Mass-to-Light ratio, Initial Mass Function and chemical evolution in disc galaxies
长安福特常用缩写词

长安福特常用缩写词(CP)Confirmation Prototype确认样车Final Status最终状态(J1)Job 1整车投产(PT)P/T Design Complete动力传动系统设计结束PT(P/T)Power Train动力传动系统(ST)Surface Transfer表面参数传递Change Cut-Off更改完成Launch Readiness投产准备就绪Launch Sign-Off投产验收Program Approval项目批准Proportions & Hardpoints比例与固定点Product Readiness产品准备就绪Pre Milestone 1SI前里程碑1Pre Milestone 2SI前里程碑2Strategic Confirmation策略确认Strategic Intent策略意向Strategic Planning策略计划(SP)Structural Prototype样车结构(TTO)Tool Try-Out工装设备试运行Global 8D Eight disciplinary ActionsG8D(福特公司解决问题的标准方法)14DMore Detailed than Global 8D (used to containand resolve stop-shipment/recall problems)更详细的细节(包括并解决停止运货/召回问题)1MIS One Month in Service投入使用1个月1PP First Production Proveout第一次试生产2PP Second Production Proveout第二次试生产3MIS Three Months in Service投入使用3个月4P Production Process Proveout Program生产程序验证项目AAA American Automobile Association美国汽车工业联合会ABS Affordable Business Structure可承受商业结构ABS Anti skid brake system防抱死制动系统AIAG Automotive Industry Action Group 机动车工业行动小组AIC Accelerated Implementation Centre快速实施中心AIM Automated Issues Matrix问题结构图AIMS Automated Issues Matrix System问题结构图系统AME Advanced Manufacturing Engineering先进制造工艺AMPPE Advanced Manufacturing Pre-Program Engineering 先进项目前制造工艺ANOVA Analysis of Variance多样性分析AP Attribute Prototype设计样车APEAL Automotive Performance Execution and Layout机动车性能实施与规划APQP Advanced Product Quality Planning先进产品质量计划ASQ American Society for Quality美国质量协会AV Appraiser Variation评估者的多样性AVT Advance Vehicle Technology先进车辆技术AWS Analytical Warranty System分析性的保修系统AXOD Automatic Transaxle Overdrive Transmission自动变速驱动桥超速档传动系B&ABody & Assembly Operations (New Term: VehicleOperations)车身与组装操作(新术语:车辆操作)BCG Business Consumer Group消费者工作组BIC Best in Class等级中的最佳BIS Body Shop Information System车身工作间信息系统BLI Business Leadership Initiative领导层初始意向BOM Bill OfMaterials零件清单BTB Bumper-to-Bumper保险杠到保险杠BTS Build-To-Schedule按日程建造BUR Business Unit Review业务小组讨论CAS Capacity Analysis Sheet能力分析表C/E Cause & Effect成因及影响CA Customer Attribute消费者特性CAD Computer Aided Design计算机辅助设计CAE Computer Aided Engineering计算机辅助工程CAP Corrective Action Plan纠正行动计划CBG Consumer Business Group消费者业务小组CB Continuous Build连续性生产CC Critical Characteristic评价特性CC Courtesy Copy抄送CC Carbon Copy副本CCC Customer Concern Classification客户问题分类CCC China compulsory certification中国强制认证CDS Component Design Specification零件设计参数CET Campaignable Events Team召回情况小组CETs Common External Tariff普通关税CETP Corporate Engineering Test Procedures公司工程测试程序CFR Constant Failure Rate连续故障率CHFCIM Computer Integrated Manufacturing计算机综合制造CIWG Continuous Improvement Work Group持续改进工作组CL Centerline中心线CMM Coordinate Measuring Machine协调测量设备CMMS Common Material Management System通用材料管理系统CMMS3Common Manufacturing Management System-3通用制造管理系统-3Code X Pre-build focusing on exterior components制造前关注的外部零件Code Y Pre-build focusing on interior components制造前关注的内部零件CP Cost plan(马自达用语)由ECN引起的价格变动估计CP Common Position通用位置CP Confirmation prototype确认样车(FORD 时间节点)C p Relates the allowable spread of thespecification limits to the measure of theactual variation of the process.将参数限制允许限度下的展开与程序实际多样性联系起来CPE Chief Program Engineer首席项目工程师C pk Measures the process variation with respect tothe allowable specification, and takes intoaccount the location of the process average测量程序的多样性并将其考虑到程序平均性的位置中CPU Cost Per Unit单位成本CQDC Corporate Quality Development Center公司质量开发中心CQIS Common Quality Indicator System一般质量指标系统CR Concern Responses问题回复CRT Component Review Team零件讨论组CSA Corporate Security Administrator公司安全管理员CSI Customer Service Index客户服务指数DCO Duty Cycle Output责任循环结果DCP Dynamic Control Planning动态控制计划DDL Direct Data Link直接数据连接Df Degrees of Freedom自由度DFA Design for Assembly总成设计DFM Design for Manufacturability制造能力设计DFMEA Design Failure Mode Effects Analysis故障模式影响分析设计DFR Decreasing Failure Rate故障下降率DMA Database Maintenance Administrator数据库维护管理人员DOE Design of Experiment试验设计DOM Dealer Operations Manager经销商业务经理DP Design Parameters参数设计DQR Durability Quality and Reliability耐久性质量与可靠性DTD Dock to Dock码头至码头DTD Design to Delivery设计到交付DCV Design Confirmation Vehicle设计确认车DV Design Verification设计验证DVM Design Verification Method设计验证方式DVP Design Verification Plan设计验证计划Design Verification Process and Production设计验证程序和产品验证DVP&PVValidationDVP&R Design Verification Plan & Report设计验证计划和结果DVPR Design Verification & Product Reliability设计验证和产品可靠性DVPV Design Verification and Process Verification设计验证和程序验证EAO European Automotive Operations欧洲机动车协会EASI Engineering And Supply Information工程和供应信息ECAR Electronic Connector Acceptability Rating电子连接接受比率EDI Electronic Data Interchange电子数据交换EESE Electrical and Electronic Systems Engineering电力及电子系统工程EMM Expanded Memory Manager扩展内存管理器EMS Environmental Management System环境管理系统EOL End of Line线的端点EQI Extraordinary Quality Initiative特别初始质量ES Engineering Specifications工程参数ESI Early Supplier Involvement早期供应商参与ESP Extended Service Plan延期服务计划ESTA Early Sourcing Target Agreement早期选点目标协议ESWP Early Sourcing Work Plan早期选点工作计划EV Equipment Variation设备变更F&T Facility & Tooling工装设备FACT Facilitation and Certification Training简易化及认证培训FASS Field Action/Stop Shipment区域行动/停止运货区域行动/停止运货(优先使用缩FA/SS Field Action/Stop Shipment (Preferred Acronym)写)FAO Ford Automotive Operations福特机动车协会FAP Ford Automotive Procedure福特机动车程序FAQ Frequently Asked Questions常见问答FCPA Ford Consumer Product Audit福特客户产品审核FCSD Ford Customer Service Division福特客户售后服务分枝机构FDVS Ford Design Verification System福特设计验证系统FER Fresh Eyes Review其它行业人员论证FER Final Engineering Review最终工程论证FEU Field Evaluation Unit区域评估组FIFO First in First Out先进先出FMEA Failure Mode Effects Analysis故障模式影响分析FMVSS Federal Motor Vehicle Safety Standards美国联邦机动车安全标准FPDS Ford Product Development System福特产品开发系统FPS Ford Production System福特生产系统FPSI Ford Production System Institute福特产品系统学院FPS IT Ford Production System Information Technology福特产品系统信息技术FOB Ford of Britain福特英国FQRs Frequent Quality Rejects经常性质量不合格品FR Functional Requirements功能要求FAO (福特机动车运作) 可靠性指FRG FAO Reliability Guide导FS Final Sign-off最终验收FSIC Ford System Integration Council福特系统综合委员会FSN Ford Supplier Network福特供应商网络FSS Full Service Suppliers全方位服务供应商FTDC Fairlane Training and Development Center培训和发展中心FTEP Ford Technical Educational Program福特技术培训项目FTT First Time Through首次通过FUNC-APPRV Functional Approvals功能批准FVEP Finished Vehicle Evaluation Program下线车辆评估项目GAP Global Architecture Process全球建筑设计程序GC Global Craftsmanship全球技术工艺GCARS Global Craftsmanship Attribute Rating System全球技术特性评分系统GCEQ Global Core Engineering Quality全球核心工程质量GEM Generic Electronic Module通用电子模块GIS1Global Information Standards全球信息标准Global Prototype Inventory Requisition andGPIRS全球样车库存及控制安排SchedulingGPP Global Parts Pricing全球零件定价GQRS Global Quality Research System全球质量调查系统GRC UN-ECE Group des Raporteurs de Ceintures欧盟 ECE 安全带规划小组GRC Government Regulations Coordinator政府法规协调员GR&R Gage Repeatability and Reproducibility量具重复性和再现性GRVW Gross Vehicle Weight车辆质量GSDB Global Supplier Database全球供应商数据库GSSM Global Sourcing Stakeholders Meeting全球选点股东大会GYR Green-Yellow-Red绿-黄-红HB Homologation Build法规车制造HI High-Impact重大影响HIC High-Impact Characteristics重大影响特性HR