立体几何——平行关系
高中数学-立体几何-空间中的平行和垂直关系

高中数学总复习-第七章立体几何-空间中的平行和垂直关系知识结构图】第 3 课空间中的平行关系【考点导读】1.掌握直线和平面平行、两个平面平行的判定定理和性质定理。
2.明确定义与定理的不同,定义是可逆的,既是判定也是性质,而判定定理与性质定理多是不可逆的。
3.要能灵活的对“线线平行” 、“线面平行”和“面面平行”进行转化。
基础练习】1.若a、b为异面直线,直线c∥a,则c与b的位置关系是异面或相交2.给出下列四个命题①垂直于同一直线的两条直线互相平行. ②垂直于同一平面的两个平面互相平行.③若直线l1, l2与同一平面所成的角相等, 则l1,l2互相平行.④若直线l1, l2是异面直线,则与l1,l2都相交的两条直线是异面直线. 其中假.命题的个数是 4 个。
3.对于任意的直线l 与平面a,在平面a内必有直线m,使m与l 垂直。
4. 已知a、b、c 是三条不重合的直线,α、β、r 是三个不重合的平面,下面六个命题:①a∥c,b∥c a∥b;②a∥r,b∥r a∥b;③α∥c,β∥c α∥β;④α∥r,β∥r α∥β;⑤a∥c,α∥c a∥α;⑥a∥r ,α∥r a∥α.其中正确的命题是①④范例导析】例1.如图,在四面体ABCD中,截面EFGH是平行四边形.求证:AB∥平面EFG.证明:∵面EFGH是截面.∴点E,F,G,H分别在BC,BD,DA,AC上.∴ EH 面ABC,GF 面ABD,由已知,EH∥GF.∴ EH∥面ABD.又∵ EH 面BAC,面ABC∩面ABD=AB∴EH∥AB.∴ AB∥面EFG.例2.如图,在正方体ABCD—A1B1C1D1 中,点N在BD上,点M在B1C上,并且CM=DN.求证 :MN ∥平面 AA 1B 1B.分析:“线线平行”、“线面平行”、“面面平行”是可以互相转化的。
本题可以采 用任何一种转化方式。
简证:法 1:把证“线面平行”转化为证“线线平行” 。
即在平面 ABB 1A 1内找一条直线与 MN 平行,如图所示作平行线即可 法 2 :把证“线面平行”转化为证“线线平行” 。
立体几何平行垂直的证明方法

立体几何平行垂直的证明方法在立体几何中,平行和垂直是两个重要的概念。
平行指的是两条直线或两个平面在平面内没有交点,而垂直则表示两条直线或两个平面之间存在90度的夹角。
在解决立体几何问题时,我们常常需要证明两条线段或两个平面是否平行或垂直。
本文将介绍几种常用的证明方法,帮助读者更好地理解立体几何中平行和垂直的性质。
一、平行线的证明方法1. 共面法:若两条直线在同一个平面内且没有交点,则它们是平行线。
要证明两条直线平行,我们可以找到一个共同的平面,使得这两条直线在该平面内且没有交点。
通过构建图形或使用法向量等方法,可以证明两条直线共面且没有交点,从而得出它们是平行线的结论。
2. 平行线定理:若两条直线与第三条直线分别平行,则这两条直线也是平行线。
这一方法常用于证明平行线的性质,通过构建平行线与其他直线的交点关系,可以得出所求结论。
3. 平行线的性质:在平面几何中,平行线具有很多性质。
常见的平行线定理包括等角定理、同位角定理、内错角定理等。
通过运用这些性质,可以证明两条直线平行。
二、垂直关系的证明方法1. 垂直定理:若两条直线互相垂直,则构成的四个角中有两个互为相应角。
根据这一定理,我们可以通过证明两个角互为相应角,从而得出两条直线互相垂直的结论。
2. 垂线定理:若两条直线互相垂直,则它们的斜率之积等于-1。
这一方法常用于证明两条直线垂直的情况。
通过计算两条直线的斜率,如果它们的斜率之积等于-1,则可以得出它们垂直的结论。
3. 垂直角的性质:在平面几何中,垂直角的性质是我们常用的性质之一。
两条直线垂直时,其错角是互相垂直的。
通过构建直线的错角,可以证明所求的两条直线垂直关系。
