第4章储氢材料和磁性材料05.

合集下载

完整版储氢材料

完整版储氢材料

储氢材料研究进展班级:*********姓名: ********学号:*********课程老师:**教授日期: ********储氢材料研究进展[1]能源和资源是人类赖以生存和发展的源泉。

随着社会经济的发展, 全球能源供应的日趋紧缺, 环境污染的日益加剧, 已有的能源和资源正在以越来越快的速度消耗。

面对化石燃料能源枯竭的严重挑战, 近年来世界各国纷纷把科技力量和资金转向新能源的开发。

在新的能源领域中, 洁净无污染的氢能利用技术正在以惊人的速度发展, 己引起工业界的热切关注。

氢的规模制备是氢能应用的基础, 氢的规模储运是氢能应用的关键, 氢燃料电池汽车是氢能应用的主要途径和最佳表现形式, 三方面只有有机结合才能使氢能迅速走向实用化。

但是, 由于氢在常温常压下为气态, 密度很小, 仅为空气的1 /14, 故氢的储存就成了氢能系统的关键技术。

1 储氢方式[3]氢气的存储有3种方式:液态、高压气态和固态储氢[4] ,它们有各自的优点和缺点。

而利用储氢材料与氢气发生物理或化学作用将氢气存储于固体材料中的固态储氢方式,能有效克服气、液两种存储方式的不足,且储氢体积密度大、安全度高、运输方便、操作容易,特别适合于对体积要求较严格的场合,如在燃料电池汽车上的使用。

固态储氢材料主要有:金属氢化物、配位氢化物和多孔吸附材料等,其中金属氢化物储氢[2]的研究已有30 多年,而后两种的研究较晚。

金属氢化物储氢材料主要有稀土系、Laves 相系、镁系和钛系等;配位氢化物是由碱金属(如Li、Na、K)或碱土金属(如Mg、Ca)与第ⅢA元素(如B、Al)或非金属元素(如N)形成的;多孔吸附材料分为物理吸附和化学吸附两大类,如碳纳米管[5]、BN 纳米管、硫化物纳米管、金属有机骨架材料(MOF)和活性炭等。

然而,传统的金属氢化物因密度大而限制了它们的实际应用。

为了克服这一缺点,许多由轻元素组成的配位氢化物或复杂氢化物被广泛研究,像铝氢化物体系、硼氢化物体系和氨基2亚氨基体系等。

功能材料概论5(储氢材料)

功能材料概论5(储氢材料)

线。
横轴表示固相中的氢 原子H和金属原子M 的比(H/M),纵轴是 氢压。
p3
温度 T3 > T2 > T1 T3 T2 D
p3
p2
pH2 p2
p1
T1 C p1 B n2 n1 A 对应一个M原子的氢原子数/n 金属--氢系理想的p- c- T图
温度T1的等温曲线中p和c 的变化如下:
T1保持不动,pH2缓慢升 p3 p3 高时,氢溶解到金属中, pH2 T2 H/M应沿曲线AB增大。 p2 p2 D 固溶了氢的金属相叫做 相。 T1 C p1 p1 B n2 达到B点时, 相和氢气 n1 A 对应一个M原子的氢原子数/n 发生反应生成氢化物相, 即 相。
藻类和蓝细菌光解水;光合细菌光分解有机物;有机物发 酵制氢;光合微生物和发酵性微生物的联合运用;生物质 热解或气化制氢。
4.2.2 储氢方法
氢在常温常压下为气态,密度仅为空气的1/14。在氢能技术中,氢 的储存是最关键环节。氢气储存方法主要有五种:高压储氢、液化 储氢、有机溶剂储氢、金属氢化物储氢和吸附储氢。
储存介质 标准态H2 高压 H2 液态 H2 MgH2 LaNi5H6 TiFeH1.95 Mg2NiH4 VH2 存在状态 气态(1 atm) 气态(150 atm) 液态 固态 固态 固态 固态 固态 氢相对密度 1 150 778 1222 1148 1056 1037 1944 储氢量(wt.%) 100 100 (0.80 *a) 100 (~5.0 *b) 7.60 1.37 1.85 3.60 3.81 储氢量(g/mL) 0.00008 0.012 0.062 0.098 0.092 0.084 0.083 0.156
NaAlH4- 7.47 wt.%