Human Resources人力资源HTFB Hard Tooled Functional Build成形机功能建造HVAC Heating Ventilating and Air Conditioning加热通风和空调ICA Interim Containment Action过渡性补救措施ICCD Intensified Customer Concern Database强化的客户问题数据库ICCD CRSIntensified Customer Concern Database ConcernResolution Specialist 强化的客户问题数据库解决问题专员IE Industrial Engineer产业工程师IFR Increasing Failure Rate 故障率增长ILVS In-Line Vehicle Sequencing车辆顺序IM Industrial Materials工业材料IP Instrument Panel仪表板IPD In Plant Date进厂日IQ Incoming Quality进货质量IQS2Initial Quality Study初始质量研究IR Internal Reject内部不合格品ISO International Organization for Standardization国际标准化组织ISPC In-Station Process Controls过程质量控制JIT Just in Time及时JPH Jobs Per Hour每小时工作量JSA Job Safety Analysis工作安全分析PSW (零件质量合格验收) 未做好KKK PSW not ready for inspection检测准备KLT Key Life Test关键使用寿命测试KO Kickoff起动LCL Lower Control Limit低控制限值LDEM Lean Design Evaluation Matrix设计评估表LOA Letter of Agreement协议书LP&T Launch Planning & Training投产计划和培训LR Launch Readiness投产准备就绪LRR Launch Readiness Review投产准备就绪论证LS Launch Sign-Off投产验收LSL Lower Specification Limit低参数限制LTDB Light Truck Data Base轻型卡车数据库MBJ1Months Before Job One Job1(投产)前1个月MBO Manufacturing Business Office制造办公室ME Manufacturing Engineering制造工程MIS Months in Service使用中的月份MMSA Material Management System Assessment物料管理系统评定MP Mass Production批量生产MP&L Materials, Planning and Logistics材料、计划与物流MPPS Manufacturing Process Planning System制造程序计划系统MOD Module模块MRB Material Review Board物料论证板MRD Material Required Date物料要求到厂日MS Material Specifications物料参数MS3(MSIII)Material Supply Version III物料供应(第三版)MTC Manage the Change管理变更MY Model Year年度车型NAAO North American Automotive Operations北美汽车工业协会NFM Noise Factor Management噪声管理NIST National Institute of Standards and Testing全国标准和测试协会NMPDC New Model Program Development Center新车型项目开发中心Nova C New Overall Vehicle Audit新车总评审NPPR New Program Product Review供应商技术支持NTEI New Tooled End Items新工具加工成品NVH Noise, Vibration, Harshness噪声、振动、操纵平顺性OCM Operating Committee Meeting工作委员会会议OEE Overall Equipment Efficiency总体设备效率OEM Original Equipment Manufacturer设备最初制造厂ONP Owner Notification Program车主告知程序OS Operator Safety操作者安全OTG Open to Go可进行P Diagrams Parameter Diagrams参数图表PA Program Approval项目批准PAG Premier Automotive Group首要机动车项目组PAL Project Attribute Leadership项目特性领导层PAT Program Activity Team, Program Attribute Team, 项目促进小组、项目特性小组和or Program Action Team项目行动小组PCA Permanent Corrective Action持续改进行动PCF Parts Coordination Fixture零件夹具验证PCI Product Change Information产品变更信息PD Product Development产品开发PDL Program Design Language项目设计语言PD Q1Product Development Q1产品开发Q1PDN2Phased Data NotificationPDSA Plan, Do, Study, Act计划、实践、研讨、实施PFMEA Process Failure Mode Effects Analysis程序故障模式影响分析PI Process Improvement程序改进PIPC Percentage of P pk Indices Process Capable P pk指数程序能力百分比Percentage of Inspection Point That SatisfyPIST满足公差要求的检查点百分比TolerancePM Program Manger项目经理PMA Project Management Analyst项目管理分析PMT Program Management Team or Program Module T eam 项目管理组或项目模式组PO Purchase Order采购订单POC Point of Contact联系点POT Process Ownership Team程序所有者小组P p Process Potential程序潜力PP Pilot ProductPP&T Product Planning & Technology产品计划和技术PPAP Production Part Approval Process生产零件批准程序P pk Process Capability程序能力PPC Product Planning Committee产品计划委员会PPL Program Parts List项目零件清单PPMParts per Million (applied to defectiveSupplier parts)零件的百万分比率(适用于供应商不合格零件)PPPM Program and Pre-Production Management程序和投产前管理PR Public Relations公共关系PR Product Requirement产品要求PR Product Readiness Milestone产品就绪时间节点PSO Production Standard Order制造标准订单PSS Private Switching Service私人转接服务PST Program Steering Team项目指导小组PSW Part Submission Warrant零件质量合格验收PTO Powertrain Operations传动系统操纵件PTR Platinum Resistance Thermometer铂金电阻温度计PV Production Validation产品验证PV Process Variables程序变更PV Part Variation零件变更PVBR Prototype Vehicle Build Requirements样车制造要求PVM Production Validation Method产品验证方法PVP Powertrain Validation Program 传动系统验证程序PVT Product Vehicle Team or Plant Vehicle Team产品车辆组或工厂车辆组QA Quality Assurance质量保证QC Quality Control质量控制QCT Quality Cost Timing质量成本时机选择QFD Quality Function Deployment质量功能配备QFTF Quality Focused Test Fleet质量节点测试行动组QLS Quality Leadership System质量领导体系QMS Quality Management System质量管理体系QOS Quality Operating System质量运作体系QOE Quality of Event质量事件QPM Quality Program Manager质量项目经理QPS Quality Process System质量程序系统QR Quality Reject质量不合格QS-9000Quality Systems – 9000质量体系-9000Quality System Assessment for ProductQSA-PD产品开发质量体系评估DevelopmentQTM Quality Team Member质量小组成员QVA Quality-Focused Value Analysis Workshop车间质量重点价值分析R Range范围RFQ Request For Quotation寻求报价R&M Reliability and Maintainability可靠性及可维护性RMS Resource Management System资源管理系统R&R Repeatability and Reproducibility重复性和再现性R&R Roles and Responsibilities职务与责任R&VT Research & Vehicle Technology研究与车辆技术R/1000Repairs per thousand修理千分率RAP Remote Anti-theft Personality module 防盗遥控器个性化模式Robust Engineering Design Process Enabler积极的工程设计程序计划REDPEPRProjectRIE Reliability Improvement Engineer可靠性改进工程师ROA Return on Assets资产回报率ROCOF Rate of Occurrence of Failure故障发生率RPN Risk Priority Number优先处理风险号码RRCL Reliability and Robustness Check List可靠性与强有力的核对表RRDM Reliability and Robustness Demonstration Matrix可靠性与强有力的演示图表RRR PSW rejected PSW (零件质量合格验收) 不合格RWUP RealWorld Usage Profile现实生活使用记录S Standard deviation标准偏差s2Variance多样性SC Significant Characteristics重要特性Significant Characteristics/CriticalSCs/CCs重要特性/评价特性CharacteristicsSCAC Supplier Craftsmanship Advisory Committee供应商技术顾问委员会SCTs Strategic Commodity Teams策略性商品组SDS System Design Specifications系统设计参数SDS Subsystem Design Specification子系统设计参数SEVA Systems Engineering Value Analysis系统工程价值分析Senko Drawing先行图SHARP Safety and Health Assessment Review Process安全和健康评估讨论程序SI System International des Unit国际单位制SIM Supplier Improvement Metrics供应商改进步骤SMART Synchronous Material and Replenishment Trigger同步物料与补给触发器SME Subject Matter Expert主题专家SMF Synchronous Material Flow同步物料流程SOW Statement of Work工作陈述SP Support PlanSP/AP Structural Prototype/Attribute Prototype结构原形/特性原形SP&PI Strategic Process & Product Improvement策略性程序和产品改进SPC Special Product Committee特殊产品委员会SPC Statistical Process Control统计程序控制SPROM Sample Promise Date承诺的样品到货日SREA Supplier Request for Engineering Approval供应商要求工程批准SRI Supplier Responsible Issues供应商责任SSI Sales Satisfaction Index销售满意度指标SSM Strategic Sourcing Meeting策略选点会议ST Surface Transfer表面转移STA Supplier Technical Assistance供应商技术支持STARS Supplier Tracking and Reporting System供应商跟踪及汇报系统SVC Small Vehicle Center小型车中心TA Target Agreement目标协议TB Training Build训练制造TAP Target Achievement Plan目标完成计划TCM Total Cost Management 总成本管理TED Things Engineers Do工程师任务TEG Tooling and Equipment Group工装及设备组TEM Total Equipment Management全部设备管理TGR Things Gone Right事态发展正确TGW Things Gone Wrong事态发展错误TIS Time in Service服务期限TOC Table of Contents目录TPM Total Productive Maintenance全部生产维护TPPS Torque Process Potential Study扭矩程序潜力研究TQC True Quality Characteristics真实质量特性TRIZ (Russian)Theory of Inventive Problem Solving创造性解决问题的理论(俄罗斯) TRMC Timing, Release and Material Control (also 时效性、发布和物料控制(同known as Tar-Mac)Tar-Mac)TS-16949Technical Specification – 16949技术规范-16949 TSP Technical Skills Program技术性技能项目TTO Tool Try Out工装试运行UCL Upper Control