海明码校验.ppt-25页PPT精品文档
海明码校验和纠错原理详细

海明码校验和纠错原理详细海明纠错码当计算机存储或移动数据时,可能会产⽣数据位错误,这时可以利⽤汉明码来检测并纠错,简单的说,汉明码是⼀个错误校验码码集,由Bell实验室的R.W.Hamming发明,因此定名为汉明码。
海明码(Hamming Code)是⼀个可以有多个校验位,具有检测并纠正⼀位错误的纠错码,所以它也仅⽤于通信特性较好的环境中,如以太局域⽹中,因为如果通道特性不好的情况下,出现的错通常也不是⼀位。
海明码的检错、纠错基本思想是将有效信息按某种规律分成若⼲组,每组安排⼀个校验位进⾏奇偶性测试,然后产⽣多位检测信息,并从中得出具体的出错位置,最后通过对错误位取反来将其纠正。
要采⽤海明码纠错,需要按以下⼏个步骤。
1计算校验位数2 确定校验码位置3 确定校验码4 实现校验和纠错1. 计算校验位数它是这样的规定的:假设⽤N表⽰添加了校验码位后整个信息的⼆进制位数,⽤K代表其中有效信息位数,r表⽰添加的校验码位,它们之间的关系应满⾜:N=K+r≤2r-1。
如K=5,则要求2r-r≥5+1=6,根据计算可以得知r的最⼩值为4,也就是要校验5位信息码,则要插⼊4位校验码。
如果信息码是8位,则要求2r-r≥8+1=9,根据计算可以得知r的最⼩值也为4。
根据经验总结,得出信息码和校验码位数之间的关系如表5-1所⽰。
2.确定校验码位置上⼀步我们确定了对应信息中要插⼊的校验码位数,但这还不够,因为这些校验码不是直接附加在信息码的前⾯、后⾯或中间的,⽽是分开插⼊到不同的位置。
但不⽤担⼼,校验码的位置很容易确定的,那就是校验码必须是在2n次⽅位置,如第1、2、4、8、16、32,……位(对应20、21、22、23、24、25,……,是从最左边的位数起的),这样⼀来就知道了信息码的分布位置,也就是⾮2n次⽅位置,如第3、5、6、7、9、10、11、12、13,……位(是从最左边的位数起的)。
举⼀个例⼦,假设现有⼀个8位信息码,即b1、b2、b3、b4、b5、b6、b7、b8,由表5-1得知,它需要插⼊4位校验码,即p1、p2、p3、p4,也就是整个经过编码后的数据码(称之为“码字”)共有12位。
计算机组成原理--海明码的编码和校验方法(易懂)

计算机组成原理--海明码的编码和校验⽅法(易懂)海明码(也叫汉明码)具有⼀位纠错能⼒。
本⽂以1010110这个⼆进制数为例解释海明码的编码和校验⽅法。
编码 确定校验码的位数x 设数据有n位,校验码有x位。
则校验码⼀共有2x种取值⽅式。
其中需要⼀种取值⽅式表⽰数据正确,剩下2x-1种取值⽅式表⽰有⼀位数据出错。
因为编码后的⼆进制串有n+x位,因此x应该满⾜2x-1 ≥ n+x 使不等式成⽴的x的最⼩值就是校验码的位数。
在本例中,n=7,解得x=4。
确定校验码的位置 校验码在⼆进制串中的位置为2的整数幂。
剩下的位置为数据。
如图所⽰。
位置1234567891011内容x1x21x3010x4110 求出校验位的值 以求x2的值为例。
为了直观,将表格中的位置⽤⼆进制表⽰。
位置00010010001101000101011001111000100110101011内容x1x21x3010x4110 为了求出x2,要使所有位置的第⼆位是1的数据(即形如**1*的位置的数据)的异或值为0。
即x2^1^1^0^1^0 = 0。
因此x2 = 1。
同理可得x1 = 0, x3 = 1, x4 = 0。
位置00010010001101000101011001111000100110101011内容01110100110 因此1010110的海明码为01110100110。
校验 假设位置为1011的数据由0变成了1,校验过程为: 将所有位置形如***1, **1*, *1**, 1***的数据分别异或。
***1: 0^1^0^0^1^1 = 1 **1*: 1^1^1^0^1^1 = 1 *1**: 1^0^1^0 = 0 1***: 0^1^1^1 = 1 以上四组中,如果⼀组异或值为1,说明该组中有数据出错了。
***1 **1* 1***的异或都为1,说明出错数据的位置为1011。
海明码简单分析确定校验位个数海明码的码组长度需要符合:2^r – 1 (r代表校验位个数)为什么是这个公式呢?因为:只有这样才能保证校验位⾜够覆盖整个需要校验的码组。
《海明码校验》课件