储氢材料的原理解析与研究进展

储氢材料的原理解析与研究进展

氢是一种清洁的可再生能源。

储氢材料作为一种可逆的氢元素存储材料,在现代及未来的应用十分广泛。

对于储氢材料性质的研究,将会更好地推动我国相关研究领域的进步。

随着近年来我国经济的不断发展,能源消耗也在大幅度增加,化石能源储量减少,并产生一系列的环境问题,所以寻找一种安全可靠的绿色清洁能源是必然趋势,而氢元素一直是能源系列中的“宠儿”。

由于氢能是一种可循环利用的清洁能源,将在我国能源转换中扮演重要角色。

近年来,氢能产业从行业圈内逐渐走向大众视野,被认为是具有发展潜力的新型产业。

目前唯一存在的应用问题是氢能源的存储技术问题,为了解决这一问题,储氢材料正式问世,利用金属络合物储存氢能,其质量百分密度较高且具有一定的可逆性,实现了储氢材料的正式应用,而此类材料的具体应用也可以更好地推动相关领域的发展。

氢能的储存方式分析氢能是目前发现的能源体系中储量丰富且无公害的清洁能源,是理想化石燃料替代品,而且氢能在燃烧后的生成物只有水,对我国实现“碳达峰”“碳中和”等目标具有重要意义。

在氢能的应用体系中,氢能的存储制约了氢能走向实用化和规模化。

为了解决这一问题,诞生了储氢材料理念。

目前,有3种主要的储氢方式,分别为高压气态储氢、低温液态储氢和固态储氢。

1高压气态储氢高压气态储氢是目前应用广泛、相对成熟的储氢技术,即通过压力将氢气液化至气瓶中加以储存。

该技术的优点在于,其充装释放氢气速度快,技术成熟及成本低。

而其缺点在于:一是对储氢压力容器的耐高压要求较高,商用气瓶设计压力达到20 MPa,一般充压力至15 MPa;二是其体积储氢密度不高,其体积储氢密度一般在18~40 g/L;三是在氢气压缩过程中能耗较大,且存在氢气泄漏和容器爆破等安全隐患问题。

2低温液体储氢为了解决高压气体储氢体积储氢密度低的问题,人们提出了液态储氢的概念,低温液态储氢将氢气冷却至-253℃,液化储存于低温绝热液氢罐中,储氢密度可达70.6 kg/m3,体积密度为气态时的845倍。

讲义4储氢材料

讲义4储氢材料
4
不同储氢方式的比较总结
气态储氢:能量密度低 不太安全
液化储氢:能耗高 对储罐绝热性能要求高
固态储氢的优势:体积储氢容量高 无需高压及隔热容器安全性好, 无爆炸危险可得到高纯氢, 提高氢的附加值
5
体积比较
6
氢含量比较
0
LaNi H 56
TiFeH nanotube (RT,10MPa 氢压)
➢活化容易,储氢量较大,抗杂质气体中毒性能好 ➢平衡压力适中且平坦,吸放氢平衡压差小
➢动力学特性较差,价格昂贵 ➢改变A、B组元可以改善动力学特性,调整吸放氢温度、平台压力
❖ 经元素部分取代后的
MmNi3.55Co0.75Mn0.47Al0.3(Mm混合稀土,主要成分La 、Ce、Pr、Nd)广泛用于镍/氢电池
22
PCT curves of LaNi5 alloy
23
钛铁系
典型代表:TiFe,美Brookhaven国家实验室 首先发明
价格低 室温下可逆储放氢 易被氧化 活化困难 抗杂质气体中毒能力差
实际使用时需对合金进行表面改性处理
24
TiFe alloy
Characteristics: ❖ two hydride phases; ❖ phase (TiFeH1.04) & phase (TiFeH1.95 ) ❖ 2.13TiFeH0.10 + 1/2H2 → 2.13TiFeH1.04 ❖ 2.20TiFeH1.04 + 1/2H2 → 2.20TiFeH1.95
氢能开发,大势所趋
氢是自然界中最普遍的元素,资源无 穷无尽-不存在枯竭问题
氢的热值高,燃烧产物是水-零排放,无污染
,可循环利用
氢能的利用途径多-燃烧放热或电化学发电 氢的储运方式多-气体、液体、固体或化合物