三、平面的平行和垂直关系的证明方法1. 共面定理:在空间几何中,三条或三条以上的直线如果在同一个平面内,则它们是共面的。
通过在空间中构建直线和平面的关系,可以证明所求直线是否共面。
2. 平行平面定理:若两个平面各与第三个平面平行,则这两个平面也是平行的。
初中数学知识归纳立体几何中的平行关系分析

初中数学知识归纳立体几何中的平行关系分析立体几何是数学中的一个分支,它研究的是三维空间中的各种几何形体。
在立体几何中,平行关系是一个非常重要的概念。
本文将对初中数学中与立体几何中的平行关系相关的知识进行归纳和分析。
一、平行线与平面在初中数学中,我们学习到了平行线与平面的概念。
平行线是指在同一个平面上,永远不会相交的两条直线。
而平面是一个无限大的且无厚度的二维空间。
平行线与平面之间的关系是,如果一条直线与一个平面内的一条直线平行,那么这条直线与这个平面内的任意一条直线都平行。
二、平行四边形平行四边形是指具有两对对立边分别平行的四边形。
在初中数学中,我们学习到了平行四边形的性质。
首先,平行四边形的对边是相等的。
也就是说,如果一条直线与一个平行四边形的一条边平行,那么这条直线与这个平行四边形的对边也平行。
其次,平行四边形的对角线互相平分。
也就是说,平行四边形的对角线的交点是对角线的中点。
三、平行关系与立体图形在立体几何中,平行关系不仅仅适用于平面图形,也适用于立体图形。
例如,在长方体中,对立的两个面是平行的。
这是因为长方体的所有侧面都是矩形,而矩形中的对立边是平行的。
同样地,在正方体中,每个面都与相邻的四个面平行。
这是因为正方体的所有侧面都是正方形,而正方形中的对立边也是平行的。
四、平行线与平面的应用平行线与平面的概念在实际生活中有着广泛的应用。
例如,在建筑设计中,我们常常需要考虑平行线与平面的关系,以确保建筑物的结构稳定。
另外,在地理测量中,平行线与平面的概念也被用于测量地球上的经度和纬度。
总结起来,平行关系是立体几何中的一个重要概念,涉及到平行线与平面以及平行四边形等内容。
了解和应用平行关系的知识,不仅可以帮助我们更好地理解立体几何中的各种几何形体,还可以在实际生活中应用于建筑设计、地理测量等领域。
通过深入学习和掌握这些知识,我们可以提高数学思维和解决实际问题的能力。
空间中的平行关系——数学立体几何

【思路】
本题可以转化为证明EE1平行于 平面FCC1内的一条直线或证明平 面A1ADD1与平面FCC1平行.
【解答】
证法一:在直四棱柱ABCD- A1B1C1D1 中 , 取 A1B1 的 中 点 F1 , 连 接 A1D , C1F1 ,
CF1. 因为AB=2CD,且AB∥CD,
所以CD平行且等于A1F1,
∵BC∥AD且BC=1/2AD, 又Q为AD的中点 即BC平行且等于AQ.
M
D
∴四边形BCQA为平行四边形, Q N
C
且N为AC中点,
又∵点M在是棱PC的中点, A
B
∴ MN // PA
………………...…2分
∵ MN⊂平面MQB,PA⊄平面MQB, ...………3分
∴ PA // 平面MBQ.
……………...……4分
【点评】
证明线面平行的方法主要有两种:利 用线面平行的判断定理和面面平行的 性质定理.定理的条件的叙述要完整, 同时也需根据不同特点的题选用不同 方法.关键是找到(或作出)平面内与已 知直线平行的直线,常用平行四边形 的对边平行(如本例)或三角形的中位线 的性质(如变式题),还可以逆用线面平 行的性质先推测出需要的直线.
空间中的平行关系
空间平行例题
空间中的平行关系例题
[2009·山东] 如图所示,在直四棱柱ABCD- A1B1C1D1 中 , 底 面 ABCD 为 等 腰 梯 形 , AB∥CD , AB = 2CD , E 、 E1 、 F 分 别 是 棱 AD、AA1、AB的中点. 证明:直线EE1∥平面FCC1.
