HDTMA在蛭石插层的化学反应特性

合集下载

蛭石的综合利用研究进展

蛭石的综合利用研究进展

蛭石的综合利用讨论进展世界蛭石产地重要在美国、南非、中国和俄罗斯,其中美国三分之二产于蒙大拿州利比蛭石矿,南非产地是德兰士瓦省东北部帕拉博拉蛭石矿。

我国蛭石活着界上具有肯定地位,目前按产量计居世界第三位,已经发觉蛭石矿床、矿点100余处,重要矿山分布在北方,如新疆、内蒙、河南、陕西、山西、河北和山东等省区,新疆尉犁且干布拉克矿床是我国目前发觉的最大的蛭石矿床,估量储量居世界第二。

我国蛭石年产量已达到10万t,占世界总产量12.5%,国内消费6万t,出口4万t。

天然蛭石以其储量丰富、价格低廉、吸附容量大,对环境无毒无害且简单再生等优点,在污水处理方面有着广阔的应用前景。

一、蛭石的基本情况蛭石是一种天然、无毒的粘土矿物,由云母风化或蚀变而形成。

蛭石是典型的2:1型层状硅酸盐粘土矿物,结构单元由四周体片、八面体片及层间域构成,层间存在大量的阳离子和水分子。

蛭石的一般物理性质与云母相像,常呈鳞片状、片状或单斜晶系的假晶体。

鳞片重叠,解理完整。

蛭石为褐黄色至褐色,有时带绿色色调。

为土状光泽、珍珠光泽或油脂光泽,不透亮。

蛭石在500~800℃温度下焙烧0.5~1min,体积快速膨胀,体积膨胀6~10倍,线性膨胀8~12倍,通常称之为膨胀蛭石。

蛭石具有较好的阳离子交换性能、吸附性、高温膨胀性,故广泛应用于农业、环保、建材、畜牧业等领域。

二、蛭石的应用现状1、蛭石在园艺及农业中的应用在园艺上,膨胀蛭石高度的保水本领和片状结构,使土壤通气良好,保持土壤良好的潮湿情形,成为种子发芽的理想介质,促进发芽速度和提高发芽率。

蛭石的阳离子交换本领强,在分子结构中可以保持养分然后缓慢释放到生长介质中,故作为无土培养的垫层及蔬菜、水果、花卉、家养植物生长的分别隔层很有用;在花圃的土壤中可因其密度使得渗透性强和保水性好,可为植物合理提奉养分,对土壤的调整作用加强,改善水的滞留和通风,易掌控土壤中有益元素的汲取和释放,并可防止土壤pH值的急剧变化,在肥料用量过多时对植物也不会产生危害。

HDTMA改性粉煤灰吸附酸性金黄染料废水的研究毕业论文.

HDTMA改性粉煤灰吸附酸性金黄染料废水的研究毕业论文.

毕业论文(设计)题目:HDTMA改性粉煤灰吸附酸性金黄染料废水的研究学生:系别:专业班级:指导教师:辅导教师:时间:至目录学位论文作者声明 (II)摘要 (III)关键词 (III)Abstract (III)Keywords (III)1 前言 (1)2 实验原理 (1)3 实验仪器、材料与方法 (2)3.1 实验材料 (2)3.2 实验仪器设备 (2)3.3 改性粉煤灰的制备 (2)3.4 酸性金黄染料废水的制备 (2)3.5 粉煤灰改性效果对比 (2)3.6 改性粉煤灰最佳条件的确定方法 (2)3.6.1 最佳投加量 (2)3.6.2 最佳反应时间 (3)3.6.3 最佳pH值 (3)4 结果与分析 (3)4.1 粉煤灰改性对照试验结果 (3)4.2 改性粉煤灰最佳条件的确定方法 (3)4.2.1 最佳投加量的确定 (3)4.2.2 最佳反应时间的确定 (4)4.2.3 最佳pH值的确定 (5)5 结论 (5)参考文献 (6)致谢 (6)文献综述 (7)学位论文作者声明本人郑重声明:所呈交的学位论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其它个人或集体已经发表或撰写的成果作品。

本人完全了解有关保障、使用学位论文的规定,同意学校保留并向有关学位论文管理机构送交论文的复印件和电子版,同意本论文被编入有关数据库进行检索和查阅。

本学位论文内容不涉及国家机密。

论文题目:作者单位:作者签名:年月日HDTMA改性粉煤灰吸附酸性金黄染料废水的研究摘要近几年来,粉煤灰吸附处理染料废水的研究,已经引起了广泛的关注,用粉煤灰处理染料废水既能降低色度又能去除COD。

本课题采用表面活性剂HDTMA(十六烷基三甲基溴化铵)对粉煤灰进行改性,用改性后粉煤灰处理酸性金黄染料制备模拟的染料废水,考虑粉煤灰用量、吸附时间、废水pH值等因子对吸附效果的影响。

