2004年普通高等学校招生全国统一考试Ⅰ数学
2004普通高等学校招生全国统一考试文科(广西卷)数学

2004年普通高等学校招生全国统一考试(广西卷)数学(文史类)(老课程)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至10页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷 参考公式:三角函数的和差化积公式)]sin()[sin(21cos sin βαβαβα-++= )]sin()[sin(21sin cos βαβαβα--+= )]cos()[cos(21cos cos βαβαβα-++= )]cos()[cos(21sin sin βαβαβα--+-= 一、选择题 (1)设集合(){}22,1,,M x y xy x R y R =+=∈∈,(){}2,0,,N x y xy x R y R =-=∈∈,则集合M N 中元素的个数为( )A .1B .2C .3D .4(2)函数sin2xy =的最小正周期是( ) A .2πB .πC .2πD .4π(3) 记函数13xy -=+的反函数为()y g x =,则(10)g =( )A . 2B . 2-C . 3D . 1-等比数列{}n a 中,29,a = 5243a =,则{}n a 的前4项和为( ) A . 81B . 120C .168D . 192(5) 圆2240x y x +-=在点(P 处的切线方程是( )A .20x -= B .40x -= C .40x +=D .20x +=(6) 61x ⎫⎪⎭展开式中的常数项为( )A . 15B . 15-C . 20D . 20-正棱台、圆台的侧面积公式 l c c S )(21+'=台侧其中c ′、c 分别表示上、下底面周长,l 表示 斜高或母线长台体的体积公式 334R V π=球其中R 表示球的半径(7) 设复数z 的幅角的主值为23π2z =( )A . 2--B . 2i -C . 2+D . 2i (8) 设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =( )A . 5B .C .D . 54(9) 不等式113x <+<的解集为( ) A . ()0,2 B . ()()2,02,4- C . ()4,0- D . ()()4,20,2--(10) 正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( )A .B .C .3D .(11) 在ABC 中,3,4AB BC AC ===,则边AC 上的高为( )A .B .. 32 D .(12) 4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( )A . 12 种B . 24 种C 36 种D . 48 种 第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在题中横线上. (13) 函数)1(log 21-=x y 的定义域是 .(14) 用平面α截半径为R 的球,如果球心到平面α的距离为2R,那么截得小圆的面积与球 的表面积的比值为 . (15) 函数)(cos 21sin R x x x y ∈-=的最大值为 . (16) 设P 为圆122=+y x 上的动点,则点P 到直线01043=--y x 的距离的最小值为 .三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 解方程.012242=--+x x(18) (本小题满分12分) 已知α为锐角,且αααααα2cos 2sin sin cos 2sin ,21tan -=求的值.(19) (本上题满分12分)设数列}{n a 是公差不为零的等差数列,S n 是数列}{n a 的前n 项和,且,9221S S =244S S =,求数列}{n a 的通项公式.20.(本小题满分12分)某村计划建造一个室内面积为800m 2的矩形蔬菜温室,在温室内,沿左、右两侧与后侧 内墙各保留1m 宽的通道,沿前侧内墙保留3m 宽的空地。
2004年普通高等学校招生全国统一考试湖南卷理科数学试题及答案

2004年普通高等学校招生湖南卷理工农医类数学试题第Ⅰ卷(选择题 共60分)一、选择题:本大题 共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合要求的. 1.复数4)11(i+的值是 ( )A .i 4B .-i 4C .4D .-42.如果双曲线1121322=-y x 上一点P 到右焦点的距离等于13,那么点P 到右准线的距离 是( )A .513B .13C .5D .135 3.设)(1x f-是函数)1(log )(2+=x x f 的反函数,若8)](1)][(1[11=++--b f a f ,则)(b a f +的值为( )A .1B .2C .3D .3log 24.