2011·丰台一模·立体几何
如图,在四棱锥P-
P
ABCD中,底面ABCD
高中数学-立体几何-空间中的平行和垂直关系

高中数学总复习-第七章立体几何-空间中的平行和垂直关系【知识结构图】第3课空间中的平行关系【考点导读】1.掌握直线和平面平行、两个平面平行的判定定理和性质定理。
2.明确定义与定理的不同,定义是可逆的,既是判定也是性质,而判定定理与性质定理多是不可逆的。
3.要能灵活的对“线线平行”、“线面平行”和“面面平行”进行转化。
【基础练习】1.若ba、为异面直线,直线c∥a,则c与b的位置关系是异面或相交2.给出下列四个命题:①垂直于同一直线的两条直线互相平行. ②垂直于同一平面的两个平面互相平行.③若直线12,l l 与同一平面所成的角相等,则12,l l 互相平行. ④若直线12,l l 是异面直线,则与12,l l 都相交的两条直线是异面直线. 其中假.命题的个数是 4 个。
3.对于任意的直线l 与平面a ,在平面a 内必有直线m ,使m 与l 垂直 。
4. 已知a 、b 、c 是三条不重合的直线,α、β、r 是三个不重合的平面,下面六个命题:①a ∥c ,b ∥c ⇒a ∥b ;②a ∥r ,b ∥r ⇒a ∥b ;③α∥c ,β∥c ⇒α∥β; ④α∥r ,β∥r ⇒α∥β;⑤a ∥c ,α∥c ⇒a ∥α;⑥a ∥r ,α∥r ⇒a ∥α. 其中正确的命题是 ①④ 。
【范例导析】例1.如图,在四面体ABCD 中,截面EFGH 是平行四边形. 求证:AB ∥平面EFG . 证明 :∵面EFGH 是截面.∴点E ,F ,G ,H 分别在BC ,BD ,DA ,AC 上. ∴EH面ABC ,GF面ABD ,由已知,EH ∥GF .∴EH ∥面ABD . 又 ∵EH 面BAC ,面ABC ∩面ABD=AB∴EH ∥AB . ∴AB ∥面EFG .例2. 如图,在正方体ABCD —A 1B 1C 1D 1中,点N 在BD 上,点M 在B 1C 上,并且CM=DN.求证:MN ∥平面AA 1B 1B.分析:“线线平行”、“线面平行”、“面面平行”是可以互相转化的。
精品导学案: 空间向量与立体几何 §3.2 立体几何中的向量方法 (一)—— 平行与垂直关系的向量证法

精品导学案:§3.2 立体几何中的向量方法 (一)—— 平行与垂直关系的向量证法知识点一 求平面的法向量已知平面α经过三点A(1,2,3),B(2,0,-1),C(3,-2,0),试求平面α的一个法向量.解 ∵A(1,2,3),B(2,0,-1),C(3,-2,0),AB =(1,-2,-4),AC →=(1,-2,-4),设平面α的法向量为n =(x ,y ,z). 依题意,应有n ·AB = 0, n ·AC →= 0.即⎩⎪⎨⎪⎧ x -2y -4z =02x -4y -3z =0,解得⎩⎪⎨⎪⎧x =2y z =0.令y =1,则x =2. ∴平面α的一个法向量为n =(2,1,0).【反思感悟】 用待定系数法求平面的法向量,关键是在平面内找两个不共线向量,列出方程组,取其中一组解(非零向量)即可.在正方体ABCD-A 1B 1C 1D 1中,E ,F 分别是BB 1,DC 的中点,求证:AE是平面A 1D 1F 的法向量.证明 设正方体的棱长为1,建立如图所示的空间直角坐标系,则AE 是平面A 1D 1F的法向量.证明设正方体的棱长为1,建立如图所示的空间直角坐标系,则 A(1,0,0),E ⎝⎛⎭⎫1,1,12,AE =⎝⎛⎭⎫0,1,12. .D 1=(0,0,1), F ⎝⎛⎭⎫0,12,0,A 1(1,0,1). 1D F =⎝⎛⎭⎫0,12,-1,A 1D 1→=(-1,0,0). ∵AE ·1D F =⎝⎛⎭⎫0,1,12·⎝⎛⎭⎫0,12,-1=12-12=0, AE ·A 1D 1→=0,∴AE ⊥A 1D 1→.又A 1D 1∩D 1F =D 1, ∴AE ⊥平面A 1D 1F ,∴ AE 是平面A 1D 1F 的法向量.知识点二 利用向量方法证平行关系在正方体ABCD —A 1B 1C 1D 1中,O 是B 1D 1的中点,求证:B 1C ∥平面ODC 1.证明 方法一 ∵1B C =1A D ,∴ B 1A D ∉∴B 1C ∥A 1D ,又A 1D ⊂面ODC 1, ∴B 1C ∥面ODC 1.方法二 ∵1B C =11B C +1B B=1B O +1OC +1D O +OD =1OC +OD .∴1B C ,1OC ,OD 共面.又B 1C ⊄ODC 1,∴B 1C ∥面ODC 1.方法三建系如图,设正方体的棱长为1,则可得 B 1(1,1,1),C(0,1,0), O ⎝⎛⎭⎫12,12,1,C 1(0,1,1),1B C =(-1,0,-1),OD =⎝⎛⎭⎫-12,-12,-1, 1OC =⎝⎛⎭⎫-12,12,0. 