Limit上限控制USL Upper Specification Limit参数上限V/C Very or Completely Satisfied非常或完全满意VC Vehicle Center汽车中心VC BuyerVehicle Center Buyer (now Consumer BusinessGroup Buyer)车辆中心客户(现在为商务集团购买客户)VDI Vehicle Dependability Index车辆可靠性指标VDS Vehicle Design Specifications车辆设计参数VDS Vehicle Descriptor Section车辆描述组VER Vehicle Evaluation Ratings车辆评估等级VFG Vehicle Function Group车辆功能组VIN Vehicle Identification Number车辆识别代码VLD Vehicle Line Director车辆生产线总监VO Vehicle Office车辆办公室VO Vehicle Operations车辆运作VOGO Vehicle Operations General Office车辆运作综合办公室VP Vice President副总裁VPMC Vehicle Project Management Coordinator车辆项目管理协调员VPP Vehicle Program Plan车辆项目计划VQL Vehicle Quality Level车辆质量级别VQR Vehicle Quality Review车辆质量研讨VRT Vehicle Review Team车辆研讨小组VRT Variability Reduction Team减少差异小组VRT Vehicle Reduction Team车辆减产小组WAS Work Analysis Sheet工作分析表WCR Worldwide Customer Requirements全球客户需求WERS Worldwide Engineering Release System全球工程发布系统WIP Work In Progress进行中的工作WMI World Manufacturing Identifier世界制造商识别代码WPRC Warranty Parts Return Center维修部件回收中心Potential Significant and CriticalYS/YC潜在的重要和评价特性CharacteristicsRemark: Editor adds the content in shadow. 备注:阴影部分的内容为编者增加。
Autodesk Nastran 2023 参考手册说明书

FILESPEC ............................................................................................................................................................ 13
DISPFILE ............................................................................................................................................................. 11
File Management Directives – Output File Specifications: .............................................................................. 5
BULKDATAFILE .................................................................................................................................................... 7
抗缪勒氏管激素与性激素水平在卵巢储备功能评估中的价值

DOI:10.19368/ki.2096-1782.2024.05.009抗缪勒氏管激素与性激素水平在卵巢储备功能评估中的价值方闰,谈王蓉,匡宁,蒋华春宜兴市中医医院检验科,江苏宜兴214200[摘要]目的分析在卵巢储备功能中抗缪勒氏管激素(Anti-mullerian Hormone, AMH)与性激素水平的评估价值。
方法选取2022年3—8月宜兴市中医医院收治的100例妇科患者为研究对象,依据卵巢储备功能的不同将患者分成3组,甲组33例(卵巢储备功能正常),乙组33例(卵巢储备功能减退),丙组34例(卵巢储备功能早衰),检测所有患者AMH、卵泡刺激素(Follicle Stimulating Hormone, FSH)、黄体生成素(Luteinizing Hor⁃mone, LH)及雌二醇(Estradiol, E2)指标水平。
对比3组患者上述指标检测水平、AMH分别和FSH、LH、E2联合检测的预估值。
结果甲组AMH、E2高于乙组、丙组,FSH、LH低于乙组、丙组,差异有统计学意义(P均< 0.05)。
乙组AMH、E2高于丙组,FSH、LH低于丙组,差异有统计学意义(P均<0.05)。
对乙组和丙组患者进行检测,AMH的血浆浓度时间曲线下面积(Area Under the Curve, AUC)、灵敏度、特异度大于FSH、LH、E2;AMH+FSH、AMH+LH、AMH+E2的AUC、灵敏度、特异度分别大于FSH、LH、E2。
结论 AMH与性激素指标可以作为临床评估卵巢储备功能参考指标,联合检测后预估价值更高。
[关键词]抗缪勒氏管激素;性激素;卵巢储备功能;评估价值[中图分类号]R246 [文献标识码]A [文章编号]2096-1782(2024)03(a)-0009-04Value of Anti-mullerian Hormone and Sex Hormone Levels in the Assess⁃ment of Ovarian Reserve FunctionFANG Run, TAN Wangrong, KUANG Ning, JIANG HuachunDepartment of Laboratory, Yixing Hospital of Traditional Chinese Medicine, Yixing, Jiangsu Province, 214200 China[Abstract] Objective To evaluate the value of anti-mullerian hormone (AMH) and sex hormone levels in ovarian re⁃serve function. Methods A total of 100 gynecological patients admitted to Yixing Hospital of Traditional Chinese Medicine from March to August 2022 were selected as the study objects. According to different ovarian reserve func⁃tions, the patients were divided into 3 groups: Group A (33 cases) (normal ovarian reserve function), group B (33 cases) (decreased ovarian reserve function), and group C (34 cases) (premature ovarian reserve function). The levels of AMH, follicle stimulating hormone (FSH), luteinizing hormone (LH) and estradiol (E2) were detected in all patients. The detection levels of the above indicators and the estimated values of AMH combined with FSH, LH and E2 were compared among the 3 groups. Results AMH and E2 in group A were higher than those in groups B and C, and FSH and LH were lower than those in groups B and C, the differences were statistically significant (all P<0.05). AMH and E2 in group B were higher than those in group C, FSH and LH were lower than those in group C, and the differences were statistically significant (all P<0.05). The Area Under the Curve (AUC), sensitivity and specificity of AMH were higher than those of FSH, LH and E2. The AUC, sensitivity and specificity of AMH+FSH, AMH+LH and AMH+E2 [作者简介] 方闰(1990-),女,本科,主管检验师,研究方向为临床检验。
学习LSPCAD设计分频器必学的英语

LSP CAD 相关英文analog/digital ['ænəlɔɡ]/['didʒitəl]模拟/数字location [ləu'keiʃən] 位置,定位件2ch mode两种方式Lock 锁定,隐藏accessæk'ses接近Lock levelactually ['æktʃuəli]事实上Logical ch mapping逻辑绘图additional [ə'diʃənəl]附加的Lower较低additional info额外信息Lower partadjust [ə'dʒʌst]校准,调整lump [lʌmp]集中的advisable [əd'vaizəbl]明智的,适当的main form主要方式aggressive [ə'ɡresiv]好斗的,有闯劲的manufactory [,mænju'fæktəri] 制造厂algorithm ['ælɡəriðəm]运算法则mass [mæs]大量,众多alignment [ə'lainmənt] 校准match [mætʃ]使相配,匹配alternative [ɔ:l'tə:nətiv]可供选择的Matlabamong [ə'mʌŋ]在…之中Max Zamp [æmp]安培Measurement distance测试距离Apply [ə'plai] 应用mention ['menʃən]提到,提及appropriate [ə'prəuprieit适当的mere [miə] 仅仅的area ['εəriə] 面积Merge/Add [mə:dʒ] 合并使合并arrange [ə'reindʒ] 排列,整理Mic cal. Dataarrow ['ærəu] 箭头Min Zassisted[ə'sist] 受助推的misalignment[,misə'lainmənt使不一致associated[ə'səuʃieitid关联的MMEassume [ə'sju:m, 假定modified['mɑdɪfaɪd /'mɒ-]修改attached [ə'tætʃt] 附加的mount [maunt] 增加,爬上attenuate [ə'tenjueit, 减弱的mounted ['mauntid] 安装好的attenuator[ə'tenjueitə] 衰减器multiplier ['mʌltiplaiə] 倍增器author['ɔ:θə] 作者namely['neimli] 换句话说available [ə'veiləbl]可利用的,有效的narrow ['nærəu] 狭窄的,有限的axis ['æksis]轴neat [ni:t]齐整的,平滑的backside [,bæk'said]后方的,背部的No normalization [,nɔ:məlai'zeiʃən, -li'z] 非常态化Baffle step No snap无步级限制,可连续变换beloved [bi'lʌvid心爱的No-brainer无需动脑的事benefit ['benifit] 利益,好处Node difference不同节点block [blɔk] 大块木料Non-standard非标准的boldface[bəuld'feis] 黑体normalize ['nɔ:məlaiz] 使标准化boring无聊的Not mapped不映射box/cabinet['kæbinit] 箱体/及内部notch [nɔtʃ] 谷,凹口Browse[brauz] 浏览Null[nʌl] 零Buffer['bʌfə] 缓冲器observant [əb'zə:vənt]善于观察的bump [bʌmp] 撞击observation angle [,ɔbzə:'veiʃən] ['æŋɡl] 观察角度by pass设旁路Off axis,overlay分频点cal.Offset补偿,抵消Causal filter margin有计划的过滤多余部份omitted[əu'mitid省略cause [kɔ:z] 原因,引起optimizer['ɔptimaizə] n. 优化程序;最优控制器cell [sel]细胞,电池option['ɔpʃən] 选择权chapter ['tʃæptə] 章,分会order ['ɔ:də] 命令,顺序,整理charming ['tʃɑ:miŋ] 迷人的,可爱的original [ə'ridʒənəl] 原件circuit ['sə:kit]电路,回路overall ['əuvərɔ:l, ,əuvə'rɔ:l] 全部的Circular convolution ['sə:kjulə] [,kɔnvə'lu:ʃən] 循环Overlay覆盖图clone [kləun] 复制overview ['əuvəvju:]综述closest最靠近的parallel ['pærəlel] 平行,相同的,类似的coefficient [,kəui'fiʃənt] 共同作用的Parametric[,pærə'metrik]参数的column ['kɔləm] 列,专栏parenthesis [pə'renθisis]插入语,圆括号Combine for total[kəm'bain]组合全部阻抗particular [pə'tikjulə] 特别的impedanceCombine for total SPL组合全部频响passive['pæsiv] 被动的Combined[kəm'baind] 组合paste [peist] 张贴compensate ['kɔmpenseit] 补偿,抵消peak [pi:k]峰,顶点compensation [,kɔmpen'seiʃən]补偿perform [pə'fɔ:m] 执行,完成complex ['kɔmpleks] 复杂的pick [pik] 挑选component [kəm'pəunənt] 元件,组件plus [plʌs]正号,附加的,好处Component snap[kəm'pəunənt][snæp]声响组合points点compression [kəm'preʃən] 压缩Polar map['pəulə]示意图Compute用计算机计算Polar plot相位图concentrate ['kɔnsəntreit]集中精神地pops [pɔps] 突然伸出Cone excursion[ik'skə:ʃən] 圆锥形偏移port[pɔ:t端口configuration [kən,fiɡju'reiʃən]配置preliminary [pri'liminəri] 预加载的configure [kən'fiɡə]安装,配置present ['prezənt,介绍,呈现considered [kən'sidəd] 经过深思熟虑的Preset [pri:'set] 预先调整的consist [kən'sist] 组合pretty ['priti]漂亮的,优美的constraint [kən'streint] 约束,强制Print scale打印比例construct [kən'strʌkt]构想,设计project ['prɔdʒekt设计,工程contain [kən'tein] 包含properties['prɔpətis] 性能,道具,内容continuation [kən,tinju'eiʃən] 继续,续集Protection cap. [prəu'tekʃən] 保护电容convenient [kən'vi:njənt]方便的radiator ['reidieitə] 辐射体correct [kə'rekt] 调整radius ['reidiəs] 半径correctly[kə'rektli] 正确地ratio ['reiʃiəu比率,比例create [kri'eit] 造成,创造reach [ri:tʃ] 达到critical ['kritikəl]鉴定的reality [ri'æləti现实,真实current ['kʌrənt] 电流rearrangement[,ri:ə'reindʒ] 重新整理current project['kʌrənt] 目前项目rectangular ['rek'tæŋɡjulə]矩形的current project as…项目来源reduce [ri'dju:s, 减少curve [kə:v]曲线Ref. Offset参照补偿cyclic ['saiklik] 循环的Reference['refərəns] 参照Data range数据范围reflex ['ri:fleks] 反射Delay start 2s延迟2秒启动region ['ri:dʒən]部位description[di'skripʃən] 描述relatively ['relətivli] 相当地,相对地determine [di'tə:min]决定,使…下决心reliable [ri'laiəbl] 可靠的,可信赖的diffract [di'frækt] 使…分散,衍射remain [ri'mein] 剩余diffraction [di'frækʃən]衍射,绕射replace [ri'pleis] 取代,更换Digital filters['didʒitəl] [filtə] 过滤数值represent [,repri'zent]描绘,回忆dip [dip] 下降resonance ['rezənəns] 共振directly [di'rektli直接地rid [rid]使去掉Disp. Length显示长度roughly ['rʌfli]概略地Display range显示范围/幅度Sample rate取样频率disturb [dis'tə:b]妨碍Scale比例,刻度,数值范围dotted ['dɔtid] 布满点的Schema['ski:mə] 图解Driver output扬声器输出separately['sepəreitli个别地dropdown下拉列表选顶series ['siəri:z串联DSOUND serve [sə:v]服务,适合dull[dʌl] 阴暗的session as…E12步级的一种shape [ʃeip]形状,模型E24步级的一种Show callout显示图号element['elimənt] 元素,成分Show group borders['bɔ:dəz] 边缘显示群边缘emulator['emjuleitə] 仿真程序Show legends['ledʒənd] 显示图例Enable[i'neibl] 使能够Show node numbers[nəud]节点 显示节点数目Enable diff./near-boundary Show phase显示相位energy-time['enədʒi] 能量shunt [ʃʌnt]使分流ensure [in'ʃuə] 保证,确保signal ['siɡnəl]信号entirely [in'taiəli] 完全地,彻底地Simple简单equalize['i:kwəlaiz] 使相等,补偿simulate['simjuleit] 模拟Error ['erə] 误差slight[slait] 轻微的,少量的exception [ik'sepʃən] 例外,异议slightly[slaitili轻微地Exclude排除slope [sləup] 倾斜,斜率experiment[ik'speriment实验smoothing ['smu:ðiŋ] 使平滑化Export data绘出数据snap [snæp] 捕捉extent [ik'stent] 程度,范围snapshot ['snæpʃɔt] n快照vt. 给…拍快照extra ['ekstrə] 特别地,非常sound pressure level声压标准extreme [ik'stri:m] 极其,非常Soundcard cal.factor ['fæktə] 品质,因数SPL mag频率响应曲线fashion ['fæʃən] 样式SPL phase频响相位曲线Fast iteration [,itə'reiʃən] 快速重复square[skwεə] 直角/平方feature ['fi:tʃə] 容貌,特征step步figure ['fiɡə] 图形,数字stupid ['stju:pid麻木的,愚蠢的Filename文件名称summed总计的,概括的fit ['fit] 安装switch [switʃ]开关fixed [fikst] 确定的symbol ['simbəl] 符号,标志folder ['fəuldə] 文件夹Target ['tɑ:ɡit] 规定的指标Freq频率tedious ['ti:diəs沉闷的fs一秒对应频率总带宽template ['templit] 模板fubar [fju:bɑ:] 混乱不堪terminal ['tə:minəl] 终端gain [ɡein] 增益Test level测试水平gap [ɡæp]空白,缺口throat [θrəut]喉咙General['dʒenərəl] 综合;常规thus [ðʌs]因此generator ['dʒenəreitə] 发电机Time domain时域glance [ɡlɑ:ns,闪光,扫视Time domain response时域响应Graph [ɡrɑ:f, ɡræf] 曲线图To 0 degGroup delay群延迟To strongestguesswork推测的结果tolerance analysis['tɔlərəns] n.[ə'næləsis] 公差分析handpass[hændpɑ:s带通topmost ['tɔpməust]最高的,顶端的Headroom净空高度transfer function转换功能Hide phase隐藏相位transient ['trænziənt短暂的hit [hit] 碰撞,偶然发现trap [træp]使…受限制horizontal ['hɔri'zɔntəl] 水平的tray [trei] 文件盒IIR treat [tri:t]处理impact['impækt,撞击tweak稍作调整impedance[im'pi:dəns] 阻抗typical ['tipikəl] 典型的implement ['implimənt实施,执行Upper较高impressive [im'presiv]令人印象深刻的Upper partimpulse['impʌls] 脉冲、推动variation [,vεəri'eiʃən] 变化Include 包括various ['vεəriəs] 各种各样的incorporated [in'kɔ:pəreitid] 合并的,verified ['verifaid] 已查清的,已证实的Ind. Spkrs filtered verify ['verifai]核实,查证Ind. Spkrs unfiltered vertical ['və:tikəl]垂直的individual off axis显示个别偏离轴线via ['vaiə]通过raysindividual[,indi'vidjuəl个别的voltage ['vəultidʒ] 电压inductance [in'dʌktəns]感应系数,电感volume ['vɔlju:m]体积inevitable [in'evitəbl] 不可避免的wave波动,波形infinite ['infinət] 无限空间(无回响消音室)whining[hwainiŋ发牢骚intelligent [in'telidʒent]聪明的,智能的wild [waild] 野生的,疯狂地intend [in'tend] 准备wizard ['wizəd]巫术的intention [in'tenʃən] 目的,意图wont [wəunt习惯Invert[in'və:t, 'invə:t] 使…反转;使…反相Working range工作范围Iterate ['itəreit, -rət] 重复Xfer func分频点latency ['leitənsi] 潜在因素Level otherlikely ['laikli]很可能,很希望limited ['limitid] 有限的Live update实况修正located[ləu'keitid,处于,位于。
CMG数模软件的使用

NUMERICAL METHODS CONTROL:数值方法控制,这部分定义模拟 器数值方法参数:时间步数、非线性迭代解法、误差控制;(*等温、非等 温控制项) WELL AND RECURRENT DATA:井定义和生产动态数据,定义井名、 井位和完井层位,设臵相对应的生产动态数据。
中国石油大学(北京)石油天然气工程学院油藏数值模拟组
CMG数模软件培训
庞占喜 2007.3.17
目 录
* * * * * * *
CMG软件简介 STARS模块主要关键字 STARS模块泡沫的模拟 STARS模块所需数据的准备及处理
STARS模块油藏热采模型的建立
油藏热采模型的运行及结果后处理
氮气及氮气泡沫压水锥数值模拟
中国石油大学(北京)石油天然气工程学院油藏数值模拟组
中国石油大学(北京)石油天然气工程学院油藏数值模拟组
二、STARS模块主要关键字
ROCK-FLUID PROPERTIES
插值序号及参数 *KRINTERP, *DTRAPW, *DTRAPN, *WCRV, *OCRV, *GCRV, *SCRV 水油相渗数据表 *SWT 气液相渗数据表 *SLT 流体定义参数所需资料: 相渗临界点 *SWR, *SORW, *SGR, *SORG, *SWRG, 粘度-温度关系曲线 *KRWRO, *KROCW, *KRGCW, *PCWEND, *PCGEND 相渗临界点随时间的变化数据 *KRTEMTAB 不同温度下的油水相渗曲线和气液相渗曲线 组分弥散系数 高压物性 *DISPI_WAT, *DISPJ_WAT, *DISPK_WAT, PVT数据 *DISPI_OIL, *DISPJ_OIL, *DISPK_OIL, 毛管压力曲线数据(压汞曲线) *DISPI_GAS, *DISPJ_GAS, *DISPK_GAS ,密度,临界压力 ,临界温度,压缩系数 吸附组分函数 组分摩尔质量 *ADSCOMP, *ADSLANG, *ADSTABLE 依赖于岩石性质的吸附数据 *ADSROCK, *ADMAXT, *ADRT, *PORFT, *RRFT, *ADSTYPE
FS-T6说明书 富斯遥控器

3.接收灵敏度:-105dBm; C . R F r e c e i v e r s e n s i t i v i t y : - 1 0 5 d B m ;
4 .调 制 方 式: G F S K;
D.Modulation: GFSK;
5 .系 统 模 式: A F H D S;
E.SysteODEL: FS-R6B
机种参数:
S P E C I F I C A T I O N S:
1 .通 道 个 数 :6个 通 道 ;
A.Channels: 6channels;
2.适合机种:飞机/直升机; B . M o d e l t y p e : c a r / b o a t ;
此款产品只适合15岁以上人员使用。
警告
FS-T6
Digital proportional radio control system
1. Introducion...............................................................2 2. Services....................................................................2 3. The special symbols..................................................3 4. Safty guides..............................................................3 5. Battery charging notes...............................................4 6. Tansmitter parameters...............................................5 7. Receiver parameters.................................................5 8. Receiver connectivity.................................................6 9. 2.4G Operation notes.................................................8 10. Definition of key functions.........................................9 11. Features...................................................................10 12. Packs the content...................................................41
SOR 估计 基于顺序偏移回归的长期数据估计说明书

