浙江2013年7月高等数学一试题

合集下载

2013年高考理数真题试卷(浙江卷)

2013年高考理数真题试卷(浙江卷)

第1页,总20页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………2013年高考理数真题试卷(浙江卷)考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共10题)1. (2013•浙江)设集合S={x|x >﹣2},T={x|x 2+3x ﹣4≤0},则(∁R S )∁T=( ) A . (﹣2,1] B . (﹣∞,﹣4] C . (﹣∞,1] D . [1,+∞)2. (2013•浙江)已知x ,y 为正实数,则( )A . 2lgx+lgy =2lgx +2lgyB . 2lg (x+y )=2lgx •2lgyC . 2lgx•lgy =2lgx +2lgyD . 2lg (xy )=2lgx •2lgy3. (2013•浙江)在空间中,过点A 作平面π的垂线,垂足为B ,记B=f π(A ).设α,β是两个不同的平面,对空间任意一点P ,Q 1=f β[f α(P )],Q 2=f α[f β(P )],恒有PQ 1=PQ 2 , 则( ) A . 平面α与平面β垂直 B . 平面α与平面β所成的(锐)二面角为45° C . 平面α与平面β平行 D . 平面α与平面β所成的(锐)二面角为60°4. (2013•浙江)某程序框图如图所示,若该程序运行后输出的值是,则( )答案第2页,总20页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . a=4B . a=5C . a=6D . a=75. (2013•浙江)已知 ,则tan2α=( )A .B .C .D .6. (2013•浙江)设∁ABC ,P 0是边AB 上一定点,满足,且对于边AB 上任一点P ,恒有则( )A . ∁ABC=90°B . ∁BAC=90°C . AB=ACD . AC=BC7. (2013•浙江)已知函数f (x )=Acos (ωx+φ)(A >0,ω>0,φ∁R ),则“f (x )是奇函数”是“φ= ”的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件8. (2013•浙江)如图F 1、F 2是椭圆C 1: +y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )。