设平面ODC 1的法向量为n =(x 0,y 0,z 0),则10,0,n OD n OC ⎧⨯=⎪⎨⨯=⎪⎩ 得⎩⎨⎧-12x 0-12y 0-z 0=0①-12x 0+12y 0=0 ②令x 0=1,得y 0=1,z 0=-1,∴n =(1,1,-1). 又 1B C ·n =-1×1+0×1+(-1)×(-1)=0, ∴1B C ⊥n ,∴B 1C ∥平面ODC 1.【反思感悟】 证明线面平行问题,可以有三个途径,一是在平面ODC 1内找一向量与1B C 共线;二是说明1B C 能利用平面ODC 1内的两不共线向量线性表示,三是证明1B C 与平面的法向量垂直.如图所示,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,∠BCF =∠CEF =90°,AD =3,EF =2.求证:AE ∥平面DCF.证明 如图所示,以点C 为坐标原点,以CB 、CF 和CD 所在直线分别作为x 轴、y 轴和z 轴,建立空间直角坐标系C —xyz.设AB =a ,BE =b ,CF =c , 则C(0,0,0),A(3,0,a),B(3,0,0),E(3,b,0),F(0,c,0). AE →=(0,b ,-a), CB =(3,0,0),BE =(0,b,0),所以CB ·AE →= 0,CB ·BE = 0,从而CB ⊥AE ,CB ⊥BE.所以CB ⊥平面ABE.因为CB ⊥平面DCF , 所以平面ABE ∥平面DCF.故AE ∥平面DCF.知识点三 利用向量方法证明垂直关系在正方体ABCD —A 1B 1C 1D 1中,E ,F 分别是棱AB ,BC 的中点,试在棱BB 1上找一点M ,使得D 1M ⊥平面EFB 1.解建立空间直角坐标系D —xyz ,设正方体的棱长为2,则E(2,1,0),F(1,2,0),D 1(0,0,2),B 1(2,2,2).设M (2,2,m ),则EF =(-1,1,0),B 1E →=(0, -1, -2), 1D M =(2,2,m -2).∵ 1D M ⊥平面EFB 1,∴ 1D M ⊥EF ,1D M ⊥B 1E , ∴1D M ·EF = 0且1D M ·B 1E →= 0,于是-2+2=0,-2-2(m-2)=0,⎧⎨⎩∴m =1,故取B 1B 的中点为M 就能满足D 1M ⊥平面EFB 1.【反思感悟】 证明直线与平面垂直有两种方法:(1)用直线与平面垂直的判定定理;(2)证明该直线所在向量与平面的法向量平行.在正三棱柱ABC —A 1B 1C 1中,B 1C ⊥A 1B.求证:AC 1⊥A 1B.证明 建立空间直角坐标系C 1—xyz , 设AB =a ,CC 1=b. 则A 1⎝⎛⎭⎫32a ,a 2,0,B(0,a ,b),B 1(0,a,0),C(0,0,b),A ⎝⎛⎭⎫32a ,12a ,b , C 1(0,0,0). 于是1A B =⎝⎛⎭⎫32a ,12a ,b 1B C =(0,- a ,b ),1AC =⎝⎛⎭⎫-32a ,-a2,-b .∵B 1C ⊥A 1B ,∴ 1B C ·1A B = -a 22+b 2=0,而1A C ·1A B =34a 2-14a 2-b 2=a 22-b 2=0∴ 1A C ⊥1A B 即AC 1⊥A 1B.课堂小结:1.用待定系数法求平面法向量的步骤: (1)建立适当的坐标系.(2)设平面的法向量为n =(x ,y ,z).(3)求出平面内两个不共线向量的坐标a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).(4)根据法向量定义建立方程组⎩⎪⎨⎪⎧a·n =0b·n =0. (5)解方程组,取其中一解,即得平面的法向量.2.平行关系的常用证法AB =λCD →.证明线面平行可转化为证直线的方向向量和平面的法向量垂直,然后说明直线在平面外,证面面平行可转化证两面的法向量平行.3.垂直关系的常用证法要证线线垂直,可以转化为对应的向量垂直.要证线面垂直,可以转化为证明这条直线与平面内两条相交直线垂直. 要证面面垂直,可以转化为证明两个平面的法向量垂直.一、选择题1. 已知A (3,5,2),B (-1,2,1),把AB 按向量a =(2,1,1)平移后所得的向量是( ) A .(-4,-3,0) B .(-4,-3,-1) C .(-2,-1,0) D .(-2,-2,0) 答案 BAB =(-4,-3,-1).平移后向量的模和方向是不改变的.2.平面α的一个法向量为(1,2,0),平面β的一个法向量为(2,-1,0),则平面α与平面β的位置关系是( )A .平行B .相交但不垂直C .垂直D .