实验结果表明,改性粉煤灰的最佳投加量为0.5克,最佳反应时间为20分钟,最佳pH为2。

掺杂/改性蒙脱土的研究进展及应用

掺杂/改性蒙脱土的研究进展及应用

掺杂/改性蒙脱土的研究进展及应用熊健;陈鹏;付昭浩;德庆旺姆;杨兴文【摘要】The montmorillonite was one of mineral materials , which was favored by researchers because of superior physical and chemical properties.The structure and elementary property of montmorillonite were introduced.The organically modified , inorganic modified , organic-inorganic compound modified and doping methods of montmorillonite were discoursed.The application of montmorillonite in effluent treatment , electrochemical , nanocomposites and catalytic materials was summarized.%作为矿物材料之一的蒙脱土以其优越的物理、化学特性而倍受研究者的青睐。

本文介绍了蒙脱土的结构和性质,对蒙脱土的有机改性、无机改性、有机-无机复合改性及掺杂方法作了论述,并对掺杂/改性蒙脱土在废水处理、电化学、纳米复合材料、催化材料方面上的应用作了概括介绍。

【期刊名称】《广州化工》【年(卷),期】2014(000)019【总页数】3页(P6-7,10)【关键词】改性蒙脱土;掺杂蒙脱土;应用【作者】熊健;陈鹏;付昭浩;德庆旺姆;杨兴文【作者单位】西藏大学理学院,西藏拉萨 850000;西藏大学理学院,西藏拉萨850000;西藏大学理学院,西藏拉萨 850000;西藏大学理学院,西藏拉萨850000;西藏大学理学院,西藏拉萨 850000【正文语种】中文【中图分类】TQ424专论与综述自然界中粘土的种类繁多,其中蒙脱土以其优越的物理、化学特性而倍受研究者的青睐。

蒙脱土改性及应用的研究进展

蒙脱土改性及应用的研究进展

第 50 卷 第 1 期2021 年 1月Vol.50 No.1Jan.2021化工技术与开发Technology & Development of Chemical Industry蒙脱土改性及应用的研究进展李璟睿1,尹陈霜1,马海燕1,夏 芬1,程国君1,2(1.安徽理工大学材料科学与工程学院,安徽 淮南 232001;2.安徽理工大学环境友好材料与职业健康研究院(芜湖),安徽 芜湖 241003)摘 要:蒙脱土是一种硅酸盐的天然矿物,具有良好的吸附性、阳离子交换性能和气液阻隔性。

吸附性使得蒙脱土具有良好的阻燃性和抗菌性,可以广泛应用于日常生活、工业及医用等方面。

为了进一步拓展蒙脱土的应用范围,通常需要对其进行有机化改性。

本文对近5年来蒙脱土的有机化改性及应用的研究进行了综述,以期为进一步开展蒙脱土的研究及应用提供参考。

关键词:蒙脱土;有机化改性;离子交换性;应用中图分类号:TB 332 文献标识码:A 文章编号:1671-9905(2021)01/02-0025-05基金项目:省级大学生创新创业训练项目(S201910361143);安徽省高等学校自然科学研究项目(KJ2019A0118);安徽理工大学芜湖研究院研发专项(ALW2020YF14);安徽理工大学引进人才项目(ZY017)通信联系人:程国君,硕士生导师,从事粉体改性及纳米复合材料的制备。

E-mail :***********************收稿日期:2020-10-29综述与进展蒙脱土(montmorillonite)别名微晶高岭石、胶岭石,结构式为(Al,Mg)2[SiO 10](OH)2·nH 2O,其中Al 2O 3含量为16.54%,MgO 4 含量为65%,SiO 2含量为50.95%,颜色多为白色微带浅灰色,含杂质时呈浅黄、浅绿、浅蓝色,土状光泽或无光泽,有滑感。

蒙脱土不仅是一种硅酸盐的天然矿物,还是膨润土矿的主要矿物组分。

高分子化学(第五版)潘祖仁版课后习题答案解析

高分子化学(第五版)潘祖仁版课后习题答案解析

第一章绪论思考题1. 举例说明单体、单体单元、结构单元、重复单元、链节等名词的含义,以及它们之间的相互关系和区别。

答:合成聚合物的原料称做单体,如加聚中的乙烯、氯乙烯、苯乙烯,缩聚中的己二胺和己二酸、乙二醇和对苯二甲酸等。

在聚合过程中,单体往往转变成结构单元的形式,进入大分子链,高分子由许多结构单元重复键接而成。

在烯类加聚物中,单体单元、结构单元、重复单元相同,与单体的元素组成也相同,但电子结构却有变化。

在缩聚物中,不采用单体单元术语,因为缩聚时部分原子缩合成低分子副产物析出,结构单元的元素组成不再与单体相同。

如果用2种单体缩聚成缩聚物,则由2种结构单元构成重复单元。

聚合物是指由许多简单的结构单元通过共价键重复键接而成的分子量高达104-106的同系物的混合物。

聚合度是衡量聚合物分子大小的指标。

以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平X表示。

均值,以DP表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以n2. 举例说明低聚物、齐聚物、聚合物、高聚物、高分子、大分子诸名词的的含义,以及它们之间的关系和区别。

