×2+4.7×2+1.8+2.8=45.9x+y+z=45.9÷3=15.3A=(x+y+z)÷3=15.3÷3=5.1。