不能确定 答案 C解析 ∵(1,2,0)·(2,-1,0)=0, ∴两法向量垂直,从而两平面也垂直.3.从点A(2,-1,7)沿向量a =(8,9,-12)的方向取线段长AB =34,则B 点的坐标为( ) A .(-9,-7,7) B .(18,17,-17) C .(9,7,-7) D .(-14,-19,31) 答案 B解析 ,设B (x ,y ,z ),AB =(x -2,y+1,z -7)=λ(8,9,- 12),λ>0.故x -2=8λ,y+1=9λ,z -7=-12λ,又(x -22+(y+12+(z -72 = 342, 得(17λ)2 = 342,∵λ>0,∴λ=2.∴x = 18,y = 17,z =-17, 即B (18,17,- 17).4.已知a =(2,4,5),b =(3,x ,y)分别是直线l 1、l 2的方向向量,若l 1∥l 2,则( ) A .x =6,y =15 B .x =3,y =152C .x =3,y =15D .x =6,y =152答案 D解析 ∵l 1∥l 2,∴a ∥b ,则有23=4x =5y ,解方程得x =6,y =152. 5.若直线l 的方向向量为a =(1,0,2),平面α的法向量为u =(-2,0,-4),则( ) A .l ∥α B .l ⊥α C . D .l 与α斜交答案 B解析 ∵u =-2a , ∴a ∥u ,∴l ⊥α.二、填空题6.已知A(1,1,-1),B(2,3,1),则直线AB 的模为1的方向向量是________________. 答案 ⎝⎛⎭⎫13,23,23或⎝⎛⎭⎫-13,-23,-23 解析,AB =(1,2,2),|AB | = 3 . 模为1的方向向量是±||ABAB , 7.已知平面α经过点O(0,0,0),且e =(1,1,1)是α的法向量,M(x ,y ,z)是平面α内任意一点,则x ,y ,z 满足的关系式是________________.答案 x +y +z =0解析 OM ·e=(x ,y ,z )·(1,1,1)= x+y+z = 0.8.若直线a 和b 是两条异面直线,它们的方向向量分别是(1,1,1)和(2,-3,-2),则直线a 和b 的公垂线(与两异面直线垂直相交的直线)的一个方向向量是________.答案 (1,4,-5)(答案不唯一)解析 设直线a 和b 的公垂线的一个方向向量为n =(x ,y ,z),a 与b 的方向向量分别为n 1,n 2,由题意得⎩⎪⎨⎪⎧ n ·n 1=0,n ·n 2=0,即:⎩⎪⎨⎪⎧x +y +z =0,2x -3y -2z =0.解之得:y =4x ,z =-5x ,令x =1, 则有n =(1,4,-5).三、解答题9.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E 、F 分别是BB 1、DD 1的中点,求证: (1)FC 1∥平面ADE ;(2)平面ADE ∥平面B 1C 1F.证明 如图所示建立空间直角坐标系Dxyz , 则有D(0,0,0)、A(2,0,0), C(0,2,0),C 1(0,2,2),E(2,2,1), F(0,0,1),B 1(2,2,2), 所以1FC =(0,2,1),DA =(2,0,0),AE =(0,2,1).(1)设n 1=(x 1 , y 1 , z 1)是平面ADE 的法向量, 则n 1 ⊥ DA, n 1⊥AE,即 1,11·2·2,DA x AE y z ⎧=⎪⎨=+⎪⎩11n n 得1110,2,x z y =⎧⎨=-⎩ 令z 1=2,则y 1=-1, 所以n 1=(0,-1,2).因为 FC 1→·n 1=-2+2=0,所以FC 1→⊥n 1. 又因为FC 1平面ADE ,所以FC 1∥平面ADE.(2)∵11C B =(2,0,0),设n 2 = (x 2 , y 2 , z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1→,n 2⊥11C B ,得21222112·20,·20,n FC y z n C B x ⎧=+=⎪⎨==⎪⎩得 得2220,2,x z y =⎧⎨=-⎩令z 2=2得y 2=-1,所以n 2=(0,-1,2),因为n 1=n 2,所以平面ADE ∥平面B 1C 1F. 10.如图所示,在棱长为1的正方体ABCD —A ′B ′C ′D ′中,AP =BQ =b (0<b<1),截面PQEF ∥A ′D ,截面PQGH ∥AD ′.(1)证明:平面PQEF 和平面PQGH 互相垂直;(2)证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值;(3)若b =12,求D ′E 与平面PQEF 所成角的正弦值.