在传输过程中,可能发生位错误,如1011010。
编码
根据海明码规则,将数据编码为1101010。
校验和纠正
接收端利用校验位和冗余位检测并纠正错误, 得到正确的数据1101。
海明码校验的应用领域
1 通信领域
海明码广泛应用于数据通信和网络传输,保 证数据的准确性和完整性。
2 存储技术
海明码被用于存储设备中,检测和纠正存储 介质中的位错误,保护数据的可靠性。
3 数字电路
海明码在数字电路设计中有重要作用,用于 检测和纠正硬件中的错误。
4 计算机科学
海明码被广泛应用于计算机科学领域,如数 据校验和纠错算法等。
总结和展望
海明码校验是一种有效的错误检测和纠正技术,可应用于多个领域。未来, 随着技术的发展,海明码校验将在数据传输和存储中发挥更广泛的作用。
数据完整性
通过校验位,可以确定数据是否在传输过程中发生了改变,确保数据完整性。
海明码的定义和原理
海明码是一种线性错误检测和纠正码,通过引入冗余位来检测和纠正传输中的错误。
二进制编码
奇偶校验
海明码使用二进制编码表示信息, 每个编码位代表一个数据位或校 验位。
海明码利用奇偶校验的原理,在 编码中添加冗余位来检测和纠正 错误。
《海明码校验》PPT课件
海明码校验(Hamming Code)是一种常见的错误检测和纠正技术,具有广 泛应用。本课件将分享海明码校验的定义、原理、校验过程、算法、实例以 及应用领域。
常见的错误和校验位的作用
常见错误
数据传输过程中常会发生位错误、插入错误或删除错误,影响信息的准确性。
校验位作用
校验位用于检测和纠正传输中发生的错误,提高数据的可靠性。
奇偶校验和海明码校验

Ba 1 Bb
Bc
1
Pi
1 Si
Si Ba Bb Bc Pi
S3 S2
B4 B4
B3 B3
B2 B1
P3 P2
S1 B4 B2 B1 P1
S3S2S1 111 110 101 100 011 010 001 000 出错位 B4 B3 B2 P3 B1 P2 P1 无
2
S S
I I
1 2
SO1 SO2
C
1
S S
I I
1 2
S S
O1 O2
C0
SI SI
1 2
0
A3 B3
A2 B2
A1 B1
A0 B0
比较器的单元真值表:
辅输入
SI2 SI1 AB 0 0 A B 0 1 A B 1 1 约束
00 SO2 SO1
00
01
11
主输入Ai Bi
01
10
SO2 SO1 SO2 SO1
O1 O2 O3 O E
0 0 0 01 0 0 1 10 0 1 0 10 0 1 1 01 1 0 0 10 1 0 1 01 1 1 0 01 1 1 1 10
D7
三
位
D6
奇 偶
校
D5
验 器
D4
三 位
奇
D3
偶 校
D2
验 器
三
D1
位
奇
D0
偶
校
0
O/ E
验 器
三
位 奇
E
偶 校
1
O
验
器
D7
九
D6
列真值表:
ABC O1 E1
海明校验

①海明校验的基本思想将有效信息按某种规律分成若干组,每组安排一个校验位,做奇偶测试,就能提供多位检错信息,以指出最大可能是哪位出错,从而将其纠正。
实质上,海明校验是一种多重校验。
②海明校验的特点它不仅具有检测错误的能力,同时还具有给出错误所在准确位置的能力。
一.校验位的位数校验位的位数与有效信息的长度有关设:N--为校验码的位数K--是有效信息位r--校验位(分成r组作奇偶校验,能产生r位检错信息)海明码应满足N=K+r≤2r-1 若r=3 则N=K+r≤7 所以K≤4二.分组原则`在海明码中,位号数(1、2、3、……、n)为2的权值的那些位,即:1(20)、2(21)、4(22)、8(23)、…2r-1位,作为奇偶校验位并记作: P1、P2、P3 、P4、…Pr,余下各位则为有效信息位。
例如:N=11 K=7 r=4 相应海明码可示意为位号 1 2 3 4 5 6 7 8 9 10 11P占位P1 P2 × P3 × × × P4 ×××其中×均为有效信息,海明码中的每一位分别被P1P2P3P4… Pr 中的一至若干位所校验,其规律是:第i位由校验位位号之和等于i的那些校验位所校验如:海明码的位号为3,它被P1P2(位号分别为1,2)所校验海明码的位号为5,它被P1P3(位号分别为1,4)所校验归并起来: 形成了4个小组,每个小组一个校验位,校验位的取值,仍采用奇偶校验方式确定。
如表2·6 、表2·7所示:三.编码、查错、纠错原理以4位有效信息(b1、b2、b3、b4)和3位校验位(P1、P2、P3)为例: K=4 r=3海明序号1 2 3 4 5 6 7海明码P1 P2 b1 P3 b2 b3 b4根据表2-8可以看到(1)每个小组只有一位校验位,第一组是P1、第二组是P2、第三组是P3。
(2)每个校验位校验着它本身和它后面的一些确定位。
海明校验码