答:合成高分子多半是由许多结构单元重复键接而成的聚合物。

聚合物(polymer)可以看作是高分子(macromolecule)的同义词,也曾使用large or big molecule的术语。

从另一角度考虑,大分子可以看作1条大分子链,而聚合物则是许多大分子的聚集体。

根据分子量或聚合度大小的不同,聚合物中又有低聚物和高聚物之分,但两者并无严格的界限,一般低聚物的分子量在几千以下,而高聚物的分子量总要在万以上。

多数场合,聚合物就代表高聚物,不再标明“高”字。

齐聚物指聚合度只有几~几十的聚合物,属于低聚物的范畴。

低聚物的含义更广泛一些。

3. 写出聚氯乙烯、聚苯乙烯、涤纶、尼龙-66、聚丁二烯和天然橡胶的结构式(重复单元)。

选择其常用分子量,计算聚合度。

聚合物结构式(重复单元)聚氯乙烯-[-CH2CHCl-]- n聚苯乙烯-[-CH2CH(C6H5)-]n涤纶-[-OCH2CH2O∙OCC6H4CO-]n尼龙66(聚酰胺-66)-[-NH(CH2)6NH∙CO(CH2)4CO-]n聚丁二烯-[-CH2CH=CHCH2 -]n天然橡胶-[CH2CH=C(CH3)CH2-]n聚合物分子量/万结构单元分子DP=n 特征量/万塑料聚氯乙烯聚苯乙烯5~1510~3062.5104800~2400960~2900(962~2885)足够的聚合度,才能达到一定强度,弱极性要求较高聚合度。

常用塑胶规范

常用塑胶规范
常用塑胶规范
Colvin
常用塑胶原料分类
非结晶性类: ABS PS(HIPS/GPPS) PVC PC PSU PPS PMMA COC AS TPU POM PP PE(HDPE/LDFE) PBT PA(6、66、9、12) PC+PBT PEI TPE PC/ABS TPX ASA COP
结晶性类:
PC材料基本特性
塑料化学名称:聚碳酸酯(工程材料),PC塑料密度1.18~1.20克/立方厘米,成型 收缩率:0.4-0.6%,成型温度:260-300℃,干燥条件:100-120℃ 4小时,必要时 需要除湿干燥机,PC塑料的特点:具有突出的抗冲击能力,耐蠕变和尺寸稳定性 好,耐热、吸水率低、无毒、介电性能优良,是五大工程塑料中唯一具有良好透明 性的产品,也是近年来增长速度最快的通用工程塑料。目前广泛应用于汽车、电子 电气、建筑、办公设备、包装、运动器材、医疗保健等领域,随着改性研究的不断 深入,正迅速拓展到航空航天、计算机、光盘等高科技领域。 PC料流动性较差如成品厚度在5mm以上,为避免气泡或凹陷慢速射出会有帮助。 一般而言,射速原则为薄者快,厚者慢。从注塑切换到保压,保压要尽量低。以免 成型品发生残留应力。而残留应力可用退火方式来解除或减轻,条件是120~130℃ 约三十分钟至一小时。
POM材料基本特性
塑料化学名称:聚甲醛,POM塑料密度1.43克/立方厘米,成型收缩率:1.9~2.3%, 成型温度:180~225℃,干燥条件:70℃ 2小时(部分无需干燥),POM塑料的特 点:POM是结晶型塑料,它的钢性很好,俗称“赛钢”。它具有耐疲劳、耐蠕变、耐 磨、耐热、耐冲击等优良的性能,且摩擦系数小,自润滑性好。POM不易吸湿,吸 水率为0.22~0.25%,在潮湿的环境中尺寸稳定性好,注塑时尺寸较难控制,热变 形温度为172℃。POM原料强度高,质轻,常用来代替铜、锌、锡、铅等有色金属 , 广泛用于工业机械、汽车、电子电器、日用品、管道及配件、精密仪器和建材 特别是特别适合于制作齿轮和轴承。 成型温度不能高于:230°,高于230°会分解出聚甲醛气体非常刺 鼻,如果长时间气体不能排出会引发爆炸的可能性。气体也有毒。

03-1蛭石结构修饰与有机插层

03-1蛭石结构修饰与有机插层

CPS
2θ/
河北承德蛭石原样XRD图(面网间距单位:nm)
0.955
2500
0.312
3000
2000
1500
1000
500
经结构修饰后,镁 型蛭石、钠型蛭石 和云母-蛭石混层 矿物均变成钠型蛭 石 (d001=1.158nm), 结晶程度降低。
20 30 40
CPS
1.158
0 10