Package‘SOR’October12,2022Type PackageTitle Estimation using Sequential Offsetted RegressionVersion0.23.1Date2018-04-25Depends MatrixImports methods,statsDescription Estimation for longitudinal data following outcome dependent sampling using the se-quential offsetted regression technique.Includes support for binary,count,and continu-ous data.Thefirst regression is a logistic regression,which uses a known ratio(the probabil-ity of being sampled given that the subject/observation was referred divided by the probabil-ity of being sampled given that the subject/observation was no referred)as an offset to esti-mate the probability of being referred given outcome and covariates.The second regres-sion uses this estimated probability to calculate the mean population response given covariates. License GPL-3NeedsCompilation noAuthor Lee McDaniel[aut,cre],Jonathan Schildcrout[aut]Maintainer Lee McDaniel<*****************>Repository CRANDate/Publication2018-04-2519:30:40UTCR topics documented:sor (2)Index612sor sor Sequentially Offsetted RegressionDescriptionFits model for data which was sampled based on a variable associated with the outcome.This function works for binary,count,and continuous responses.Usagesor(y.formula,w1.formula,w2.formula=~1,id,waves=NULL,family="binomial",y0=0,hfunc=identity,support=c(0,1),pi1.pi0.ratio=1,data=parent.frame(),init.beta=NULL,init.sig.2=1,weights=NULL,est.var=TRUE,CORSTR="independence")Argumentsy.formula Regression formula for responsew1.formula Formula for Z,not interacted with hfunc(Y).Of form Z~termsw2.formula Formula for Z,interacted with hfunc(Y).Of form~termsid a vector identifying the clusters.By default,data are assumed to be sorted such that observations in a cluster are in consecutive rows and higher numbered rowsin a cluster are assumed to be later.If NULL,then each observation is assignedits own cluster.waves an integer vector identifying components of a cluster.For example,this could bea time ordering.If integers are skipped within a cluster,then dummy rows withweight0are added in an attempt to preserve the correlation structure(except ifcorstr="exchangeable"or"independent").This can be skipped by settingnodummy=TRUE.family Character string representing reference distribution for the response.Can be one of"normal","poisson",or"binomial".y0Representative value of response.Ignored if family="binomial".hfunc Function h,used with Y.Set to identity if family="binomial".sor3 support Values on which to evaluate the integrals.The lowest value should be less than the minimum response and the highest should be higher than the maximum re-sponse.If response is binary,support should be c(0,1).If response is count data,support should be an integer vector,for instance0:50.If response is continuous,support should be a vector of points on which to integrate.pi1.pi0.ratio The referral ratiodata Data frame or environment with all the datainit.beta Initial values for parameters in y.formula.Convergence may depend heavily on the initial values used.If family="binomial",the default is recommended.init.sig.2Initial value for sigma^2.Only for family="normal".weights A vector of weights for each observation.If an observation has weight0,it is excluded from the calculations of any parameters.Observations with a NAanywhere(even in variables not included in the model)will be assigned a weightof0.This should normally be used to preserve the correlation structure.est.var Logical.Should the variance be estimated.Only for family="normal".CORSTR Correlation structureValueReturns a list with values from thefit.Author(s)Lee S.McDaniel,Jonathan S.SchildcroutReferencesThis package relies heavily on code from geeM:McDaniel,L.S.,Henderson,N.C.,&Rathouz,P.J.(2013).Fast pure R implementation of GEE: application of the matrix package.The R journal,5(1),181.Examplesgeneratedata<-function(beta,alpha,X,ntime,nsubj,betat,betat1){mean.vec<-exp(crossprod(t(X),beta))y<-matrix(0,nrow=nsubj,ncol=ntime)y[,1]<-rpois(nsubj,lambda=mean.vec)old.mean<-mean.vecnew.mean<-old.mean*exp(betat+betat1*X[,2])for(t in1:(ntime-1)){lambda.t<-new.mean-alpha*sqrt(old.mean*new.mean)theta.t<-alpha*sqrt(new.mean/old.mean)I<-rpois(nsubj,lambda=lambda.t)W<-rbinom(nsubj,y[,t],theta.t)y[,t+1]=W+Iold.mean<-new.mean4sor new.mean<-old.mean*exp(betat+betat1*X[,2])}longform<-c(t(y))time<-rep(1:ntime,times=nsubj)subject<-rep(c(1:nsubj),each=ntime)simdata<-data.frame(count=longform,time=time,subject=subject)return(simdata)}logit<-function(p)log(p)-log(1-p)expit<-function(x)exp(x)/(1+exp(x))set.seed(1)npop<-10000beta0<--1.4beta1<-0.4alpha<-0.9gam0<--3.15gam1<-6.3nsubj<-200ntime<-8betat<--0.1;betat1<-0.1thresh<-1x0<-rep(1,npop)x1<-rbinom(npop,1,0.5)Xmat<-cbind(x0,x1)timevec<-0:(ntime-1)testdat<-generatedata(c(beta0,beta1),alpha,Xmat,ntime,npop,betat=betat,betat1=betat1) Y<-matrix(testdat$count,nrow=npop,ncol=ntime,byrow=TRUE)lambdap<-expit(gam0+gam1*as.numeric(Y[,1]>=thresh))Z<-rbinom(npop,1,lambdap)casesamp<-rep(0,npop)casesamp[Z==1]<-rbinom(sum(Z),1,nsubj/(2*sum(Z)))controlsamp<-rep(0,npop)controlsamp[Z==0]<-rbinom(sum(1-Z),1,nsubj/(2*sum(1-Z)))case<-which(casesamp==1)control<-which(controlsamp==1)id<-sort(c(case,control))nsubj<-length(control)+length(case)Ysamp<-NULLlamsamp<-NULLzsamp<-NULLx1samp<-NULLidsamp<-NULLtime<-NULLobspersubj<-sample(3:ntime,size=nsubj,replace=TRUE)for(i in1:nsubj){sor5 Ysamp<-c(Ysamp,Y[id[i],1:obspersubj[i]])zsamp<-c(zsamp,rep(as.numeric(Z[id[i]]),obspersubj[i]))x1samp<-c(x1samp,rep(x1[id[i]],obspersubj[i]))time<-c(time,0:(obspersubj[i]-1))idsamp<-c(idsamp,rep(i,obspersubj[i]))}p1p0<-sum((1-Z))/sum(Z)timemax<-pmax(time-2,0)y0<-1betas<-c(beta0,beta1,betat,betat1)init<-runif(4,betas-0.1,betas+0.1)y.formula<-y~x1+time+x1:timew1<-z~x1+as.factor(time)+x1:time+x1:timemaxw2<-~x1+time+timemax+x1:time+x1:timemaxDAT.ods<-data.frame("x1"=x1samp,"time"=time,"timemax"=timemax,"z"=zsamp,"y"=Ysamp,"id"=idsamp) sor(y.formula,w1,w2,id,family="poisson",y0=1,support=0:25,pi1.pi0.ratio=p1p0,data=DAT.ods,init.beta=init,CORSTR="ar1")IndexSOR(sor),2sor,2SOR-package(sor),26。
科学仪器服务公司SIMION

The Industry Standard in 3D Ion and Electron Optics Simulations Scientific Instrument Services, Inc.1027 Old York Rd, Ringoes, NJ 08551Phone: (908) 788-5550Scientific Instument Services, Inc™ SIMION ™Version 8.1SIMION 8.1S IMION 8.1 is a software package used primarily to calculate electric fields, when given a configuration of electrodes withvoltages, and calculate trajectories of charged particles in those fields, when given particle initial conditions, including optional RF, magnetic field, and collisional effects are supported. In this, SIMION provides extensive supporting functionality in defin-ing your system geometry and conditions, recording and visualizing results, and extending the simulation capabilities with user pro-gramming. It is an affordable but versatile platform, widely used for over 35 years to simulate lens, mass spec, and other types of particle optics systems.Typical usage of SIMION is illustrated below for a simple three-element Einzel lens. The geometry consisting of three ring elec-trodes with given voltages is defined (top), and the fields and particle trajectories are calculated and displayed.Electrostatic field solving:SIMION solves fields in 2D and 3D arrays of up to nearbillions of points, with optimizations for systems with symmetry and mirroring, accord-ing to the finite difference method with much optimized linear-time solving. Smallarrays solve in under a minute; very large arrays may take roughly an hour depending onconditions. A “workbench” strategy allows you to position, size, and orient instances(3D images) of different grid densities and symmetries to permit the simulation of muchlarger systems that don't easily fit into a