解 以D 为原点,射线DA 、DC 、DD ′分别为x 、y 、z 轴的正半轴建立如图(2)所示的空间直角坐标系D —xyz ,由已知得DF =1-b ,故A(1,0,0),A ′(1,0,1),D(0,0,0),D ′(0,0,1),P(1,0,b),Q(1,1,b),E(1-b,1,0),F(1-b,0,0),G(b,1,1),H(b,0,1).(1),证明 在所建立的坐标系中,可得PQ = (0,1,0),PF = ( -b , 0, -b),PH = (b -1,0,1 -b),'AD = ( -1,0,1),AD = ( -1,0, -1), 因为'AD ·PQ = 0,'AD ·PF= 0,所以'AD 是平面PQEF 的法向量. 因为'AD ·PQ = 0,'AD ·PH =0,所以'AD 是平面PQGH 的法向量.所以平面PQEF 和平面PQGH 互相垂直.(2)证明,因为EF = (0, -1,0),所以EF ∥PQ , |EF | = |PQ |,又PF ⊥PQ ,所以四边形PQEF 为矩形, 同理四边形PQGH 为矩形.在所建立的坐标系中可求得|PH | = (1-b), |PF | = b,所以|PH | + |PF |,又|PQ | = 1,所以截面PQEF 和截面PQGH 是定值. (3)解 由(1)知'AD =(-1,0,1)是平面PQEF 的法向量.由P 为AA ′的中点可知,Q 、E 、F 分别为BB ′、BC 、AD 的中点. 所以E (12,1,0,),'D E =⎝⎛⎭⎫12,1,-1,因此D ′E 与平面PQEF 所成角的正弦值等于|cos 〈AD ′→,'D E > =22.。
立体几何(线、面平行、垂直的有关结论)必修2 立体几何线面关系的判定与性质

立体几何(线面平行、垂直的有关结论)空间中线面平行、垂直关系有关的定理:1、【线面平行的判定】平面外的一条直线和平面内的一条直线平行,则这条直线和这个平面平行。
2、【线面平行的性质】如果一条直线和一个平面平行,经过这条直线的平面和这平面相交,那么这条直线就和两平面的交线平行。
3、如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面平行。
4、如果两个平面平行,其中一个平面内的任意一条直线平行于另一个平面。
5、如果一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。
6、如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
7、一条直线与两条平行直线中的一条直线相垂直,则这条直线也与另一条直线垂直。
8、与同一条直线都垂直的两条直线相互平行。
()9、与同一个平面都垂直的两条直线相互平行。
10、两条平行直线中的一条直线与一个平面相垂直,则另一条直线也垂直于这个平面。
11、两条相互垂直的直线中的一条平行于一个平面,则另一条直线垂直于这个平面。
()12、两条相互垂直的直线中的一条垂直于以个平面,则另一条直线平行于这个平面。
()13、平面外的两条相互垂直的直线中的一条垂直于一个平面,则另一条直线平行于这个平面。
14、一条直线垂直于两个平行平面中的一个平面,那么该直线也垂直于另一个平面。
15、如果两个平面垂直于同一条直线,那么这两个平面平行。
16、两个平面都与另一个平面相垂直,则这两个平面平行。
()17、一个平面垂直于两平行平面中的一个平面,则此平面也垂直于另一个平面。
18、如果一条直线与平面内的两条相交直线都垂直,则这条直线与这个平面垂直。
19、如果一条直线垂直于一个平面,那么这条直线垂直于该平面内的任意一条直线。
20、如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直。
21、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
【知识归纳】:【典型例题】:【高考小题】:。
《立体几何中的平行关系》教学设计-优秀教案

§11-2空间中的平行关系:线面平行 复习目标: ___________________________________________________ 复习重点: ___________________________________________________ 复习难点: ___________________________________________________ 学情分析: ___________________________________________________
一. 知识导图 性质定理