2013年高考理科数学浙江卷word解析版

2013年高考理科数学浙江卷word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类(浙江卷)选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013浙江,理1)已知i是虚数单位,则(-1+i)(2-i)=().A.-3+i B.-1+3iC.-3+3i D.-1+i答案:B解析:(-1+i)(2-i)=-2+i+2i-i2=-1+3i,故选B.2.(2013浙江,理2)设集合S={x|x>-2},T={x|x2+3x-4≤0},则(R S)∪T=().A.(-2,1] B.(-∞,-4]C.(-∞,1] D.[1,+∞)答案:C解析:由题意得T={x|x2+3x-4≤0}={x|-4≤x≤1}.又S={x|x>-2},∴(R S)∪T={x|x≤-2}∪{x|-4≤x≤1}={x|x≤1},故选C.3.(2013浙江,理3)已知x,y为正实数,则().A.2lg x+lg y=2lg x+2lg y B.2lg(x+y)=2lg x·2lg yC.2lg x·lg y=2lg x+2lg y D.2lg(xy)=2lg x·2lg y答案:D解析:根据指数与对数的运算法则可知,2lg x+lg y=2lg x·2lg y,故A错,B错,C错;D中,2lg(xy)=2lg x+lg y=2lg x·2lg y,故选D.4.(2013浙江,理4)已知函数f(x)=A cos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“π2ϕ=”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:B解析:若f(x)是奇函数,则φ=kπ+π2,k∈Z;若π2ϕ=,则f(x)=A cos(ωx+φ)=-A sin ωx,显然是奇函数.所以“f(x)是奇函数”是“π2ϕ=”的必要不充分条件.5.(2013浙江,理5)某程序框图如图所示,若该程序运行后输出的值是95,则().A .a =4B .a =5C .a =6D .a =7 答案:A解析:该程序框图的功能为计算1+112⨯+123⨯+…+11a a (+)=2-11a +的值,由已知输出的值为95,可知当a =4时2-11a +=95.故选A .6.(2013浙江,理6)已知α∈R ,sin α+2cos αtan 2α=( ). A .43 B .34 C .34- D .43- 答案:C解析:由sin α+2cos αsin α2cos α.①把①式代入sin 2α+cos 2α=1中可解出cos α=10或10,当cos α=10sin α=10;当cos α时,sin α=.∴tan α=3或tan α=13-,∴tan 2α=34-.7.(2013浙江,理7)设△ABC ,P 0是边AB 上一定点,满足P 0B =14AB ,且对于边AB 上任一点P ,恒有PB ·PC ≥0P B ·0P C,则( ). A .∠ABC =90° B .∠BAC =90°C .AB =ACD .AC =BC 答案:D解析:设PB =t AB(0≤t ≤1),∴PC =PB +BC =t AB +BC,∴PB ·PC =(t AB )·(t AB +BC )=t 22AB +t AB ·BC .由题意PB ·PC ≥0P B ·0P C, 即t 22AB +t AB ·BC ≥14AB 14AB BC ⎛⎫+ ⎪⎝⎭=214⎛⎫ ⎪⎝⎭2AB +14AB ·BC ,即当14t =时PB·PC 取得最小值. 由二次函数的性质可知:2142AB BC AB ⋅-=, 即:AB - ·BC=122AB , ∴AB ·12AB BC ⎛⎫+ ⎪⎝⎭=0.取AB 中点M ,则12AB +BC=MB +BC =MC ,∴AB ·MC=0,即AB ⊥MC . ∴AC =BC .故选D .8.(2013浙江,理8)已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k (k =1,2),则( ).A .当k =1时,f (x )在x =1处取到极小值B .当k =1时,f (x )在x =1处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值 答案:C解析:当k =1时,f (x )=(e x -1)(x -1),f ′(x )=x e x -1, ∵f ′(1)=e -1≠0,∴f (x )在x =1处不能取到极值;当k =2时,f (x )=(e x -1)(x -1)2,f ′(x )=(x -1)(x e x +e x -2), 令H (x )=x e x +e x -2,则H ′(x )=x e x +2e x >0,x ∈(0,+∞). 说明H (x )在(0,+∞)上为增函数, 且H (1)=2e -2>0,H (0)=-1<0,因此当x 0<x <1(x 0为H (x )的零点)时,f ′(x )<0,f (x )在(x 0,1)上为减函数. 当x >1时,f ′(x )>0,f (x )在(1,+∞)上是增函数. ∴x =1是f (x )的极小值点,故选C .9.(2013浙江,理9)如图,F 1,F 2是椭圆C 1:24x +y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( ).A B C .32D 答案:D解析:椭圆C 1中,|AF 1|+|AF 2|=4,|F 1F 2|=又因为四边形AF 1BF 2为矩形, 所以∠F 1AF 2=90°.所以|AF 1|2+|AF |2=|F 1F 2|2,所以|AF 1|=2|AF 2|=2所以在双曲线C 2中,2c =2a =|AF 2|-|AF 1|=2e ==,故选D . 10.(2013浙江,理10)在空间中,过点A 作平面π的垂线,垂足为B ,记B =f π(A ).设α,β是两个不同的平面,对空间任意一点P ,Q 1=f β[f α(P )],Q 2=f α[f β(P )],恒有PQ 1=PQ 2,则( ).A .平面α与平面β垂直B .平面α与平面β所成的(锐)二面角为45°C .平面α与平面β平行D .平面α与平面β所成的(锐)二面角为60° 答案:A非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.(2013浙江,理11)设二项式5的展开式中常数项为A ,则A =__________. 答案:-10解析:T r +1=553255C C (1)rr rr r r r x x ---⎛⋅=⋅-⋅ ⎝=515523655(1)C (1)C r rr rrrr xx----=-.令15-5r =0,得r =3, 所以A =(-1)335C =25C -=-10.12.(2013浙江,理12)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于__________cm 3.答案:24解析:由三视图可知该几何体为如图所示的三棱柱割掉了一个三棱锥.11111111A EC ABC A B C ABC E A B C V V V ---=-=12×3×4×5-13×12×3×4×3=30-6=24.13.(2013浙江,理13)设z =kx +y ,其中实数x ,y 满足20,240,240.x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩若z 的最大值为12,则实数k =__________.答案:2解析:画出可行域如图所示.由可行域知,最优解可能在A (0,2)或C (4,4)处取得. 若在A (0,2)处取得不符合题意;若在C (4,4)处取得,则4k +4=12,解得k =2,此时符合题意.14.(2013浙江,理14)将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法共有__________种(用数字作答).答案:480解析:如图六个位置.若C 放在第一个位置,则满足条件的排法共有55A 种情况;若C 放在第2个位置,则从3,4,5,6共4个位置中选2个位置排A ,B ,再在余下的3个位置排D ,E ,F ,共24A ·33A 种排法;若C 放在第3个位置,则可在1,2两个位置排A ,B ,其余位置排D ,E ,F ,则共有22A ·33A 种排法或在4,5,6共3个位置中选2个位置排A ,B ,再在其余3个位置排D ,E ,F ,共有23A ·33A 种排法;若C 在第4个位置,则有22A 33A +23A 33A 种排法;若C 在第5个位置,则有24A 33A 种排法;若C 在第6个位置,则有55A 种排法.综上,共有2(55A +24A 33A +23A 33A +22A 33A )=480(种)排法.15.(2013浙江,理15)设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点,若|FQ |=2,则直线l 的斜率等于__________.答案:±1解析:设直线l 的方程为y =k (x +1),A (x 1,y 1),B (x 2,y 2).由24,1y x y k x ⎧=⎨=(+)⎩联立,得k 2x 2+2(k 2-2)x+k 2=0,∴x 1+x 2=2222k k (-)-,∴212222212x x k k k +-=-=-+,1222y y k+=,即Q 2221,k k ⎛⎫-+ ⎪⎝⎭.又|FQ |=2,F (1,0),∴22222114k k ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭,解得k =±1.16.(2013浙江,理16)在△ABC 中,∠C =90°,M 是BC 的中点.若sin ∠BAM =13,则sin ∠BAC =__________.答案:3解析:如图以C 为原点建立平面直角坐标系,设A (0,b ),B (a,0),则M ,02a ⎛⎫ ⎪⎝⎭,AB =(a ,-b ),AM =,2a b ⎛⎫- ⎪⎝⎭,cos ∠MAB =AB AMAB AM ⋅22a b +.又sin ∠MAB =13,∴cos ∠MAB=.∴22222222894a b aa b b ⎛⎫+ ⎪⎝⎭=⎛⎫(+)+ ⎪⎝⎭, 整理得a 4-4a 2b 2+4b 4=0,即a 2-2b 2=0,∴a 2=2b 2,sin ∠CAB3===. 17.(2013浙江,理17)设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则||||x b 的最大值等于__________.答案:2解析:|b |2=(x e 1+y e 2)2=x 2+y 2+2xy e 1·e 2=x 2+y 2xy .∴||||x =b x =0时,||0||x =b ; 当x ≠0时,||2||x ==≤b .三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(2013浙江,理18)(本题满分14分)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |. 解:(1)由题意得5a 3·a 1=(2a 2+2)2, 即d 2-3d -4=0, 故d =-1或d =4.所以a n =-n +11,n ∈N *或a n =4n +6,n ∈N *. (2)设数列{a n }的前n 项和为S n .因为d <0,由(1)得d =-1,a n =-n +11.则当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =212122n n -+. 当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=212122n n -+110.综上所述,|a 1|+|a 2|+|a 3|+…+|a n |=22121,11,22121110,12.22n n n n n n ⎧-+≤⎪⎪⎨⎪-+≥⎪⎩19.(2013浙江,理19)(本题满分14分)设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若Eη=53,Dη=59,求a ∶b ∶c . 解:(1)由题意得ξ=2,3,4,5,6.故P (ξ=2)=331664⨯=⨯, P (ξ=3)=2321663⨯⨯=⨯,P (ξ=4)=2312256618⨯⨯+⨯=⨯,P (ξ=5)=2211669⨯⨯=⨯, P (ξ=6)=1116636⨯=⨯, 所以ξ的分布列为(2)由题意知η所以E (η)=3a a b c a b c a b c ++=++++++,D (η)=22255551233339a b c a b c a b c a b c ⎛⎫⎛⎫⎛⎫-⋅+-⋅+-⋅= ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭, 化简得240,4110.a b c a b c --=⎧⎨+-=⎩解得a =3c ,b =2c ,故a ∶b ∶c =3∶2∶1.20.(2013浙江,理20)(本题满分15分)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .(1)证明:PQ ∥平面BCD ;(2)若二面角C -BM -D 的大小为60°,求∠BDC 的大小.方法一:(1)证明:取BD 的中点O ,在线段CD 上取点F ,使得DF =3FC ,连结OP ,OF ,FQ ,因为AQ =3QC ,所以QF ∥AD ,且QF =14AD .因为O ,P 分别为BD ,BM 的中点, 所以OP 是△BDM 的中位线, 所以OP ∥DM ,且OP =12DM .又点M 为AD 的中点,所以OP ∥AD ,且OP =14AD . 从而OP ∥FQ ,且OP =FQ ,所以四边形OPQF 为平行四边形,故PQ ∥OF . 又PQ ⊄平面BCD ,OF ⊂平面BCD , 所以PQ ∥平面BCD .(2)解:作CG ⊥BD 于点G ,作CH ⊥BM 于点H ,连结CH . 因为AD ⊥平面BCD ,CG ⊂平面BCD , 所以AD ⊥CG ,又CG ⊥BD ,AD ∩BD =D ,故CG ⊥平面ABD ,又BM ⊂平面ABD , 所以CG ⊥BM .又GH ⊥BM ,CG ∩GH =G ,故BM ⊥平面CGH , 所以GH ⊥BM ,CH ⊥BM .所以∠CHG 为二面角C -BM -D 的平面角,即∠CHG =60°. 设∠BDC =θ.在Rt △BCD 中,CD =BD cos θ=θ,CG =CD sin θ=θsin θ,BG =BC sin θ=2θ.在Rt △BDM 中,23BG DM HG BM θ⋅==.在Rt △CHG 中,tan ∠CHG =3cos sin CG HG θθ==所以tan θ从而θ=60°.即∠BDC =60°.方法二:(1)证明:如图,取BD 的中点O ,以O 为原点,OD ,OP 所在射线为y ,z 轴的正半轴,建立空间直角坐标系Oxyz .由题意知A (0,2),B (0,0),D (00). 设点C 的坐标为(x 0,y 0,0).因为3AQ QC = ,所以Q 00331,,4442x y ⎛⎫+ ⎪ ⎪⎝⎭.因为M 为AD 的中点,故M (01). 又P 为BM 的中点,故P 10,0,2⎛⎫ ⎪⎝⎭,所以PQ =0033,044x y ⎛⎫+ ⎪ ⎪⎝⎭. 又平面BCD 的一个法向量为u =(0,0,1),故PQ·u =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .(2)解:设m =(x ,y ,z )为平面BMC 的一个法向量.由CM =(-x 00y ,1),BM=(0,1),知000,0.x x y y z z ⎧-+)+=⎪⎨+=⎪⎩取y =-1,得m=00,1,y x ⎛- ⎝. 又平面BDM 的一个法向量为n =(1,0,0),于是|cos 〈m ,n 〉|=||1||||2⋅==m n m n,即200y x ⎛= ⎝⎭① 又BC ⊥CD ,所以CB ·CD=0, 故(-x 0,0y ,0)·(-x 00y ,0)=0,即x 02+y 02=2.②联立①,②,解得000,x y =⎧⎪⎨=⎪⎩(舍去)或0022x y ⎧=±⎪⎪⎨⎪=⎪⎩所以tan ∠BDC=又∠BDC 是锐角,所以∠BDC =60°.21.(2013浙江,理21)(本题满分15分)如图,点P (0,-1)是椭圆C 1:22221x y a b+=(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径,l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D .(1)求椭圆C 1的方程;(2)求△ABD 面积取最大值时直线l 1的方程. 解:(1)由题意得1,2.b a =⎧⎨=⎩所以椭圆C 的方程为24x +y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0).由题意知直线l 1的斜率存在,不妨设其为k , 则直线l 1的方程为y =kx -1.又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离d =,所以||AB==.又l2⊥l1,故直线l2的方程为x+ky+k=0.由220,44,x ky kx y++=⎧⎨+=⎩消去y,整理得(4+k2)x2+8kx=0,故0284kx=-.所以|PD|=24k+.设△ABD的面积为S,则S=12|AB|·|PD|=24k+,所以S=32=当且仅当k=时取等号.所以所求直线l1的方程为y=x-1.22.(2013浙江,理22)(本题满分14分)已知a∈R,函数f(x)=x3-3x2+3ax-3a+3.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当x∈[0,2]时,求|f(x)|的最大值.解:(1)由题意f′(x)=3x2-6x+3a,故f′(1)=3a-3.又f(1)=1,所以所求的切线方程为y=(3a-3)x-3a+4.(2)由于f′(x)=3(x-1)2+3(a-1),0≤x≤2,故①当a≤0时,有f′(x)≤0,此时f(x)在[0,2]上单调递减,故|f(x)|max=max{|f(0)|,|f(2)|}=3-3a.②当a≥1时,有f′(x)≥0,此时f(x)在[0,2]上单调递增,故|f(x)|max=max{|f(0)|,|f(2)|}=3a-1.③当0<a<1时,设x1=1-x2=1则0<x1<x2<2,f′(x)=3(x-x1)(x-x2).由于f(故f(x1)+f(x2)=2>0,f(x1)-f(x2)=4(1-a0,从而f(x1)>|f(x2)|.所以|f(x)|max=max{f(0),|f(2)|,f(x1)}.当0<a<23时,f(0)>|f(2)|.又f(x1)-f(0)=2(1-a(2-3a)2>0,故|f(x)|max=f(x1)=1+2(1-a当23≤a<1时,|f(2)|=f(2),且f(2)≥f(0).又f(x1)-|f(2)|=2(1-a(3a-2)2,所以当23≤a<34时,f(x1)>|f(2)|.故f(x)max=f(x1)=1+2(1-a当34≤a<1时,f(x1)≤|f(2)|.故f(x)max=|f(2)|=3a-1. 综上所述,|f(x)|max=33,0,3 121,4331,.4a aa aa a⎧⎪-≤⎪⎪+(-<<⎨⎪⎪-≥⎪⎩。