single array. Some magnetic field solving capa-bilities are also available (see following page).Particle trajectory solving: Particle trajectories are calculated given the previouslycalculated or defined fields. The method is Runge-Kutta with relativistic corrections andvariable-length dynamically adjusting and controllable time steps. Particle mass, charge,and other parameters can be defined individually or according to some pattern or distrib-ution. User programming can modify the system during particle flight to inject noveleffects (such ion-gas scattering). Particle tracing is fast _millions of particles can behandled—and they display in real-time. Basic charge repulsion effects, including a pois-son solver can help estimate the onset of space-charge.Viewing of the system is highly interactive, allowing adjustment of parametersand viewing of the system even during particle flight (trajectory calculation). SIMIONsupports cutting away volumes to see trajectories inside, zooming, viewing potentialenergy surfaces, contour lines, and trajectories, and reflying particles as dots for movieeffects.S IMION is suitable for a wide variety of systems: from ion flight through simple electrostatic and magnetic lenses to particle guns to highly complex instruments, including time-of-flight, hemispherical analyzers, ion traps, quadrupoles, ICR cells, and other MS, ion source and detector optics.Time-dependent or RF (low frequency) voltages:Electrode voltages may be controlled in a general way during particle flight via simple user programs _ e.g. to step or oscillate electrode voltages in some manner. Quadrupole mass filter, multipole, and ion trap simulations (above) in the megahertz range are regularly performed. SIMION applies the quasistatic approximation with superposition, which gives fast calculations (assuming the absence of induced magnetic field or radiation effects as would occur in “high frequency” systems having the wavelength below the length of your system).Magnetic fields: SIMION will import magnetic fields, define them analytically or solve them in restricted cases (e.g. Biot-Savart wire currents - left), optionally superimposed on an electrostatic field (e.g.penning trap or ICR cell - right) for the pur-pose of particle flying.ApplicationsRF Quad Mass Filter RF Ion Trap RF Ion Trap (Potential Energy Display)Ion Confinement in Air SolenoidICR CellIon-neutral collisions: SIMION can handle the effects of particles colliding against a background gas, such as for the buffer gas of the ion trap (top), the back-ground gas in an RF ion-funnel (right), or in ion mobility. Multiple collision models are included: Stokes' law, hard-sphere, and a mobility model optimized for high pres-sure “atmospheric” conditions. The parti-cles will diffuse and randomly scatter away from their normal trajectories.RF Ion Funnel Atmospheric Pressure ExampleDefine Your SimulationComplex CAD Modelimported from STL file(left) to a SIMION arrayGeometry (GEM) defi-nition file exampleGeometry definition: A system geometry can be defined by whichever method is most convenient for you: an interactive 3D paint-like program(called “Modify”), CAD import from STL format (supported by most CAD packages), a solid geometry defined mathe-matically via a text file(“GEM files”), and programmatic manipulation of arrays from such languages as Lua, Perl, Python, and C++.Particle initial conditions can be defined in various ways. The“FLY2” format in SIMION allows quick definition of many types ofparticles random distributions and sequences. Particles may also beexhaustively enumerated (optionally imported from a text file).Analysis and Programming SIMION has a number of capabilities for collecting data.•Package contents: a 450-page printed manual, installation CD with software license key number (for receiving softwareupdates), and quick start notes. The installation CD installs the software, examples, and additional documentation.•Documentation:SIMION comes with a 450-page printed manual. Additional documentation and course notes are available electronically, in the examples, or on the web site. See the web site for the user group, software updates, latest SIMION tips, articles, and links to some of the hundreds of scholarly papers that use SIMION.•Updates:Free updates to 8.1.x versions of 8.1 are provided as free downloads from .•Support:Free basic support via email, phone, and forum •Supported systems: Formally tested on Windows 10/8.1/8/Vista/XP, as well as Wine/Linux (and Crossover/Mac). Latest system compatibility information is on .In the example above, trajectories are calcu-lated while phase space data is interactively plotted in Excel via the Lua COM interfaceSIMION can optimize voltages and geometry with simplex optimizer and batch mode capabilities. At left is a SIMION generated surface plot of beam size as a func-tion of two lens voltages. At right is one of the many user programming examples (scattering at surface).Programming in Lua Surface Plot in ExcelScattering Effects at Surface User programming allows the simulation to be extended in many novel ways. During ion flight, you may control electrode voltages (example at right), define or modify fields, scatter or deflect ions (e.g.ion-gas collision models), tune (optimize) lens voltages, compute results, export data to programs like Excel via COM or command-line interfaces, and do many other things. The Lua scripting language is directly embedded in SIMION, and Lua may also call C/C++ or COM routines. Programming may also be used to operate SIMION in batch mode , such as for geometry optimization or to read/manipu-late potential array files.Contents Data recording:The simulation parameters you are interested in (e.g. ion position, velocity, KE, and voltage) can be recorded at various stages in particle flight (e.g. when hitting an electrode and crossing a plane). Data can be recording to the screen or to delim-ited text file for subsequent analysis of fields and trajectories (right). Analysis can be done via SIMION user programming, in a program or language of your choice like Excel, and MATLAB ®.Features in SIMION 8.1 (and 8.2EA/beta)Poisson solver (Refine), fully Dielectric materials (Refine)Supplemental Documentation Integration with Lua/C, Excel, gnuplot, Origin,Large 64-bit array sizes up to 20billion points / 190 GB Improved curved surface handling (“surface enhancement”) gives order of magnitude field accuracy improvement Multicore Refines (8.1)Oblong, non-square grid cells.More AccurateMore Versatile CompatibilityNested refining techniquesSome permeability and mag-High quality 3D (OpenGL)graphics on View screen More examples and documentation New GUI dialog library New programming API’s:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :a s t r o -p h /0402427v 1 18 F eb 2004The 5th Workshop on Galactic Chemodynamics -Swinburne University (9-11July 2003)To be published in the Publications of the Astronomical Society of Australia in 2004B.K.Gibson and D.Kawata,eds.Mass–to–Light ratio,Initial Mass