二. 知识梳理 1. 直线与平而平行 (1) 直线与平而平行的宦义 ___________________________________ (2) 判定定理:平面外 ______________________ 平行,则该直线平行于 此平而平行。
符号语言: ____________________________________________________ (3) ___________________________________________________ 性质定理:一条直线和一个平而平行,则 ____________________________
与该直线平行。
符号语言: ____________________________________________________ 三、知识导练
线线平行丄"断止丹一、线而平行 性质定理 刿定定理
定义 三而而平行
a 2 a ① l//m >=>/〃a:② l//m
m//a >=>/〃 n;
1、如图11.2-1所示,空间四边形ABCD中,对角线AC丄BDEFGH分 別为边AB.BC,CD、DA的中点,则四边形EFGH的形状一泄是() A. 等腰梯形 B.菱形 C・矩形 D.正方形
2. 若两条直线都与一个平面平行,则这两条直线的位置关系是() A. 平行 B.相交 C.异面 D.以上均有可能
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一,线面平行
主要运用判断定理找线线平行
1.αα//,//b a ,则a 与b 的位置关系( )
A .平行
B .异面
C .相交
D .以上情况均有可能
2.a ,b 是两条不相交的直线,则过直线b 且平行于a 的平面( )
A .有且只有一个
B .至少有一个
C .至多有一个
D .以上答案都不对
3、已知正方体ABCD-A`B`C`D`中,E ,F 分别是A`B`,B`C`的中点。
求证:EF ∥面AD`C 。
4、如图,已知矩形ABCD 所在平面外一点P ,E 、F 分别是AB, PC 的中点 ,
求证:EF ∥平面P AD ;
A B C D
A B` C
D
E F C
B D A
P
E
F
5. 如图,四棱锥P -ABCD 的底面是正方形,点E 、F 分别为棱AB 、PD 的中点。
求证:AF ∥平面PCE ;
6、如图,在正方体1111ABCD A BC D -中,E 是1AA 的中点,求证:1//AC 平面
BDE 。
7. 如图,在底面为平行四边形的四棱锥P ABCD -中,点E 是PD 的中点. 求证:PB ∥A E
D 1
C B 1 D
C B A
平面AEC .
8.已知正四棱锥P —ABCD ,M 、N 分别是P A 、BD 上的点,且PM ∶MA =BN ∶ND =5∶8,求证:直线MN ∥平面PBC ;
9、正方体ABCD-A 1B 1C 1D 1,P 、Q 分别是正方形AA 1D 1D 和A 1B 1C 1D 1的中心。
求证PQ ∥平面DD 1C 1C ;;
_
1A 1
10.已知正三棱柱ABC -A 1B 1C 1,D 为AC 中点。
求证:直线AB 1∥平面C 1DB ;
11.如图:已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点.证明:AB 1∥平面DBC 1;
A 1
C 1 C B
A
B 1
B
C
A D A 1
B 1
C 1
12.如图,在斜三棱柱111C B A ABC -中, E 、F 分别是棱A A C B 111、的中点,证明E A 1∥平面FC B 1
1
13.正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各有一点P 、Q ,且AP =DQ ,求证:PQ//平面BC
14.如图,在四棱锥ABCD P -中,四边形ABCD 是平行四边形,E 是PC 的三等分点,F 是PB 的中点,求证:AF ∥面BDE ;
二,面面平行
1.下列命题中正确的是( )
①若一个平面内有两条直线都与另一个平面平行,则这两个平面平行
②若一个平面内有无数条直线都与另一个平面平行,则这两个平面平行
③若一个平面内任何一条直线都平行于零一个平面,则这两个平面平行
④若一个平面内的两条相交直线分别平行于零一个平面,则这两个平面平行
A. ①③
B. ②④
C. ②③④
D. ③④
2.下列命题中,假命题的个数是()
①一条直线平行于一个平面,这条直线就和这个平面内的任何直线不相交;②过平面外一点有且只有一条直线和这个平面平行;③过直线外一点有且只有一个平面和这条直线平行;④平行于同一条直线的两条直线和同一平面平行;⑤a和b异面,则经过b 存在唯一一个平面与α平行
A.4 B.3 C.2 D.1
3 .α,β是两个不重合的平面,a,b是两条不同直线,在下列条件下,可判定α∥β的是()