2013年普通高等学校招生全国统一考试数学理试题(浙江卷)

2013年普通高等学校招生全国统一考试数学理试题(浙江卷)

2013年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题1.已知i 是虚数单位,则=-+-)2)(1(i iA .i +-3 B. i 31+- C. i 33+- D.i +-12.设集合}043|{},2|{2≤-+=->=x x x T x x S ,则=⋃T S C R )(A .(2,1]- B. ]4,(--∞ C. ]1,(-∞ D.),1[+∞3.已知y x ,为正实数,则A.y x y x lg lg lg lg 222+=+B.y x y x lg lg )lg(222•=+C.y x y x lg lg lg lg 222+=•D.y x xy lg lg )lg(222•=4.已知函数),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω,则“)(x f 是奇函数”是2πϕ=的A .充分不必要条件 B. 必要不充分条件C. 充分必要条件D.既不充分也不必要条件5.某程序框图如图所示,若该程序运行后输出的值是59,则A.4=aB.5=aC. 6=aD.7=a6.已知210cos 2sin ,=+∈αααR ,则=α2tan A.34B. 43C.43-D.34-7.设0,P ABC ∆是边AB 上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有(第5题图)C P B P 00•≥•。

则A. 090=∠ABCB. 090=∠BACC. AC AB =D.BC AC =8.已知e 为自然对数的底数,设函数)2,1()1)(1()(=--=k x e x f kx ,则A .当1=k 时,)(x f 在1=x 处取得极小值B .当1=k 时,)(x f 在1=x 处取得极大值C .当2=k 时,)(x f 在1=x 处取得极小值D .当2=k 时,)(x f 在1=x 处取得极大值 9.如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点。