Function and chemical evolution in disc galaxiesL.Portinari 1,J.Sommer–Larsen 1,R.Tantalo 21Theoretical Astrophysics Center,Juliane Maries Vej 30,DK-2100Copenhagen Ø,Denmark2Dipartimento di Astronomia,Universit`a di Padova,Vicolo dell’Osservatorio 2,I-35122Padova,Italye–mail:lportina,jslarsen@tac.dk;tantalo@pd.astro.itAbstractCosmological simulations of disc galaxy formation,when compared to the observed Tully–Fisher relation,suggest a low Mass–to–Light (M/L)ratio for the stellar component in spirals.We show that a number of“bottom–light”Initial Mass Functions (IMFs)suggested independently in literature,do imply M/L ratios aslow as required,at least for late type spirals (Sbc/Sc).However the typical M/L ratio,and correspondinglythe zero–point of the Tully–Fisher relation,is expected to vary considerably with Hubble type.Bottom–light IMFs tend to have a metal production in excess of what is tipically estimated for spiralgalaxies.Suitable tuning of the IMF slope and mass limits,post–supernova fallback of metals onto blackholes or metal outflows must then be invoked,to reproduce the observed chemical properties of disc galaxies.Keywords:Galaxies:spirals,chemical and photometric evolution;stars:Initial Mass FuntionFigure 1:Straight lines:observed Tully–Fisher rela-tion for Sbc–Sc disc galaxies (Dale et al.1999;h=0.7adopted here),for different assumptions about the stellar M/L I ratio.Triangles:simulated galaxies by Sommer–Larsen et al.(2003).Also shown is the loca-tion of the Milky Way and NGC 2841.1Introduction Recent N–body+SPH cosmological simulations of the for-mation of disc galaxies reproduce the observed Tully-Fisher (TF)relation (Dale et al.1999),provided the mass–to–light (M/L)ratio of the stellar component is rather low,M/L I =0.7–1in the I–band (Sommer-Larsen &Dolgov 2001;Sommer-Larsen et al.2003;Fig.1).The location of the simulated galaxies in the (M ∗,V c )plane of Fig.1is quiteindependent of the adopted Initial Mass Function (IMF)or feedback efficiency:the baryonic mass that cools outto form a galactic disc and its resulting circular velocitycorrelate so that data points tend to move along the TFrelation,hardly affecting the zero–point (Navarro &Stein-metz 2000ab).However,the IMF is crucial for the M/L ra-tio,to translate the stellar masses M ∗to luminosities andcompare the simulated TF relation to the empirical one.Although the zero–point of the simulated TF may changewith the concentration of the dark matter halos,and hencewith the normalization of the power spectrum σ8(Navarro&Steinmetz 2000ab;Eke et al.2001),many other argu-ments support a low stellar M/L ratio in spiral galaxies:The stellar mass of the Milky Way is M ∗∼5×1010M ⊙;to lie on the observed TF relation as other spirals,its M/L Imust be <∼1(Sommer-Larsen &Dolgov 2001;Fig.1).Alow M/L I <0.8is also derived for the massive Sb galaxyNGC 2841,when compared to the observed TF relation(Portinari et al.2004a,hereinafter PST;Fig.1).Based on bar instability arguments,Efstathiou et al.(1982)suggest an upper limit of M/L B ≤1.5h for discs,i.e.M/L B <∼1for h =0.7.(h indicates the Hubble constantH 0in units of 100km sec −1Mpc −1).The stellar M/L ratio is related to the issue as to whetherdiscs are maximal or sub–maximal,i.e.as to whether theydominate or not the dynamics and rotation curves in theinner galactic regions.Even in the case of maximal stellardiscs,lower M/L ratios for the stellar component are re-quired,than those predicted by the Salpeter IMF (Bell &de Jong 2001).And it is still much debated whether discsare maximal or sub–maximal;for his favoured sub–maximaldisc model,Bottema (2002)finds M/L I ∼0.82.Finally,two recent dynamical studies of individual spi-ral galaxies yield M/L ∼1in the B,V and I band for the Scgalaxy NGC 4414(Vallejo et al.2002)and M/L I =1.1forthe disc of the Sab spiral 2237+0305,Huchra’s lens (Trott&Webster 2002).In this paper we discuss if M/L ratios so low are com-patible with our understanding of stellar populations andchemical evolution in disc galaxies.We also address the ef-fects of different star formation histories on the TF relationfor different Hubble types.2Star Formation History and Initial Mass Function The M/L ratio of the stellar component of a galaxy (includ-ing both living stars and remnants)depends on the stellar2L.Portinari et al.Figure2:Mean b–parameter as a function of Hubbletype.Data from Sommer–Larsen et al.(2003).Initial Mass Function(IMF)and on the star formation his-tory(SFH)of the system.The SFH of a disc galaxy is related to its Hubble type:Kennicutt et al.(1994)demonstrated that the sequence ofspiral types is in fact a sequence of different SFHs in thediscs,as traced by the birthrate parameterb=SF Rτwithdifferent decaying rates.SSP metallicities around solar canbe considered typical for spiral galaxies.The resulting M/Lratio of the global stellar population(including remnants)as a function of the b–parameter is displayed in Fig.4,forthe different IMFs.The range0.8≤b≤1is representativeof Sbc–Sc spirals.The red shaded area indicates the rangein M/L=0.7–1suggested in§1.Fig.4shows that bottom–light IMFs can in fact yieldM/L I<1for late–type spirals,though one probably needsslightly“lighter”IMFs than the local Kroupa one.4Offsets of the TF relation with Hubble typeFrom Fig.4,the stellar M/L ratio is expected to vary withHubble type due to the differences in SFH parameterized byb.This effect implies systematic offsets with Hubble type ofthe luminosity zero–point of the TF relation(Rubin et al.1985;Giovanelli et al.1997;Kannappan et al.2002).Fig.5shows the M/L ratio as a function of b,normal-ized to the value corresponding to b=1.The scale on theright axis indicates the corresponding shift in magnitude.With respect to Sbc/Sc spirals,we predict a systematic off-set of0.3–0.4mag for Sb’s(b∼0.35)and of0.6–0.8mag forSa/Sab’s(b∼0.1),as a result of the different characteristicSFHs.These offsets are only slightly reduced when bulgesare added to discs in the computation of the total M/Lratios of galaxies(PST).The offsets we predict are largerthan the empirical ones found by Giovanelli et al.(1997):0.1mag for Sb spirals and0.32mag for earlier types.How-ever,the extent of the observed offsets in the TF relationis still a matter of debate:for instance,the larger offsetsfound by Kannappan et al.(2002)in the R–band,0.76magfor Sa’s,are in good agreement with our predictions.The characteristic SFH of a galaxy is traced by itscolours,so that the offsets in M/L ratio due to differentSFHs can be corrected for,by applying suitable M/L vs.colour relations(Bell&de Jong2001;PST).M/L ratio,IMF and chemical evolution in disc galaxies3 Figure4:I–band M/L ratio at varying b–parameter of the SFH,for different IMFs.The red shaded area marks the range M/L I=0.7–1favoured by observations for Sbc–Sc discs(corresponding to b=0.8–1).Figure5:Relative M/L ratio normalized to the valuecorresponding to b=1models.5Bottom–light IMFs and chemical evolutionBesides simple models with exponentially declining SFHs,we also computed more realistic,multi-zone chemo-photometricmodels of galactic discs,including infall,inside–out forma-tion and radially varying star formation efficiency.Chem-ical evolution is followed with the code by Portinari et al.