同样条件下改性, 滑石基本未发生变 化 (d001=0.955nm)。
表征方法
蛭石的结构修饰及有机插层结果分别用化学成 分分析、阳离交换容量测定和粉晶X射线衍射 (XRD)方法表征。 粉晶X射线衍射实验在日本理学D/MAX1200 型转靶X射线粉末衍射仪上进行,实验条件 为 : 电 压 40 k V , 电 流 30 m A , 扫 描 速 度 4℃/min,铜靶,石墨单色器。定向样品采用 自然沉降法制备。
结果讨论
蛭石的结构修饰 提 纯 蛭 石 原 样 的 阳 离 子 交 换 容 量 (CEC) 为 102mmol/100g 化学成分见表1 粉晶X射线衍射分析结果于图1
表1
氧化物 SiO2
河北承德蛭石化学成分分析结果
AL2O3 Fe2O3 FeO MgO CaO Na2O K2
wt(%)
38.59
本实验用1.5倍CEC的HDTMAB插层蛭石时出现 两种层间距(3.06nm和3.74nm),这与吴平宵 等人的研究结果略有不同,可能与蛭石原样中 同 时 存 在 镁 型 、 钠 型 蛭 石 和 蛭石混层矿物有 关。 当 HDTMAB 用 量 大 于 2.0 倍 CEC 时 , 开 始 出 现 HDTMAB的衍射峰,衍射峰强度随HDTMAB用 量的增加而变化。但总体说来,当HDTMAB用 量大于2.0倍CEC时,进入蛭石层间的HDTMAB 量及其排列方式基本不变(倾角略有增大), 但 更 多 HDTMAB 吸 附 于 蛭 石 外 表 面 , 致 使 HDTMAB衍射峰逐渐增强。

HDTMA改性粉煤灰吸附染料废水开题报告

HDTMA改性粉煤灰吸附染料废水开题报告

毕业论文(设计)开题报告题目名称:HDTMA改性粉煤灰吸附酸性金黄染料废水的研究题目类别:毕业论文系别:专业班级:学生姓名:指导教师:辅导教师:开题报告日期:研究现状:我国粉煤灰主要来自于燃煤电厂、冶炼、化工等行业排放的固体废物,每年的排放量超过500万吨。

常见的粉煤灰中所包含的化学元素有SiO2、Al2O3、Fe2O3、MgO、K2O、Na2O、CaO、FeS。

粉煤灰活性程度主要取决于其中的氧化铝、二氧化硅和氧化钙的含量,含量越高,其活性就越高,也就意味着粉煤灰的品质也越好;铝硅玻璃体(氧化硅与氧化铝)也是粉煤灰的主要成分,也是决定粉煤灰活性的重要因素之一。

在相同条件下,玻璃体含量越高,粉煤灰的活性就越好。

自20世纪以来印染行业发展迅速,染料废水是难处理的工业废水之一,近年来,我国每年工业污水排放量达190多亿吨,其中染料废水占35%。

染料废水具有水质变化大、有机污染物含量高和色度深等特点,染料废水的处理方法已经引起人们高度的重视。

并且大多数染料为有毒难降解的有机物,带有部分极性基团(—SO3Na,—OH,—NH)和各类显色基团(如—N=N—,—N=O等),其中多数是以芳烃和杂环为母体,其化学稳定性强,具有致畸、致癌、致突变等危害;直接危害人类健康,还严重破坏水体、土壤及生态环境,造成难以估量的后果。