2013年普通高等学校招生全国统一考试数学(浙江卷)理

2013年普通高等学校招生全国统一考试数学(浙江卷)理

浙江理科选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013浙江,理1)已知i是虚数单位,则(-1+i)(2-i)=().A.-3+iB.-1+3iC.-3+3iD.-1+i答案:B解析:(-1+i)(2-i)=-2+i+2i-i2=-1+3i,故选B.2.(2013浙江,理2)设集合S={x|x>-2},T={x|x2+3x-4≤0},则(∁R S)∪T=().A.(-2,1]B.(-∞,-4]C.(-∞,1]D.[1,+∞)答案:C解析:由题意得T={x|x2+3x-4≤0}={x|-4≤x≤1}.又S={x|x>-2},∴(∁R S)∪T={x|x≤-2}∪{x|-4≤x≤1}={x|x≤1},故选C.3.(2013浙江,理3)已知x,y为正实数,则().A.2lg x+lg y=2lg x+2lg yB.2lg(x+y)=2lg x·2lg yC.2lg x·lg y=2lg x+2lg yD.2lg(xy)=2lg x·2lg y答案:D解析:根据指数与对数的运算法则可知,2lg x+lg y=2lg x·2lg y,故A错,B错,C错;D中,2lg(xy)=2lg x+lg y=2lg x·2lg y,故选D.”的().4.(2013浙江,理4)已知函数f(x)=A cos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=π2A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:B解析:若f(x)是奇函数,则φ=kπ+π2,k∈Z;若φ=π2,则f(x)=A cos(ωx+φ)=-A sinωx,显然是奇函数.所以“f(x)是奇函数”是“φ=π2”的必要不充分条件.5.(2013浙江,理5)某程序框图如图所示,若该程序运行后输出的值是95,则().A.a=4B.a=5C.a=6D.a=7答案:A解析:该程序框图的功能为计算1+11×2+12×3+…+1a(a+1)=2-1a+1的值,由已知输出的值为95,可知当a=4时2-1a+1=95.故选A.6.(2013浙江,理6)已知α∈R,sinα+2cosα=√102,则tan2α=().A.43B.34C.-34D.-43答案:C解析:由sin α+2cos α=√102得,sin α=√102-2cos α.①把①式代入sin 2α+cos 2α=1中可解出cos α=√1010或3√1010, 当cos α=√1010时,sin α=3√1010; 当cos α=3√1010时,sin α=-√1010. ∴tan α=3或tan α=-13,∴tan 2α=-34.7.(2013浙江,理7)设△ABC ,P 0是边AB 上一定点,满足P 0B=14AB ,且对于边AB 上任一点P ,恒有PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ ≥P 0B ⃗⃗⃗⃗⃗⃗⃗ ·P 0C ⃗⃗⃗⃗⃗⃗ ,则( ). A.∠ABC=90° B.∠BAC=90° C.AB=AC D.AC=BC答案:D解析:设PB⃗⃗⃗⃗⃗ =t AB ⃗⃗⃗⃗⃗ (0≤t ≤1), ∴PC⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =t AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ , ∴PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ =(t AB ⃗⃗⃗⃗⃗ )·(t AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )=t 2AB ⃗⃗⃗⃗⃗ 2+t AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ . 由题意PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ ≥P 0B ⃗⃗⃗⃗⃗⃗⃗ ·P 0C ⃗⃗⃗⃗⃗⃗ ,即t 2AB ⃗⃗⃗⃗⃗ 2+t AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ ≥14AB ⃗⃗⃗⃗⃗ (14AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ) =(14)2AB⃗⃗⃗⃗⃗ 2+14AB ⃗⃗⃗⃗⃗ ·BC , 即当t=14时PB ⃗⃗⃗⃗⃗ ·PC⃗⃗⃗⃗⃗ 取得最小值.由二次函数的性质可知:-AB ⃗⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ 2AB⃗⃗⃗⃗⃗⃗ 2=14,即:-AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =12AB⃗⃗⃗⃗⃗ 2, ∴AB ⃗⃗⃗⃗⃗ ·(12AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )=0. 取AB 中点M ,则12AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =MB ⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =MC ⃗⃗⃗⃗⃗⃗ , ∴AB⃗⃗⃗⃗⃗ ·MC ⃗⃗⃗⃗⃗⃗ =0,即AB ⊥MC. ∴AC=BC.故选D .8.(2013浙江,理8)已知e 为自然对数的底数,设函数f (x )=(e x -1)(x-1)k (k=1,2),则( ). A.当k=1时,f (x )在x=1处取到极小值 B.当k=1时,f (x )在x=1处取到极大值 C.当k=2时,f (x )在x=1处取到极小值 D.当k=2时,f (x )在x=1处取到极大值 答案:C解析:当k=1时,f (x )=(e x -1)(x-1),f'(x )=x e x -1,∵f'(1)=e -1≠0,∴f (x )在x=1处不能取到极值;当k=2时,f (x )=(e x -1)(x-1)2,f'(x )=(x-1)(x e x +e x -2), 令H (x )=x e x +e x -2,则H'(x )=x e x +2e x >0,x ∈(0,+∞). 说明H (x )在(0,+∞)上为增函数, 且H (1)=2e -2>0,H (0)=-1<0,因此当x 0<x<1(x 0为H (x )的零点)时,f'(x )<0,f (x )在(x 0,1)上为减函数. 当x>1时,f'(x )>0,f (x )在(1,+∞)上是增函数.∴x=1是f(x)的极小值点,故选C.9.(2013浙江,理9)如图,F1,F2是椭圆C1:x 24+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是().A.√2B.√3C.32D.√62答案:D解析:椭圆C1中,|AF1|+|AF2|=4,|F1F2|=2√3.又因为四边形AF1BF2为矩形,所以∠F1AF2=90°.所以|AF1|2+|AF2|2=|F1F2|2,所以|AF1|=2-√2,|AF2|=2+√2.所以在双曲线C2中,2c=2√3,2a=|AF2|-|AF1|=2√2,故e=ca =√3√2=√62,故选D.10.(2013浙江,理10)在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则().A.平面α与平面β垂直B.平面α与平面β所成的(锐)二面角为45°C.平面α与平面β平行D.平面α与平面β所成的(锐)二面角为60°答案:A非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.(2013浙江,理11)设二项式(√x -√x3)5的展开式中常数项为A ,则A= .答案:-10解析:T r+1=C 5r (√x )5-r·(√x3)r =C 5r x5-r2·(-1)r·x -r3=(-1)r C 5rx5-r 2-r 3=(-1)r C 5rx15-5r 6.令15-5r=0,得r=3,所以A=(-1)3C 53=-C 52=-10.12.(2013浙江,理12)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于 cm 3.答案:24解析:由三视图可知该几何体为如图所示的三棱柱割掉了一个三棱锥.V A 1EC 1-ABC =V A 1B 1C 1-ABC −V E -A 1B 1C 1=12×3×4×5-13×12×3×4×3=30-6=24.13.(2013浙江,理13)设z=kx+y ,其中实数x ,y 满足{x +y -2≥0,x -2y +4≥0,2x -y -4≤0.若z 的最大值为12,则实数k= . 答案:2解析:画出可行域如图所示.由可行域知,最优解可能在A(0,2)或C(4,4)处取得.若在A(0,2)处取得不符合题意;若在C(4,4)处取得,则4k+4=12,解得k=2,此时符合题意.14.(2013浙江,理14)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有种(用数字作答).答案:480解析:如图六个位置若C放在第一个位置,则满足条件的排法共有A55种情况;若C放在第2个位置,则从3,4,5,6共4个位置中选2个位置排A,B,再在余下的3个位置排D,E,F,共A42·A33种排法;若C放在第3个位置,则可在1,2两个位置排A,B,其余位置排D,E,F,则共有A22·A33种排法或在4,5,6共3个位置中选2个位置排A,B,再在其余3个位置排D,E,F,共有A32·A33种排法;若C在第4个位置,则有A22A33+A32A33种排法;若C在第5个位置,则有A42A33种排法;若C在第6个位置,则有A55种排法.综上,共有2(A55+A42A33+A32A33+A22A33)=480(种)排法.15.(2013浙江,理15)设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于A,B两点,点Q 为线段AB的中点,若|FQ|=2,则直线l的斜率等于.答案:±1解析:设直线l的方程为y=k(x+1),A(x1,y1),B(x2,y2).由{y2=4x,y=k(x+1)联立,得k2x2+2(k2-2)x+k2=0,∴x1+x2=-2(k 2-2)k2,∴x1+x22=-k2-2k2=-1+2k2,y1+y22=2k,即Q(-1+2k2,2 k ).又|FQ|=2,F(1,0),∴(-1+2k 2-1)2+(2k)2=4,解得k=±1.16.(2013浙江,理16)在△ABC 中,∠C=90°,M 是BC 的中点.若sin ∠BAM=13,则sin ∠BAC= .