A.α,β都平行于直线a,b
B.α内有三个不共线点到β的距离相等
C.a,b是α内两条直线,且a∥β,b∥β
D.a,b是两条异面直线且a∥α,b∥α,a∥β,b∥β
4.在下列命题中,假命题的是
A. 若平面α内的任一直线平行于平面β,则α∥β
B. 若两个平面没有公共点,则两个平面平行
C. 若平面α∥平面β,任取直线a⊂α,则必有a∥β
D. 若两条直线夹在两个平行平面间的线段长相等,则两条直线平行
5.下列命题正确的是()
A 一直线与平面平行,则它与平面内任一直线平行
B 一直线与平面平行,则平面内有且只有一个直线与已知直线平行
C 一直线与平面平行,则平面内有无数直线与已知直线平行,它们在平面内彼此平行
D 一直线与平面平行,则平面内任意直线都与已知直线异面
6,如图是一个直三棱柱(以111A B C 为底面)被一平面所截得到的几何体,截面为ABC .已
知11111A B B C ==,111
90ABC ∠= ,1114,2,3AA BB CC ===。
设点O 是AB 的中点,证明:111//OC A B C 平面;
7,正方体ABCD-A ′B ′C ′D ′.证明:面A ′BD ∥面B ′CD ′;
8,正方体1111D C B A ABCD -中,M 、N 分别棱11B A 、11D A 的中点,F E 、分别为棱11C B 、11D C 的中点。
(1)求证:D B F E 、、、四点共面;(2)求证:平面//AMN 平面EFDB 。
C
B A D
A ′
B ′
C ′
D ′
9,已知正方体1111ABCD A BC D ,
O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)面111//D AB D OC 面.
10,在长方体ABCDA 1B 1C 1D 1中,E 、F 、E 1、F 1分别是AB 、CD 、A 1B 1、C 1D 1的中点. 求证:平面A 1EFD 1∥平面BCF 1E 1.
C
B 1 A 1
C 1
D 1 A B D
E F M
N
D 1
O
D
B A
C 1B 1A 1
C
11,在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 、P 、Q 、R 分别是所在棱AB 、BC 、BB '、A 'D '、D 'C '、DD '的中点,求证:平面PQR ∥平面EFG 。
12,已知四棱锥P-ABCD 中,地面ABCD 为平行四边形,点M,N,Q 分别为PA,BD,PD 上的中点,求证:平面MNQ ∥平面PBC
练习题
1.已知平面//α平面β,若两条直线n m 、分别在平面βα、内,则n m 、的关系不可能是( )
(A )平行 (B )相交 (C )异面 (D )平行或异面
C '
B
2.βα、是两个不重合平面,m l 、是两条不重合直线,则βα//的一个充分条件是( )
A .,,αα⊂⊂m l 且ββ//,//m l
B .,,βα⊂⊂m l 且m l //
C .βα⊥⊥m l ,,且m l //
D .βα//,//m l 且m l //
3.矩形ABCD ,PA ⊥平面ABCD ,M 、N 、R 分别是AB 、PC 、CD 的中点。
求证:直线AR ∥平面PMC ;
4.如图,在五面体ABCDEF 中,点O 是矩形ABCD 的对角线的交点,面CDE 是等边三角形,棱EF=BC 2
1,证明FO //平面CDE ;
5,如图,在四棱锥P -ABCD 中,底面ABCD 是正方形E 是PC 的中点.证明:PA ∥平面EDB ;
7.如图在棱柱111ABC A B C -中,D 为BC 边的中点,连结11,,AD DC A B ,求证:1//A B B A D
C
E
P
_ A
1 _ D
_ C _1 _ B _
1 _ C _A 平面1ADC
8,如图,在长方体ABCD – A 1B 1C 1D 1中,E ,H 分别是棱A 1B 1,D 1C 1上的点(点E 与B 1不重合),且EH//A 1
D 1。
过EH 的平面与棱BB 1,CC 1相交,交点分别为F ,G 。
证明:AD//平面EFGH ;
9,如图,已知E ,F 分别是正方形ABCD 边BC 、CD 的中点,EF 与AC 交于点O ,PA 、NC 都垂直于平面ABCD ,且4PA AB ==, 2NC
=,M 是线段PA 上一动点.若//PC 平面MEF ,试求:PM MA 的值;
10,直三棱柱ABC-A1B1C1中,∠ACB=120°,AC=CB=A1A=1,D1是A1B1上一动点(可以与A1或B1重合),过D1和C1C的平面与AB交于D..证明BC∥平面AB1C1;
,
A B
C
D
A B
C
D。