(1998),Portinari&Chiosi(1999)and the models are cali-brated to reproduce the typical metallicity and metallicitygradient of Sbc/Sc discs(PST).Six sets of models have beencomputed for the six IMFs in§2.The corresponding pho-tometric properties are calculated by convolving the SFHand metal enrichment history of each annulus of the disc,with a grid of SSPs of metallicities between5×10−4Z⊙and5Z⊙(PST).For each IMF,the chemo–photometric models confirmthe M/L ratios predicted,as a function of b,by the simplemodels in Fig.4;see the example for the Kennicutt IMFmodels in Fig.6,top panel.The results of§3are thusconfirmed:the“bottom–light”IMFs considered here im-ply M/L I<1for Sbc/Sc spirals,as required in§1.Thisconclusion remains valid also when the contribution of thebulge to the global M/L ratio is included(PST).Chemo–photometric models allow also an insight onthe implications of“bottom–light”IMFs for chemical evo-lution.Some of the IMFs considered(Kennicutt,Larsonand Chabrier)are too efficient in metal production to re-produce the observed properties of spirals.In particular,the resulting gas fraction is much larger than the observedM gas/L B∼0.5M⊙/L⊙(solid dots in Fig.6,bottom panel).For a given IMF and corresponding metal production,thefinal gas metallicity predicted by chemical models increasesat decreasing gas fraction(Tinsley1980,Pagel1997).Ourmodels,calibrated to reproduce the observed metallicities,tend to predict too high gas fractions.Conversely,if theywere calibrated to reproduce the observed gas fractions,they would result in too high metallicities.This excessive metal production is readily understoodsince the enrichment efficiency of a stellar population,orits“net yield”,is inversely proportional to the mass frac-tion that remains forever locked in low–mass stars and rem-nants(Tinsley1980;Pagel1997);and for“bottom–light”IMFs the locked–up fraction is small.This effect can becompensated by a steep slope at the high-mass end,whichreduces the number of massive stars and the related metalproduction:the Kroupa or modified–Larson IMFs,for in-stance,with a steep Scalo slope do not overproduce metals(see PST for details).A steep slope for the integratedfieldstars IMF is expected,in fact,if stars form in star clus-ters offinite size even from an intrinsically shallower IMF(Kroupa&Weidner2003).For those bottom–light IMFs that do imply an excess inmetal production,one way to reconcile models with obser-vations is to tune the upper mass limit of the IMF,againreducing the number of massive stars and related metal4L.Portinari etal.Figure 6:Top panel :M/L ratio for chemo–photometric models with the Kennicutt IMF (solid dots);they con-firm the prediction from the simple exponential mod-els (black line)and are within the observed range of M/L I =0.7–1(red shaded area).Bottom panel :Pre-dicted gas fractions compared to the observed range,marked by the red dashed lines.Green triangles:mod-els with IMF mass limits tuned between 0.05–0.1M ⊙and 30–35M ⊙,rather than the standard mass range [0.1–100]M ⊙,to reproduce the observed gas fraction.production —or equivalently assume that above a certain progenitor mass,the metals produced by a supernova fall back onto a black hole after the explosion.The observed gas fractions can then be matched without altering the stellar M/L ratio significantly (green triangles in Fig.6).Alternatively,we need to invoke substantial outflows of metals from disc galaxies into the intergalactic medium,to reconcile the high enrichment efficiency with the observed low gas fractions.This behaviour is reminiscent of that of elliptical galaxies,responsible for the enrichment of the hot gas in clusters.With “standard”IMFs suited to model the chemical evolution of the Solar Neighbourhood (e.g.the Kroupa IMF)it is impossible to account for the observed metal enrich-ment in clusters (Portinari et al.2004b).Possibly,some of the “bottom–light”IMFs advocated here to reproduce low disc M/L ratios,suggest a scenario where the IMF and the enrichment efficiency may be the same in spiral and cluster galaxies,and in both cases much of the metals are dispersed into the intergalactic medium.However,sub-stantial outflows would challenge our understanding of disc galaxy formation:in galactic discs,star formation proceeds at a smooth,non burst–like pace and the observed “foun-tains”and “chimneys”do not have enough energy to escape the galactic potential;winds are far less plausible than in spheroids.Moreover,strong ongoing stellar feedback and outflows could significantly hamper the dynamical forma-tion of galactic discs from the cool–out of halo gas.The alternative to major winds from disc galaxies is that the metal production in spirals is much lower thanin galaxy clusters,because of a different IMF (Portinariet al.2004b).The IMF may change out of Jeans–massvariations with redshift (Moretti et al.2003and referencestherein);or be a universal function within star clusters,but lead statistically to more high–mass stars in massiveellipticals,where in regimes of intense star formation largerstar clusters can be formed (Kroupa &Weidner 2003).AcknowledgmentsLP is grateful to the organizers and to Swinburne Universityfor generous hospitality during the GCD-V conference.ReferencesBell E.F.&de Jong R.S.,2001,ApJ 550,212Bottema R.,2002,A&A 388,809Chabrier G.,2001,ApJ 554,1274Chabrier G.,2002,ApJ 567,304Dale D.A.,Giovanelli R.,Haynes M.P.,Campusano L.E.&Hardy E.,1999,AJ 118,1489Efstathiou G.,Lake G.&Negroponte J.,1982,MNRAS199,1069Eke V.R.,Navarro J.F.&Steinmetz M.,2001,ApJ 554,114Giovanelli R.,Haynes M.P.,Herter T.&Vogt N.P.,1997,AJ 113,53Girardi L.,Bressan A.,Bertelli G.,Chiosi C.,Groenewegen M.A.T.,Marigo P.,Salasnich B.&Weiss A.,2002,A&A391,195Kannappan S.J.,Fabricant D.G.&Franx M.,2002,AJ 123,2358Kennicutt R.C.,Tamblyn P.&Congdon C.W.,1994,ApJ 435,22(KTC94)Kroupa P.,1998,in Brown Dwarfs and Extrasolar Planets,eds.R.Rebolo,E.L.Martin and M.R.Zapatero Osorio,ASP Conf.Series vol.134,p.483Kroupa P.&Weidner C.,2003,ApJ 598,1076Larson R.B.,1998,MNRAS 301,569Moretti A.,Portinari L.&Chiosi C.,2003,A&A 408,431Navarro J.F.&Steinmetz M.,2000a,ApJ 528,607Navarro J.F.&Steinmetz M.,2000b,ApJ 538,477Pagel B.E.J.,1997,Nucleosynthesis and Chemical Evolu-tion of Galaxies,Cambridge University Press Portinari L.&Chiosi C.,1999,A&A 350,827Portinari L.,Chiosi C.&Bressan A.,1998,A&A 334,505Portinari L.,Sommer–Larsen J.&Tantalo R.,2004a,MNRAS 347,691(PST)Portinari L.,Moretti A.,Chiosi C.&Sommer–Larsen J.,2004b,ApJ in press (astro-ph/0312360)Rubin V.C.,Burstein D.,Ford W.K.&Thonnard N.,1985,ApJ 289,81Salpeter E.E.,1955,ApJ 121,161Scalo J.M.,1986,Fund.Cosmic Phys.11,1Sommer–Larsen J.&Dolgov A.,2001,ApJ 551,608Sommer–Larsen J.,G¨o tz M.&Portinari L.,2003,ApJ 596,47Tinsley B.M.,1980,Fund.Cosmic Phys.5,287Trott C.M.&Webster R.L.,2002,MNRAS 334,621Vallejo O.,Braine J.&Baudry A.,2002,A&A 387,429。