答案:√63解析:如图以C 为原点建立平面直角坐标系,设A (0,b ),B (a ,0),则M (a 2,0),AB ⃗⃗⃗⃗⃗ =(a ,-b ),AM ⃗⃗⃗⃗⃗⃗ =(a2,-b),cos ∠MAB=AB ⃗⃗⃗⃗⃗⃗ ·AM ⃗⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗||AM⃗⃗⃗⃗⃗⃗⃗ |=a 22+b2√a 2+b 2·√a 4+b 2.又sin ∠MAB=13,∴cos ∠MAB=√1-(13)2=√89.∴(a 22+b2)2(a 2+b 2)(a 24+b 2)=89,整理得a 4-4a 2b 2+4b 4=0, 即a 2-2b 2=0,∴a 2=2b 2, sin ∠CAB=a√a 2+b =a√3b 2=√2b √3b=√63.17.(2013浙江,理17)设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则|x ||b |的最大值等于 . 答案:2解析:|b |2=(x e 1+y e 2)2=x 2+y 2+2xy e 1·e 2=x 2+y 2+√3xy.∴|x ||b |=√x 2+y 2+√3xy,当x=0时,|x ||b |=0;当x ≠0时,|x ||b |=√(y x)2+√3yx +1=√(y x+√32)2+14≤2.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(2013浙江,理18)(本题满分14分)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列. (1)求d ,a n ;(2)若d<0,求|a 1|+|a 2|+|a 3|+…+|a n |. 解:(1)由题意得5a 3·a 1=(2a 2+2)2,即d 2-3d-4=0, 故d=-1或d=4.所以a n =-n+11,n ∈N *或a n =4n+6,n ∈N *. (2)设数列{a n }的前n 项和为S n . 因为d<0,由(1)得d=-1,a n =-n+11.则当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =-12n 2+212n.当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=12n 2-212n+110.综上所述,|a 1|+|a 2|+|a 3|+…+|a n |={-12n 2+212n ,n ≤11,12n 2-212n +110,n ≥12.19.(2013浙江,理19)(本题满分14分)设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E η=53,D η=59,求a ∶b ∶c.解:(1)由题意得ξ=2,3,4,5,6.故P (ξ=2)=3×36×6=14,P (ξ=3)=2×3×26×6=13,P (ξ=4)=2×3×1+2×26×6=518, P (ξ=5)=2×2×16×6=19,P (ξ=6)=1×16×6=136, 所以ξ的分布列为(2)由题意知η的分布列为所以E (η)=aa+b+c +2ba+b+c +3ca+b+c =53,D (η)=(1-53)2·aa+b+c +(2-53)2·ba+b+c +(3-53)2·c a+b+c =59, 化简得{2a -b -4c =0,a +4b -11c =0.解得a=3c ,b=2c ,故a ∶b ∶c=3∶2∶1.20.(2013浙江,理20)(本题满分15分)如图,在四面体A-BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD=2,BD=2√2.M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ=3QC.(1)证明:PQ ∥平面BCD ;(2)若二面角C-BM-D 的大小为60°,求∠BDC 的大小.方法一:(1)证明:取BD 的中点O ,在线段CD 上取点F ,使得DF=3FC ,连结OP ,OF ,FQ ,因为AQ=3QC ,所以QF ∥AD ,且QF=14AD.因为O ,P 分别为BD ,BM 的中点, 所以OP 是△BDM 的中位线,所以OP ∥DM ,且OP=12DM.又点M 为AD 的中点,所以OP ∥AD ,且OP=14AD. 从而OP ∥FQ ,且OP=FQ ,所以四边形OPQF 为平行四边形,故PQ ∥OF.又PQ⊄平面BCD,OF⊂平面BCD,所以PQ∥平面BCD.(2)解:作CG⊥BD于点G,作CH⊥BM于点H,连结CH.因为AD⊥平面BCD,CG⊂平面BCD,所以AD⊥CG,又CG⊥BD,AD∩BD=D,故CG⊥平面ABD,又BM⊂平面ABD,所以CG⊥BM.又GH⊥BM,CG∩GH=G,故BM⊥平面CGH,所以GH⊥BM,CH⊥BM.所以∠CHG为二面角C-BM-D的平面角,即∠CHG=60°.设∠BDC=θ.在Rt△BCD中,CD=BD cosθ=2√2cosθ,CG=CD sinθ=2√2cosθsinθ,BG=BC sinθ=2√2sin2θ.在Rt△BDM中,HG=BG·DMBM =2√2sin2θ3.在Rt△CHG中,tan∠CHG=CGHG =3cosθsinθ=√3.所以tanθ=√3.从而θ=60°.即∠BDC=60°.方法二:(1)证明:如图,取BD的中点O,以O为原点,OD,OP所在射线为y,z轴的正半轴,建立空间直角坐标系Oxyz.由题意知A (0,√2,2),B (0,-√2,0),D (0,√2,0). 设点C 的坐标为(x 0,y 0,0).因为AQ⃗⃗⃗⃗⃗ =3QC ⃗⃗⃗⃗⃗ ,所以Q (34x 0,√24+34y 0,12). 因为M 为AD 的中点,故M (0,√2,1). 又P 为BM 的中点,故P (0,0,12),所以PQ ⃗⃗⃗⃗⃗ =(34x 0,√24+34y 0,0). 又平面BCD 的一个法向量为u =(0,0,1),故PQ ⃗⃗⃗⃗⃗ ·u =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD. (2)解:设m =(x ,y ,z )为平面BMC 的一个法向量. 由CM ⃗⃗⃗⃗⃗⃗ =(-x 0,√2-y 0,1),BM ⃗⃗⃗⃗⃗⃗ =(0,2√2,1), 知{-x 0x +(√2-y 0)y +z =0,2√2y +z =0.取y=-1,得m =(y 0+√2x 0,-1,2√2).又平面BDM 的一个法向量为n =(1,0,0),于是|cos <m ,n >|=|m ·n ||m ||n |=|y 0+√2x |√9+(y 0+√2x 0)2=12,即(y 0+√2x 0)2=3.①又BC ⊥CD ,所以CB ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =0, 故(-x 0,-√2-y 0,0)·(-x 0,√2-y 0,0)=0,即x 02+y 02=2.②联立①,②,解得{x 0=0,y 0=-√2,(舍去)或{x 0=±√62,y 0=√22.所以tan ∠BDC=|√2-y 0|=√3.又∠BDC 是锐角,所以∠BDC=60°.21.(2013浙江,理21)(本题满分15分)如图,点P (0,-1)是椭圆C 1:x 2a2+y 2b 2=1(a>b>0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径,l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D.(1)求椭圆C 1的方程;(2)求△ABD 面积取最大值时直线l 1的方程. 解:(1)由题意得{b =1,a =2.所以椭圆C 的方程为x 24+y 2=1. (2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0).由题意知直线l 1的斜率存在,不妨设其为k , 则直线l 1的方程为y=kx-1.又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离d=√k +1,所以|AB|=2√4-d 2=2√4k 2+3k 2+1.又l 2⊥l 1,故直线l 2的方程为x+ky+k=0.由{x +ky +k =0,x 2+4y 2=4,消去y ,整理得(4+k 2)x 2+8kx=0, 故x 0=-8k4+k 2.所以|PD|=8√k 2+14+k 2.设△ABD 的面积为S ,则S=12|AB|·|PD|=8√4k 2+34+k 2, 所以S=√4k +3+134k 2+3≤2√√4k 2+3·13√4k 2+3=16√1313, 当且仅当k=±√102时取等号.所以所求直线l 1的方程为y=±√102x-1.22.(2013浙江,理22)(本题满分14分)已知a ∈R ,函数f (x )=x 3-3x 2+3ax-3a+3. (1)求曲线y=f (x )在点(1,f (1))处的切线方程; (2)当x ∈[0,2]时,求|f (x )|的最大值. 解:(1)由题意f'(x )=3x 2-6x+3a ,故f'(1)=3a-3.又f (1)=1,所以所求的切线方程为y=(3a-3)x-3a+4. (2)由于f'(x )=3(x-1)2+3(a-1),0≤x ≤2,故①当a ≤0时,有f'(x )≤0,此时f (x )在[0,2]上单调递减,故|f (x )|max =max{|f (0)|,|f (2)|}=3-3a.②当a ≥1时,有f'(x )≥0,此时f (x )在[0,2]上单调递增, 故|f (x )|max =max{|f (0)|,|f (2)|}=3a-1. ③当0<a<1时,设x 1=1-√1-a ,x 2=1+√1-a , 则0<x 1<x 2<2,f'(x )=3(x-x 1)(x-x 2). 列表如下:由于f (x 1)=1+2(1-a )√1-a ,f (x 2)=1-2(1-a )√1-a , 故f (x 1)+f (x 2)=2>0,f (x 1)-f (x 2)=4(1-a )√1-a >0, 从而f (x 1)>|f (x 2)|.所以|f (x )|max =max{f (0),|f (2)|,f (x 1)}. 当0<a<23时,f (0)>|f (2)|.又f (x 1)-f (0)=2(1-a )√1-a -(2-3a )=22(1-a )√1-a+2-3a>0,故|f (x )|max =f (x 1)=1+2(1-a )√1-a . 当23≤a<1时,|f (2)|=f (2),且f (2)≥f (0).又f (x 1)-|f (2)|=2(1-a )√1-a -(3a-2)=22(1-a )√1-a+3a -2,所以当23≤a<34时,f (x 1)>|f (2)|. 故f (x )max =f (x 1)=1+2(1-a )√1-a .当34≤a<1时,f(x1)≤|f(2)|.故f(x)max=|f(2)|=3a-1.综上所述,|f(x)|max={3-3a,a≤0,1+2(1-a)√1-a,0<a<34,3a-1,a≥34.。