我国每年排放的粉煤灰,只有少部分达到了综合利用,大部分粉煤灰被闲置着,既占用大面积的土地,又严重污染环境,破坏生态平衡。

所以,开展对粉煤灰的综合利用,变废为宝,已经成为我国以及全球环保和经济共同关注的问题。

因为粉煤灰具有比表面积大,多孔等特点,对染料大分子具有一定的吸附能力,并且价格低廉,来源广泛,因而在处理染料废水方面有较大的潜力。

但是未经改性的粉煤灰对染料废水的脱色能力有限,通过不同方法对粉煤灰进行改性,可大大改善粉煤灰的物理和化学吸附性能,提高其对染料废水的处理效果。

目前采用较多的粉煤灰的改性方法有:酸改性、碱改性、盐改性、表面活性剂改性、混合改性等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Chemical Reaction Characteristics of HDTMA + Cations inInterlayer Space of Vermiculite Crystal LayersTongjiang Peng a,* , Hongjuan Sun b , Jinmei Sun c and Haifeng Liu d1Institution of Mineral Material & Application, Southwest University of Science & Technology,Mianyang 621010, P.R.Chinaa tjpeng@,b sunhongjuan@,c sunjinmei_1982@ ,d liuhaifeng@Keywords: hydrophlogopite, vermiculite, organic intercalation, arrangement modelAbstract. Hydrophlogopite, a regular interstratified mineral with 1:1 ratio of vermiculite and phlogopite crystal layers, was modified with sodium and organically intercalated with HDTMAB, and then the samples were examined with XRD. Based on the theoretical geometric dimensions of organic cations, the structure and arrangement model of HDTMA + cation in the interlayer space of vermiculite crystal layers were studied, the reaction mechanism of organic intercalation was also discussed. The results show that HDTMA + cations enter into the interlayer space of vermiculite crystal layers only without exchange with the cations in the interlayer space of phlogopite crystal layers, and that the arrangement models of HDTMA + cations in the interlayer space of vermiculite crystal layers varies with the added amount of HDTMAB. When the added amount is small, the arrangement model of HDTMA + cations in the interlayer space of vermiculite crystal layers is lateral-bilayer, and when the added amount is larger, the arrangement model is paraffin-type monolayer.1 IntroductionIndustrial vermiculite mineral is one of the non-metallic mineral products with potential advantages in China. The Xinjiang Weili Vermiculite Mine is the largest vermiculite Mine in China, accounting for 90% of the total industrial vermiculite reserves in the country. The industrial vermiculite mineral from this Mine consists of phlogopite-vermiculite interstratified mineral, mainly regular phlogopite-vermiculite 1:1 interstratified mineral, i.e., hydrophlogopite [1]. The interlayer space of phlogopite crystal layers is mainly filled with K + ions, and that of vermiculite crystal layers is mainly filled with the hydrated cations of Na +, Ca 2+, and K +, etc. The hydrated cations in the interlayer space of vermiculite crystal layers have good exchangeability, so organic hydrophlogopite and organic/inorganic nanometer composite materials can be prepared by cation exchange; the modified hydrophlogopite has been used in the field as, for example, a catalyst and carrier, waste water treating compound, and adsorbent, etc.Researchers have widely and deeply studied the preparation of organically intercalated clay minerals through utilizing quaternary ammonium salt. Zhu Jianxi et al. studied montmorillonite by using HDTMAB as intercalation agent, and found that the quaternary ammonium cations could be arranged into many arrangement models in the interlayer space, such as lateral-monolayer, lateral-bilayer, false three-layer, paraffin-type monolayer, and paraffin-type bilayer, and that there were different interlayer distances for each arrangement model [2,3]. Williams-Daryn, et al. researched the arrangement of the single-chained and double-chained quaternary ammonium cations in the interlayer space by using N-alkyl trimethyl ammonium bromide (N=10, 12, 16, 18) to treat Na-vermiculite; the results showed that the arrangement of the single-chained quaternary ammonium cations in the interlayer space was paraffin-type monolayer and that the arrangement ofthedouble-chained quaternary ammonium cations in the interlayer space depended on the structure of the short chains and the long chains [4,5]. Wu Pingxiao, et al. studied the organic intercalation of octadecyl trimethyl ammonium bromide into the mixture of hydrobiotite, vermiculite and phlogopite, and the results showed that when the added amount of octadecyl trimethyl ammonium bromide was small, the K+ ions in the biotite crystal layers of the hydrobiotite were not involved in an ion exchange reaction. However, when the added amount of octadecyl trimethyl ammonium bromide was large, the crystal layers of the biotite were also in a paraffin-type bilayer arrangement, and that the gradual change of arrangement models of the quaternary ammonium cations in the interlayer space was as follows: paraffin-type monolayer in vermiculite crystal layers → paraffin-type bilayer in vermiculite crystal layers → paraffin-type bilayer in vermiculite crystal layers and biotite crystal layers [6].The phlogopite-vermiculite interstratified mineral and hydrophlogopite are 2:1 type phyllosilicate minerals like montmorillonite, but the layer charge of vermiculite crystal layer is higher than that of montmorillonite so the ion exchange reaction with the organic ions is more difficult. The report regarding the study on the interaction of hydrophlogopite and the quaternary ammonium cations is rare. In this paper, we used hexadecyl trimethyl ammonium bromide (HDTMAB) to prepare organic hydrophlogopite, discussed the mechanism of intercalation, studied on the chemical reaction characteristics and the arrangement models of the organic cations in the interlayer of vermiculite.2 Experimental DetailsThe hydrophlogopite sample was taken from the Xinjiang Weili Vermiculite Mine, tabular crystal, color brown or gray, luster like grease, cleavage {001} perfect, cleavage flakes with flexibility but not elastic. The