例如:欲传递信息为b4b3b2b1(n=4),根据 2k≥n+k+1,可求出配置成海明码需增添检测位 k=3,且它们位置的安排如下:
二进制序号 1 2 3 4 5 6 7
ห้องสมุดไป่ตู้名称
C1 C2 b4 C4 b3 b2 b1
如果按照配偶原则来配置海明码,则
C1 应使1,3,5,7位中的“1”的个数为偶数;
1234567
正确的海明码 0 1 0 0 1 0 1
接收到的海明码 0 1 0 0 1 1 1
则新的检测位为:
P4=4⊕5⊕6⊕7,即P4=0⊕1⊕1⊕1=1
P2=2⊕3⊕6⊕7,即P2=1⊕0⊕1⊕1=1
P1=1⊕3⊕5⊕7,即P1=0⊕0⊕1⊕1=0
• 由此可见,传送结果P4、P2均不呈偶数, 显然出了差错。那么,错位在哪一位呢? 极为有意思的是,P4、P2、P1所构成的二 进制值恰恰是出错的位置,即P4P2P1=110, 表示第六位出错。发现错误后,计算机便 自动地将错误的第六位“1”纠正为“0”。
P1=1⊕3⊕5⊕7,即P1=C1⊕b4⊕b3⊕b1 P2=2⊕3⊕6⊕7,即P2=C2⊕b4⊕b2⊕b1 P4=4⊕5⊕6⊕7,即P4=C4⊕b3⊕b2⊕b1
设已知传送的正确海明码(按配偶原则配置)为 0100101,若传送后接收到的海明码为0100111, 其出错位可按下述步骤进行:
令:
二进制序号
• 又如,若收到按偶配置的海明码为1100101, 则经检测得:
P4=4⊕5⊕6⊕7,即P4=0⊕1⊕0⊕1=0 P2=2⊕3⊕6⊕7,即P2=1⊕0⊕0⊕1=0 P1=1⊕3⊕5⊕7,即P1=1⊕0⊕1⊕1=1 • 所以,出错位为:P4P2P1=001,即第一位。 可是第一位不是欲传送的信息位,而是检 测位,在一般情况下,可以不予纠正。
奇偶校验和海明码校验

Ba 1 Bb
Bc
1
Pi
1 Si
Si Ba Bb Bc Pi
S3 S2
B4 B4
B3 B3
B2 B1
P3 P2
S1 B4 B2 B1 P1
S3S2S1 111 110 101 100 011 010 001 000 出错位 B4 B3 B2 P3 B1 P2 P1 无
a1a0 b1 b0 00 01 11 10
00 0 0 0 0 01 1 0 0 0 11 1 1 0 1 10 1 1 0 0
a1a0 b1 b0 00 01 11 10
00 1 0 0 0 01 0 1 0 0 11 0 0 1 0 10 0 0 0 1
G a1 • b1 a0 • b1 • b0 a1 • a0 • b0
3.4 奇偶校验器
为了系统的可靠性,对于位数较少,电路较简单的应用,可以采 用奇偶校验的方法。
奇校验是通过增加一位校验位的逻辑取值,在源端将原数据代码 中为1的位数形成奇数,然后在宿端使用该代码时,连同校验位一起检 查为1的位数是否是奇数,做出进一步操作的决定。
奇偶校验只能检查一位错误,且没有纠错的能力。
O1 O2 O3 O E
0 0 0 01 0 0 1 10 0 1 0 10 0 1 1 01 1 0 0 10 1 0 1 01 1 1 0 01 1 1 1 10
D7
三
位
D6
奇 偶
校
D5
验 器
D4
三 位
奇
D3
偶 校
D2
验 器
三
D1
位
奇
D0
偶
校
0
O/ E
验 器
三