2013浙江高考数学试卷

2013浙江高考数学试卷

2013浙江高考数学试卷1. (1分)设A是集合$\{1,3,5,7\}$,B是集合$\{x|x=2k-1,k \in N \}$,则$A \cap B$是______答:$\{1, 3, 5, 7\} \cap \{1, 3, 5, 7\} = \{1, 3, 5, 7\}$2. (2分)若多项式$f(x)=x^3+ax^2+bx-3$与$g(x)=x^3+x^2-1$除以$(x-1)$的余数相同,就是说当$x=1$时,$f(x)$与$g(x)$的值相等,求$a+b$答:将$f(x)$与$g(x)$分别除以$(x-1)$,得到余数相同,即$f(1)=g(1)$代入$f(1)=g(1)$,即$a+b=1$3. (3分)已知等差数列$\{a_n\}$的前5项依次为$-3,4,11,18,25$,则$a_6=$____答:已知数列前五项为-3, 4, 11, 18, 25,可以列出方程组$$\begin{cases}a_1 = a + 0d = -3\\a_2 = a + 1d = 4\\a_3 = a + 2d = 11\\a_4 = a + 3d = 18\\a_5 = a + 4d = 25\end{cases}$$解得$a = -12, d=7$,故$a_6 = a_5 + d = 25 + 7 = 32$4. (4分)函数$f(x) = \frac{1}{2} x^3-3x^2+5x+m$ (a为常数)在$x=1$处的切线方程为$y=x+2$,求a的值答:切线方程为$y = x + 2$,则$f'(1) = 1$即$f'(x) = \frac{3}{2} x^2 - 6x + 5$,$f'(1) = \frac{3}{2} - 6 + 5 = 1$解得$a = 3$5. (5分)如图所示,正方形ABCD中点E,F,G,H依次连接,连接EH,交线段AF于点P,若AP:PF = 3:2,求BP:PF![](img)答:根据相似三角形性质,$\triangle AEP \sim \triangle CBP$,则$AP : EP = BP : CP$又根据AP:PF = 3:2,EP:PF = 3:2,所以EP = 3x,PF = 2x由$\triangle AEP \sim \triangle CBP$可知, $\frac{AP}{BP} =\frac{EP}{CP} = \frac{3x}{3x+2x} = \frac{3}{5}$即$BP:PF = 3:2$6. (6分)记$P_n=(2n^3-n^2-n)^k$,其中k>0,POQ为一单位正方形,且$\angle POQ=45^\circ$,正方形内部的角的度数之和为_______答:正方形内部的角的度数之和为$360^\circ$,且$POQ=135^\circ$,故其余角之和为$360^\circ - 135^\circ = 225^\circ$7. (7分)如下图,$AB\bot AC,AD=AC,BD・ BC=27,$则$BD+CD$的值为_______![](img)答:根据题意,$AD = AC$,则$AB = BC = 27^{\frac{1}{2}}$由勾股定理可知$BD = 9, CD = 3$,故$BD + CD = 12$8. (8分)如图所示,$AB//DC,DZ$是$BD$的中线,$\frac{AC}{BC} = 2:3$,求证:$AB = 2ZC$![](img)答:由题意,$DZ = \frac{1}{2} BD = \frac{1}{2} AD = \frac{1}{2} AC$又$\frac{AC}{BC} = 2:3$,则$AC = 2k, BC = 3k, AB = 5k$又$DZ = \frac{1}{2} AC = k$故$AB = 2ZC$9. (9分)在$\triangle ABC$中,点$D$在$\overline{BC}$边上,$AD$平分角$A$,$m\angle B=45^\circ$,且$\angle CAD = 15^\circ$,$BD=2,DC=1$,则$AB:AC$的值为________答:根据正弦定理有$$\frac{AB}{\sin(150^\circ)} = \frac{BD}{\sin(60^\circ)} =\frac{2}{\sin(60^\circ)}$$$$\frac{AC}{\sin(15^\circ)} = \frac{DC}{\sin(120^\circ)} =\frac{1}{\sin(60^\circ)}$$即$AB = 2\sin(150^\circ) = 2\sin(30^\circ) = 1$$AC = \frac{1}{\sin(15^\circ)} = \frac{1}{\sin(180^\circ - 165^\circ)} = \frac{1}{\sin(15^\circ)} = 4$故$AB:AC = 1:4$10. (10分)已知群$G = \{1,2,3,4,5,6\}, ∗$为二元运算,满足$a∗b$是$a+b$的一半,$a,b \in G$,则$(G,∗)$是否构成群,并说明理由。