sample was ground to 200 mesh powder, its cation exchange capacity (CEC) was 74.15mmol/100g, and the exchanged ions were mainly Ca2+and Na+. The chemical composition ω(B)/%: SiO2 45.65, Al2O3 12.12, Fe2O3 5.97, MgO 25.15, CaO 1.75, Na2O 0.49, K2O 5.26. The intercalation agent used was hexadecyl trimethyl ammonium bromide(HDTMAB), CH3(CH2)15N(CH3)3Br, analytical reagent, content ≥99.0%.The main equipments used were a DF-101S intelligent heat-collection type thermostatic heating magnetic stirrer, a 78-1 type magnetic heating stirrer, a TDL-40B low-speed and high-capacity bench centrifuge, etc.It has been shown through other research that, under the same experimental conditions, the quaternary ammonium cations (HDTMA+) would displace the Na+ ions in the interlayer space first. For this reason, hydrophlogopite was initially treated with sodium before organic intercalation. And then the hydrophlogopite was organically intercalated with HDTMAB.The ground sample was soaked into 1 mol/L Na2CO3 solution for four days, stirring completely at a certain interval to ensure complete sodium treatment of the sample. The sample was then centrifugalized, washed, dried, and ground into a 200 mesh powder. Two grams of sodium treated sample were measured into each of 16 beakers, 80 ml distilled water were added into each, and stirred for 10 minutes to fully wet and disperse completely. HDTMAB equivalent was added to 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2, 3, 5, 10 times of the cation exchange capacity (CEC) of the sample into each beaker. The samples were left to react for two hours, held at a constant temperature for 0.5 hours, and cooled at room temperature. The precipitate was then filtered and washed (the filtrate was tested with 0.1 mol/L AgNO3 solution until it was clear without precipitate, i.e. free of Br-). Last, the product was dried at 80℃ to derive the organic hydrophlogopite sample. An XRD analysis on the prepared samples was conducted at the Analytical & Testing Center of the Southwest University of Science & Technology by using an X′pert MPD Pro Type X-ray diffractometer from Panalytical B. V. Netherlands. Experimental conditions were as follows: Cu target; tube voltage: 40 KV; tube current: 40 mA; DS: 1/32º; SS: 0.04 rad; scanning range: 2º~12º continuous.3 Results and DiscussionThe results from the XRD analysis of the samples are shown in Fig. 1. From the XRD pattern in Fig.1a, for the original hydrophlogopite sample, we can see that hydrophlogopite has three levels of basal reflection in the range of 2θ=2º~12º and the interplanar spacing is 28.10Å (d 001), 12.02Å (d 002) and 8.52Å (d 003), respectively, no other impurity peak appears.(a)(b)Fig.1 XRD Patterns of Original, Modified and Organically Intercalated Samples of HydrophlogopiteFrom Fig.1a, we can see that the d 001 value of the sodium treated hydrophlogopite sample changed to about 23Å. Compared with the original sample, the d 001 value of the sodium treated hydrophlogopite sample is reduced. There has been research [7, 8] showing that the Na + ions had strong dissociating power and good exchangeability and were easy to be exchanged. Although the ionic radius of Na + (r=1.02Å) is larger than that of Ca 2+ (r=1.00 Å ), and thus the interlayer spacing of sodium treated hydrophlogopite increases, Ca 2+ can adsorb two layers of polar water molecules due to its ionic potential (ratio of ionic electrovalence to ionic radius) ≥2 electrovalence/Å and Na + can only adsorb one layer of polar water molecules due to its ionic potential ≤ 2 electrovalence/Å; therefore the d 001 value decreases.From the Fig.1b, we can see that when the added amount of the quaternary ammonium salt is 0.05, 0.1, and 0.2 times of CEC, the peak value and peak position of d 001 of the organically treated samples changes greatly compared with the sodium treated samples, and the change range is 4~5Å. When theadded amount of the quaternary ammonium salt is 0.2 times of CEC, the peak position of d001 of the sample evidently shifts to a low angle and forms a wide and gentle composite peak and the d001value is 27~40Å. It can be seen that the overall trend of the d001 peak position shifts to a low angle with the increase of an added amount of quaternary ammonium salt and the average peak value is 27.49Å. From Figures 1c, 1d, we can see that when the added amount of quaternary ammonium salt is increased to 0.3~3 times of CEC, the strength and the half high width and the position of the d001 peak of the organically treated samples are apparently changes. With the increase of the added amount of the quaternary ammonium salt, the d001peak position of every sample changes as follows: the peak position shifts to a low angle successively; the peak shape changes sharp; the half high width reduces, and the d001 value increases significantly, reaching about 40Å.The organic intercalation process in interlayer space of vermiculite crystal layers is an ion exchange reaction process. In general, the quaternary ammonium salt with long alkyl chain is used as an organic intercalation agent for treating the sodium modified vermiculite sample, and the mechanism is: Na+-Vermiculite + HDTMAB → HDTMA+-Vermiculite + NaBr (1) The HDTMA+ cation has a permanent positive charge which is independent of the pH value, its one end is a hydrophilic group with the positive charge and other end is a neutral organic group which is hydrophobic. The HDTMA+ cation is changed into the interlayer space of vermiculite crystal layers due to the double action of Coulomb force and the van der Waals force.For the modified hydrophlogopite, the interplanar spacing d001 changes significantly, because the HDTMA+ cations entered into