稀土功能材料简介

稀土功能材料简介

稀土功能材料简介稀土元素具有独特的原子结构和化学性质,可以制备出多种具有特殊性能的功能材料。

本文将介绍一些主要的稀土功能材料。

1.稀土永磁材料稀土永磁材料是指利用稀土元素制成的永久磁性材料,具有高磁能积、高矫顽力和高最大磁能积等特点。

常见的稀土永磁材料包括钐钴永磁体和钕铁硼永磁体等。

2.稀土发光材料稀土发光材料是指利用稀土元素具有的独特电子结构,在激发条件下能够发出不同颜色和波长的光。

常见的稀土发光材料包括荧光粉、激光晶体和电致发光材料等。

3.稀土催化材料稀土催化材料是指利用稀土元素的化学活性,在催化剂或助剂中发挥作用,提高反应效率和产率。

常见的稀土催化材料包括汽车尾气处理催化剂、石油裂化催化剂等。

4.稀土超导材料稀土超导材料是指利用稀土元素的超导性能,在低温下具有零电阻和完全抗磁性。

常见的稀土超导材料包括镧钡铜氧化物等。

5.稀土储氢材料稀土储氢材料是指利用稀土元素的储氢性能,在吸氢状态下能够将氢气储存起来,并且可以在需要时释放出来。

常见的稀土储氢材料包括镧镍合金等。

6.稀土磁致伸缩材料稀土磁致伸缩材料是指利用稀土元素的磁致伸缩性能,在磁场作用下能够产生伸缩变化。

常见的稀土磁致伸缩材料包括铽铁氮合金等。

7.稀土抛光材料稀土抛光材料是指利用稀土元素的化学稳定性和微粒大小,在抛光液中发挥作用,使表面更加光滑亮丽。

常见的稀土抛光材料包括氧化铈颗粒等。

8.稀土玻璃添加剂稀土玻璃添加剂是指利用稀土元素的玻璃形成能力,在玻璃制造过程中改善玻璃的性能和光学性质。

常见的稀土玻璃添加剂包括镧玻璃、铈玻璃等。

储氢材料的研究与发展前景

储氢材料的研究与发展前景

储氢材料的研究与发展前景随着全球对清洁能源需求的不断增加,储氢作为一种可再生能源的重要形式,备受关注。

储氢材料作为实现氢能储存和释放的关键技术之一,它的研究与发展前景非常广阔。

储氢材料的研究与发展可以追溯到20世纪70年代。

最早的储氢材料主要是金属氢化物和化合物,如镁、锂、钠等金属与氢气反应形成的化合物。

然而,这些材料的储氢能力有限,吸氢速率较慢,温度要求高,且容易发生氧化和腐蚀等问题,限制了其在实际应用中的推广。

近年来,储氢材料的研究重点已转向新型材料的开发。

有机材料、无机材料和复合材料等成为研究的热点。

有机材料如碳纳米管和多孔材料具有大表面积、孔隙结构可调控等优点,可用于提高储氢性能。

无机材料如氮化碳和金属有机骨架等也展示了良好的储氢性能。

此外,基于金属-有机骨架材料的调控和设计可满足各种储氢应用的需求。

复合材料则将多种材料相结合,发挥各自的优势,提高储氢性能。

例如,金属氢化物与高孔隙碳材料的复合储氢材料具有较高的储氢容量和快速的吸氢/放氢速率。

与此同时,研究人员也在探索新的储氢机制。

传统的物理吸附和化学反应储氢机制已逐渐显露出局限性,进一步研究则注重于氢原子在储氢材料内的扩散和反应机制的理解和控制。

人们也发掘了一些新的储氢机制,如分子化学吸附、热化学吸附和电化学吸附等。

在储氢材料的发展前景方面,有几个重要的方面值得关注。

首先,通过材料的优化设计和合成技术的进一步发展,储氢材料的储氢容量和吸放氢速率将得到大幅提高,实现高效、可靠的氢能储存和释放。

其次,随着可再生能源产能的扩大和电动汽车的普及,储氢材料的市场需求将快速增长,对储氢技术的研究和应用提出更高要求。

同时,储氢材料也将应用于其他领域,如电力系统和燃料电池等。

再者,随着储氢材料科学的发展,更多新型储氢材料将被发现和应用,为氢能储存和利用提供更多选择和可能。

总之,储氢材料的研究与发展前景广阔。

随着新材料的开发和储氢机制的研究深入,解决储氢材料存在的问题和局限性将有望推动储氢技术的发展和应用。

无机非晶态材料的制备及其应用