2013年高考真题——理科数学(浙江卷)解析版(1)含答案

2013年高考真题——理科数学(浙江卷)解析版(1)含答案

浙江卷数学(理)试题答案与解析选择题部分(共50分)一、选择题:每小题5分,共50分.1.已知i 是虚数单位,则(−1+i)(2−i)=A .−3+iB .−1+3iC .−3+3iD .−1+i【命题意图】本题考查复数的四则运算,属于容易题【答案解析】B2.设集合S ={x |x >−2},T ={x |x 2+3x −4≤0},则(R S )∪T = A .(−2,1]B .(−∞,−4]C .(−∞,1]D .[1,+∞)【命题意图】本题考查集合的运算,属于容易题【答案解析】C 因为(R S )={x |x ≤−2},T ={x |−4≤x ≤1},所以(R S )∪T =(−∞,1]。

3.已知x ,y 为正实数,则A .2lg x +lg y =2lg x +2lg yB .2lg(x +y )=2lg x ∙ 2lg yC .2lg x ∙ lg y =2lg x +2lg yD .2lg (xy )=2lg x ∙ 2lg y 【命题意图】本题考查指数和对数的运算性质,属于容易题【答案解析】D 由指数和对数的运算法则,易知选项D 正确4.已知函数f (x )=A cos(ωx +φ)(A 〉0,ω>0,φR ),则“f (x )是奇函数”是“φ=错误!"的 A .充分不必要条件B .必要不充分条件 开始 S =1,k =1 k >a ? S =S +1k (k +1) k =k+1 输出S结束是 否 (第5题图)C.充分必要条件D.既不充分也不必要条件【命题意图】本题考查简易逻辑以及函数的奇偶性,属于中档题【答案解析】B由f(x)是奇函数可知f(0)=0,即cosφ=0,解出φ=错误!+kπ,k Z,所以选项B正确5.某程序框图如图所示,若该程序运行后输出的值是错误!,则A.a=4 B.a=5C.a=6 D.a=7【命题意图】本题考查算法程序框图,属于容易题【答案解析】A6.已知αR,sin α+2cos α=错误!,则tan2α=A.错误!B.错误!C.−错误!D.−错误!【命题意图】本题考查三角公式的应用,解法多样,属于中档题【答案解析】C由(sin α+2cos α)2=错误!可得错误!=错误!,进一步整理可得3tan2α−8tan α−3=0,解得tan α=3或tan α=−错误!,于是tan2α=错误!=−错误!.7.设△ABC,P0是边AB上一定点,满足P0B=错误!AB,且对于AB 上任一点P,恒有错误!∙错误!≥错误!∙错误!,则A.ABC=90B.BAC=90C.AB=AC D.AC=BC【命题意图】本题考查向量数量积的几何意义,不等式恒成立的有关知识,属于中档题【答案解析】D由题意,设|错误!|=4,则|错误!|C=1,过点C作AB的垂线,垂足为H,在AB上A B任取一点P ,设HP 0=a ,则由数量积的几何意义可得,错误!∙错误!=|错误!||错误!|=(错误! −(a +1))|错误!|,错误!∙错误!=−|错误!||错误!|=−a ,于是错误!∙错误!≥错误!∙错误!恒成立,相当于(错误!−(a +1))|错误!|≥−a 恒成立,整理得|错误!|2−(a +1)|错误!|+a ≥0恒成立,只需∆=(a +1)2−4a =(a −1)2≤0即可,于是a =1,因此我们得到HB =2,即H 是AB 的中点,故△ABC 是等腰三角形,所以AC =BC8.已知e 为自然对数的底数,设函数f (x )=(e x −1)(x −1)k (k =1,2),则A .当k =1时,f (x )在x =1处取到极小值B .当k =1时,f (x )在x =1处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值【命题意图】本题考查极值的概念,属于中档题【答案解析】C 当k =1时,方程f (x )=0有两个解,x 1=0,x 2=1,由标根法可得f (x )的大致图象,于是选项A ,B 错误;当k =2时,方程f (x )=0有三个解,x 1=0,x 2=x 3=1,其中1是二重根,由标根法可得f (x )的大致图象,易知选项C 正确。

浙江省2013年7月自学考试《高等数学(一)微积分》试题00020

浙江省2013年7月自学考试《高等数学(一)微积分》试题00020

绝密 ★ 考试结束前浙江省2013年7月高等教育自学考试高等数学(一)试题课程代码:00020请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分注意事项:1. 答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

2. 每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。

错涂、多涂或未涂均无分。

1.下列各对函数中,表示同一个函数的是A.()211x f x x =+-与g (x )=x -1 B.f (x )=lg x 2与g (x )=2lg x C.()f x =g (x )=sin x D.f (x )=| x |与g (x2.x =1是函数()f x =A.连续点B.可去间断点C.跳跃间断点D.第二类间断点3.下列函数中在给定的区间上满足罗尔定理条件的是A.f (x )=xe -x ,[0,1]B.(),010,1x x f x x ≤<⎧=⎨=⎩C.()45,1,123f x x =+[-] D.f (x )=| x |,[-1,1] 4.设()()221x x f t dt a a f x =⎰-,为连续函数,则f (x )等于A.2a 2xB.a 2x ln aC.2xa 2x -1D.2a 2x ln a5.设函数f (x ,y )=a (x -y )-x 2-y 2在点(2,-2)处取到极值,则A.a =2,(2,-2)为极大值点B.a =4,(2,-2)为极大值点C.a =-4,(2,-2)为极小值点D.a =4,(2,-2)为极小值点非选择题部分注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