the interlayer space of vermiculite crystal layers through ion exchange and their bulk effect enlarged the interlayer spacing height. It was found through research[9] that when the added amount of the quaternary ammonium salt was sufficient, vermiculite could adsorb the HDTMA+cations exceeding its CEC, which entered into vermiculite’s interlayer space mainly through the mechanism of molecular adsorption.Generally, when the added amount of the quaternary ammonium salt is small, the organic intercalation reaction of vermiculite is mainly ion exchange. For the HDTMA+ cations that entered into the interlayer space of vermiculite crystal layers through ion exchange, the hydrophilic group with the positive charge was adsorbed on the surface of the structural layer having negative charges of vermiculite crystal layers, and the neutral organic group was out and away from the surface of vermiculite’s structural layer. When the added amount of the quaternary ammonium salt was large, the quaternary ammonium salts could enter into the interlayer space of vermiculite not only through ion exchange but also via the molecule adsorption. The HDTMA+ cations entering into the interlayer space of vermiculite crystal layers are arranged into different arrangement models and change the thickness of vermiculite’s crystal layers.Through research on the FT-IR of organic intercalated montmorillonite, Vaia et al. [10] thought that HDTMA+cations in the interlayer space of montmorillonite had a wide range of molecular arrangement from solid-like to liquid-like. For the former, the alkyl chains were all-trans, and for the latter, they were attained by formation of gauche-bonds. The long alkyl chains were arranged more complicatedly in the interlayer space of montmorillonite, and the HDTMA+cations could be arranged in the interlayer space of montmorillonite in the models like lateral-monolayer, lateral-bilayer, paraffin-type monolayer, false three-layer, and paraffin-type bilayer, etc.Together with the van der Waals radius, covalent bond and bond angle data, we can achieve the spatial configuration, size and shape of the HDTMA+cation. For the stretching linear paraffin C n H2n+2, the C-C included angle is 109º28′, the C-C bond length is 0.154nm, the van der Waals radius of -CH3 is 0.2nm, and the C-N bond length is 0.147nm. The length of a single carbochain HDTMA+ cation can be calculated from the following formula [11]:L= (n-3)*0.154*cos35º+0.2*2+0.147 (2) Where L - length of HDTMA+ cation (nm); n - number of carbon atoms.The alkyl chain of HDTMA+ cation is approximately an elliptical cylinder of which the section has a 0.46 nm major axis and a 0.41 nm minor axis. The length of the fully stretching cation is about 2.5 nm.For the study of the spatial arrangement model of organic molecules/cations in the interlayer space, there is no relatively direct observation method currently available. However, we can derive the arrangement model of organic cations or organic molecules in the interlayer space from the geometric dimensions of the organic cations or organic molecules, as well as the XRD data from organically intercalated vermiculite and the crystal structure of vermiculite.Because the cations in the interlayer space of phlogopite crystal layers in hydrophlogopite do not have exchangeability, the K+ ions in the interlayer space of phlogopite crystal layers are not involved in ion exchange reaction. However the hydrated cations in the interlayer space of vermiculite crystal layers have exchangeability, so only the hydrated cation layers (i.e. Na+ ions and water molecules) in the interlayer space of vermiculite crystal layers are involved in the ion exchange reaction during the organic treatment reaction. Thus, the height of the HDTMA+ cation in the interlayer space is equal to the measured d001value minus the thickness of vermiculite crystal layer (0.93nm [12]) and the thickness of phlogopite crystal layer (1.0nm [12]), i.e. the height of the HDTMA+ cations is (d001 - 0.93 - 1.0) nm.Tomasz Kwolek et al. [13], through research on the isotherm adsorption of the short chain alkyl quaternary ammonium salt intercalated montmorillonite, found that the short chain alkyl quaternary ammonium ions are arranged in the interlayer space of the montmorillonite in the lateral model, and that when the carbon atom number of carbochain is more than 8, a cross bilayer structure, i.e. interlocking lateral-bilayer arrangement forms. The overall height will reduce about 0.1nm [2] for each layer of such an interlocking arrangement. So the height of the HDTMA+ cations in the lateral-bilayer arrangement model is 0.46*2 - 0.1=0.82nm. When the added amount of the quaternary ammonium salt is 0.05, 0.1, and 0.2 times of CEC (Figure 1b), the average d001value of the organically treated samples is 27.49Å and the calculated average height of the HDTMA+ cations in the interlayer space is 0.819nm, which highly matches the height of the organic phase with this lateral-bilayer arrangement model, so the HDTMA+ cations are arranged in a lateral-bilayer arrangement model in the interlayer space of vermiculite crystal layers.When the added amount of the quaternary ammonium salt is increased to 0.3~3 times of CEC (Figure 1c), the d001 value of the organically treated samples evidently increases, which is about 40Å, and the calculated height of the HDTMA+ cations is about 2.0nm, which is less than the length of the HDTMA+ cations. This shows that the HDTMA+ cations can only be arranged in the paraffin-type monolayer in the interlayer space of vermiculite crystal layers. According to the length of the straight chain of HDTMA+ cation, the thicknesses of a vermiculite crystal layer and a phlogopite