无机非晶态材料的制备及其应用

无机非晶态材料的制备及其应用无机非晶态材料是指没有长程有序的结构、无法通过晶体学方法研究的固体材料。

它们由于其特殊的结构和性质, 在许多领域中都得到了应用。

本文将介绍无机非晶态材料的制备方法及其应用。

一、无机非晶态材料的制备1. 快速凝固快速凝固是制备无机非晶态材料的重要方法之一。

利用这个方法,可以在很短的时间内制备出毫米到纳米级别的非晶态合金。

其主要原理是利用急冷的方法,将液态金属迅速凝固到非晶态状态。

这种方法可以通过多种方法实现,如快速凝固合金薄膜、快速凝固法、分子束外推法等方法。

2. 化学合成化学合成也是一种常见的制备无机非晶态材料的方法。

这种方法可以先通过溶液中的金属离子或其它化学物质,以一定的条件下制备纳米颗粒或溶胶。

然后使用一定的方法,如干燥、热处理等方式使其形成非晶态材料。

二、无机非晶态材料的应用1. 磁性材料无机非晶态磁性材料在电子技术、计算机储存器等领域中得到了广泛的应用。

与传统的铁磁材料相比,无机非晶态材料的磁导率高、矫顽力低、磁滞效应小,具有优异的磁性能。

2. 储氢材料储氢材料是指一类能够储存氢气并释放出来的材料。

无机非晶态材料因其结构松散、介孔结构丰富等特点被广泛应用于储氢材料的制备中。

具有高氢容量、低压下、低温时释放氢气等特点,被认为是未来氢燃料和制氢技术的关键。

3. 传感器材料无机非晶态材料因其结构可调和反应灵敏等特点在传感器材料的制备中得到了广泛应用。

能够用于压力传感器、温度传感器、化学传感器等多种传感器材料的制备。

4. 生物医学材料无机非晶态材料的生物相容性优良、生物可降解等特点被广泛应用于生物医学材料的研究中。

如用于疏通血管的支架、生物可降解的3D打印等领域,为医学领域的发展做出了重要贡献。

总结:无机非晶态材料是一种结构特殊的材料,具有丰富的性质和应用潜力。

目前,无机非晶态材料的制备方法已经得到了较为成熟的发展,而其应用领域也在不断扩展。

未来,随着科技的不断进步,无机非晶态材料必将成为促进科学技术和社会经济的重要材料之一。

储氢材料和磁性材料介绍

储氢材料和磁性材料介绍
此时的平衡氢压,即为金属氢化物的平 衡分解压。
平衡分解压随温度上升呈指数函数增大。 达到临界温度以前,随温度上升平台的宽度 逐渐减小。 46
(3)C D 氢化物相的不定
pH2 p3 p2 p1 温度T3 > T2 > T1 T3 T2 T1 p3
比区域,该区存
在的相是相和
气相,p=2,所
D
p2
p3 p2
pH2
定,压力也可变化。
AB表示在温度T1时
C p1 B n2 n1 A 对应一个M原子的氢原子数/
氢的溶解度随压力变化的
情况。
44
(2)B C平台的 区域,该区存在 的相是相、相 和气相,p=3,所 以f=1。
pH2 p3 p2
温度T3 > T2 > T1 T3 T2 T1 D
LaNi,LaNi2也能和氢发生反应,但生 成的La的氢化物非常稳定,不释放氢,反应
的可逆性消失了。
34
因此,作为贮氢材料的另一个重要条件
是要存在与合金相的金属成分一样的氢化物
相。 例如LaNi5H6相对于LaNi5,Mg2NiH4相
对于Mg2Ni那样。
35
总之,金属(合金)氢化物能否作为能
量贮存、转换材料取决于氢在金属(合金) 中吸收和释放的可逆反应是否可行。
的斜率可求
出 H,由直
平 衡 氢 压 /
线在lnp轴上
的截距可求
Mpa
出 S。
50 各种贮氢合金的平衡氢压与温度的关系(Mm为混合稀土合金 )
300K时,氢气的熵值为31cal/K.mol.H2,
与之相比,金属氢化物中氢的熵值较小,即
式:
mn MH n ( ) H 2 MH m 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档