高等数学测试题一(极限、连续)答案

高等数学测试题一(极限、连续)答案

高等数学测试题(一)极限、连续部分(答案)一、选择题(每小题4分,共20分) 1、 当0x →+时,(A )无穷小量。

A 1sin x xB 1x e C ln x D 1sin x x2、点1x =是函数311()1131x x f x x x x -<⎧⎪==⎨⎪->⎩的(C )。

A 连续点B 第一类非可去间断点C 可去间断点D 第二类间断点 3、函数()f x 在点0x 处有定义是其在0x 处极限存在的(D )。

A 充分非必要条件B 必要非充分条件C 充要条件D 无关条件4、已知极限22lim()0x x ax x→∞++=,则常数a 等于(A )。

A -1B 0C 1D 25、极限201lim cos 1x x e x →--等于(D )。

A ∞B 2C 0D -2二、填空题(每小题4分,共20分)1、21lim(1)xx x→∞-=2e -2、 当0x →+时,无穷小ln(1)Ax α=+与无穷小sin 3x β=等价,则常数A=33、 已知函数()f x 在点0x =处连续,且当0x ≠时,函数21()2x f x -=,则函数值(0)f =04、 111lim[]1223(1)n n n →∞+++∙∙+=15、 若lim ()x f x π→存在,且sin ()2lim ()x xf x f x x ππ→=+-,则lim ()x f x π→=1二、解答题1、(7分)计算极限 222111lim(1)(1)(1)23n n→∞--- 解:原式=132411111lim()()()lim 223322n n n n n n n n →∞→∞-++∙∙∙=∙= 2、(7分)计算极限 30tan sin lim x x xx →-解:原式=2322000sin 1sin 1cos 1cos 2lim lim lim cos cos 2x x x x x xx x x x x x x →→→--=== 3、(7分)计算极限 123lim()21x x x x +→∞++ 解:原式= 11122112221lim(1)lim(1)121211lim(1)lim(1)22x x x x x x x xx e x x +++→∞→∞+→∞→∞+=+++=+∙+=++4、(7分)计算极限 01x x e →-解:原式=201sin 12lim 2x x xx →=5、(7分)设3214lim 1x x ax x x →---++ 具有极限l ,求,a l 的值解:因为1lim(1)0x x →-+=,所以 321lim(4)0x x ax x →---+=,因此 4a = 并将其代入原式321144(1)(1)(4)lim lim 1011x x x x x x x x l x x →-→---++--===++6、(8分)设3()32,()(1)n x x x x c x αβ=-+=-,试确定常数,c n ,使得()()x x αβ解:32221()32(1)(2)(1)(2)3lim ,3,2(1)x x x x x x x x c n c x cα→=-+=-+-+=∴==- 此时,()()x x αβ7、(7分)试确定常数a ,使得函数21sin 0()0x x f x xa xx ⎧>⎪=⎨⎪+≤⎩在(,)-∞+∞内连续解:当0x >时,()f x 连续,当0x <时,()f x 连续。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密 ★ 考试结束前
浙江省2013年7月高等教育自学考试
高等数学(一)试题
课程代码:00020
请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分
注意事项:
1. 答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

2. 每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

一、单项选择题(本大题共5小题,每小题2分,共10分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。

错涂、多涂或未涂均无分。

1.下列各对函数中,表示同一个函数的是
A.()211
x f x x =+-与g (x )=x -1 B.f (x )=lg x 2与g (x )=2lg x
C.()f x =g (x )=sin x
D.f (x )=| x |与g (x
2.x =1是函数()f x =
A.连续点
B.可去间断点
C.跳跃间断点
D.第二类间断点
3.下列函数中在给定的区间上满足罗尔定理条件的是
A.f (x )=xe -x ,[0,1]
B.(),010,1x x f x x ≤<⎧=⎨=⎩
C.()45,1,123f x x =
+[-] D.f (x )=| x |,[-1,1] 4.设()()221x x f t dt a a f x =⎰-,为连续函数,则f (x )等于
A.2a 2x
B.a 2x ln a
C.2xa 2x -1
D.2a 2x ln a 5.设函数f (x ,y )=a (x -y )-x 2-y 2在点(2,-2)处取到极值,则
A.a =2,(2,-2)为极大值点
B.a =4,(2,-2)为极大值点
C.a =-4,(2,-2)为极小值点
D.a =4,(2,-2)为极小值点
非选择题部分
注意事项:
用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

二、填空题(本大题共10小题,每小题3分,共30分)
6.设当x →0时,ax 2
与tan 2
3x 为等价无穷小,则a =__________. 7.极限1lim()1
x x x x →∞-=+__________. 8.曲线221(1)
x y x +=-的水平渐近线为__________. 9.设()21 0 0x e x f x x a x x ⎧>⎪=⎨⎪+≤⎩
-在x =0处连续,则常数a =__________.
10.曲线y =(x -1)3-1的拐点是__________.
11.已知某产品的销量Q 与价格P 之间的关系为P =150-0.01Q (元),则当Q =100件时的边际收益是__________.
12.设z =arctan
y x
,则dz =__________. 13.设(
)4
sin x k dx π+=⎰k =__________. 14.曲线y =e 2x -1在x =0处的切线是__________.
15.设D:| x |≤π,0≤y ≤1.则()2D
xy d σ+⎰⎰=__________.
三、计算题(一)(本大题共5小题,每小题5分,共25分)
16.求极限求3113lim().11x x x
→--- 17.
设函数y =,求,dy y ''.
18.设F (u ,v )可微,z =z (x ,y )由方程F (cx -az ,cy -bz )=0上所确定,其中a 、b 、c 是常数,计算.
z z a b x y ∂∂+∂∂. 19.设函数f (x )二次可微,且f (0)=0,f ′(0)=1,f ″(0)=2,试求()2
0lim .x f x x x →- 20.
求定积分1
四、计算题(二)(本大题共3小题,每小题7分,共21分)
21.求函数f (x )=12
x 2e -x 的单调区间与极值. 22.求解微分方程(y 2-6x )dy +2ydx =0.
23.已知f (x )的一个原函数是ln (x ,求()xf x dx '⎰
. 五、应用题(本大题9分)
24.求抛物线y (2,4)处的法线l 及x 轴所围成的平面图形绕x 轴旋转一周生成的旋转体体积.
六、证明题(本大题5分)
25.证明当x <0时,arctan x +3
3x x <.。

相关文档
最新文档