crystal layer, and the d001 value from the organically treated samples, the included angle θ between the HDTMA+ cation and the surface of silica layer can be calculated.Table1 Added Amount of the HDTMA+Cation and Some Data of Organically Intercalated Hydrophlogopite SamplesAdded Amount of QuaternaryAmmonium Salt/CEC0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5 2 3d001/Å 38.3740.1240.5641.4540.6240.3240.3540.1141.0539.4740.39Height of the HDTMA+ cation in Interlayer Space (/Å) 19.0720.8221.2622.1521.3221.0221.0520.8121.7520.1721.09The inclined angle of the HDTMA+ cation in interlayer space θ/° 49.7156.3958.2662.3858.5257.2257.3556.3560.4653.7857.52Table 1 shows the inclined angle of the HDTMA+ cation in the interlayer space of the organically treated samples, which is about 55º (from 49.71°~62.38°). Williams-Daryn et al. [4, 5] concluded that the best inclined angle of the HDTMA+ cation to the silicate structural layer is 54.5º, because this angle is most advantageous for the methyl group to maintain the largest contact area with the surface of the silicate structural layer. The inclined angle of the HDTMA+ cation in the interlayer space of thetested samples is closer to the angle 54.5º. This shows that when the added amount of the quaternary ammonium salt is 0.3~3 times of CEC, the HDTMA+cations in the interlayer space of the vermiculite crystal layers in hydrophlogopite are arranged in a paraffin-type monolayer model, which is a stable arrangement model with the highest probability4 ConclusionsAfter hydrophlogopite is sodium treated, the d001 value of the main diffraction peak changes from 28Å to about 23Å; this change mainly relates to the change in the number of water molecule layers in the interlayer space resulting from the changed cations.During the organic treatment, ion exchange reaction does not occur between HDTMA+ cations and the K+ cations of interlayer space of phlogopite crystal layers and only occurs between HDTMA+ cations and the Na+ cations of interlayer space of vermiculite crystal layers in hydrophlogopite.The arrangement model of HDTMA+ cations in the interlayer space of the vermiculite crystal layers in hydrophlogopite relates to the added amount of the quaternary ammonium salt. When the added amount of the quaternary ammonium salt is 0.05~0.2 times of CEC, the HDTMA+cations are arranged in lateral-bilayer model; and when the added amount of the quaternary ammonium salt is 0.3~3 times of CEC, the HDTMA+ cations are arranged in a paraffin-type monolayer model and the inclined angle is about 55°. In summary, with the increase of the added amount of the quaternary ammonium salt, the stacking density of the HDTMA+ cations in the interlayer space increases; this leads to the change in the arrangement model of the HDTMA+ cations in the interlayer space of the vermiculite crystal layers and the change trend is: lateral-bilayer → paraffin-type monolayer. Acknowledgement: The authors are grateful for the financial support from National Natural Science Foundation of China (40502008).References[1] Tongjiang Peng, Fusheng Liu, John Huang,et al.: Acta Petrologica Et Mineralogica, Vol. 22(2003), p. 391[2] Jianxi Zhu, Hongping He and Jiugao Guo: Journal of Mineralogy and Petrology, Vol. 23 (2003), p.1.[3] Jianxi Zhu, Hongping He and Jiugao Guo: Chinese Science Bulletin, Vol. 48 (2003), p. 302.[4] D.S.Williams and R.K.Thomas: Journal of Colloid and Interface Science, Vol. 255 (2002), p. 303.[5] S. Williams-Daryn, R. K. Thomas, M. A. Castro, et al.: Journal of Colloid and Interface Science,Vol. 256 (2002), p. 314.[6] Pingxiao Wu, Nengwu Zhu, Zhi Dang, et al.: Journal of Functional Materials, Vol. 37 (2006), p.83.[7] A.V.Faridi and S.Guggenheim: Clays and Clay Minerals, Vol. 45 (1997), p. 859.[8] P.G.Slade and W.P.Gates: Applied Clay Science, Vol. 25 (2004), p. 93.[9] A.Czimerova, J.Bujdak and R.Dohrmann: Applied Clay Science, Vol. 2 (2006), p. 1.[10] R.A.Vaia, P.K.Teukolsky and E.Giannelis:Chem Mater, Vol. 6 (1994), p. 1017.[11] Lu Xianjun, Song Meining and Qiu Jun: Non-ferrous Mining and Metallurgy, Vol. 21 (2005), p.89.[12] Naixian Zhang, Youqin Li, Huimin Zhao, et al.: Methods for Research on Clay Mineral (SciencePublications, China 1990).[13] Tomasz Kwolek, Maciej Hodorowicz, Katarzyna Stadnicka, et al.: Journal of Collold andInterface Science, Vol. 264 (2003), p. 14.Advance in Ecological Environment Functional Materials and Ion Industry10.4028//AMR.96Chemical Reaction Characteristics of HDTMA<sup>+</sup> Cations in Interlayer Space of Vermiculite Crystal Layers10.4028//AMR.96.15DOI References[2] Jianxi Zhu, Hongping He and Jiugao Guo: Journal of Mineralogy and Petrology, Vol. 23 (2003), p.doi:10.1007/BF03183232[3] Jianxi Zhu, Hongping He and Jiugao Guo: Chinese Science Bulletin, Vol. 48 (2003), p. 302.doi:10.1007/BF03183232[4] D.S.Williams and R.K.Thomas: Journal of Colloid and Interface Science, Vol. 255 (2002), p. 303.doi:10.1006/jcis.2002.8673[5] S. Williams-Daryn, R. K. Thomas, M. A. Castro, et al.: Journal of Colloid and Interface Science, Vol. 256 (2002), p. 314.doi:10.1006/jcis.2002.8685[7] A.V.Faridi and S.Guggenheim: Clays and Clay Minerals, Vol. 45 (1997), p. 859.doi:10.1346/CCMN.1997.0450610[8] P.G.Slade and W.P.Gates: Applied Clay Science, Vol. 25 (2004), p. 93.doi:10.1016/j.clay.2003.07.007[9] A.Czimerova, J.Bujdak and R.Dohrmann: Applied Clay Science, Vol. 2 (2006), p. 1. doi:10.1016/S1572-4352(06)02001-0[10] R.A.Vaia, P.K.Teukolsky and E.Giannelis: Chem Mater, Vol. 6 (1994), p. 1017.doi:10.1021/cm00043a025[13] Tomasz Kwolek, Maciej Hodorowicz, Katarzyna Stadnicka, et al.: Journal of Collold and Interface Science, Vol. 264 (2003), p. 14.doi:10.1016/S0021-9797(03)00414-4。

相关文档
最新文档