把正方形ABCD 沿对角线AC 折起,当A 、B C 、D 四点为顶点的三棱锥体积最大时,直线BD 与平面ABC 所成的角的大小为 ( )A .90°B .60°C .45°D .30°5.某公司甲、乙、丙、丁四个地区分别有150 个、120个、180个、150个销售点了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②则完成①、②这两项调查宜采用的抽样方法依次是( )A .分层抽样法,系统抽样法B .分层抽样法,简单随机抽样法C .系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法6.设函数,2)2(),0()4(.0,2,0,)(2-=-=-⎩⎨⎧>≤++=f f f x x c bx x x f 若则关于x 的方程x x f =)(解的个数为( ) A .1 B .2C .3D .4 7.设,0,0>>b a 则以下不等式中不恒成立....的是( )A .4)11)((≥++ba b a B .2332ab b a ≥+C .b a b a 22222+≥++D .b a b a -≥-||8.数列{}=+++∈=+=→++)(lim *,,56,51,21111n n x n n n n a a a N n a a a a 则中( )A .52 B .72 C .41 D .254 9.设集合}0|),{(},02|),{(},,|),{(≤-+=>+-=∈∈=n y x y x B m y x y x A R y R x y x U ,那么点P (2,3)⋂∈A (U C B )的充要条件是( )A .5,1<->n mB .5,1<-<n mC .5,1>->n mD .5,1>-<n m10.从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为( )A .56B .52C .48D .4011.农民收入由工资性收入和其它收入两部分构成2003年某地区农民人均收入为3150元(其中工资性收入为1800元,其它收入为1350元), 预计该地区自2004年起的5 年内,农民的工资性收入将以每年6%的年增长率增长,其它收入每年增加160元2008年该地区农民人均收入介于( )A .4200元~4400元B .4400元~4600元C .4600元~4800元D .4800元~5000元12.设)(),(x g x f 分别是定义在R 上的奇函数和偶函数,当0<x 时,,0)()()()(>'+'x g x f x g x f且,0)3(=-g 则不等式0)()(<x g x f 的解集是 ( )A .),3()0,3(+∞⋃-B .)3,0()0,3(⋃-C .),3()3,(+∞⋃--∞D .)3,0()3,(⋃--∞第Ⅱ卷(非选择题 共90分)二、填空题:本大题 共4小题,每小题4分,共16分,把答案填在题中横线上13.已知向量a =)sin ,(cos θθ,向量b =)1,3(-,则|2a -b |的最大值是 . 14.同时抛物线两枚相同的均匀硬币,随机变量ξ=1表示结果中有正面向上,ξ=0表示结果中没有正面向上,则E ξ= . 15.若n xx x )1(3+的展开式中的常数项为84,则n= .16.设F 是椭圆16722=+y x 的右焦点,且椭圆上至少有21个不同的点P i (i =1,2,3,…),使|FP 1|,|FP 2|,|FP 3|,…组成公差为d 的等差数列,则d 的取值范围为 . 三、解答题:本大题 共6小题,共74分. 解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)已知1cot tan sin 2),2,4(,41)24sin()24sin(2--+∈=-⋅+αααππααπαπ求的值. 18.(本小题满分12分)甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为41,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为121,甲、丙两台机床加工的零件都是一等品的概率为92.(Ⅰ)分别求甲、乙、丙三台机床各自加工零件是一等品的概率;(Ⅱ)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率. 19.(本小题满分12分) 如图,在底面是菱形的四棱锥P —ABC D中,∠ABC=600,PA=AC=a ,PB=PD=a 2,点E 在PD 上,且PE:ED=2:1. (I )证明PA ⊥平面ABCD ;(II )求以AC 为棱,EAC 与DAC 为面的二面角θ的大小;(Ⅲ)在棱PC 上是否存在一点F ,使BF//平面AEC ?证明你的结论. 20.(本小题满分12分)已知函数e a e x x f ax,0,)(2≤=其中为自然对数的底数. (Ⅰ)讨论函数)(x f 的单调性;(Ⅱ)求函数)(x f 在区间[0,1]上的最大值. 21.(本小题满分12分)如图,过抛物线x 2=4y 的对称轴上任一点P (0,m )(m>0)作直线与抛物线交于A ,B 两点,点Q 是点P 关于原点的对称点.(I )设点P 分有向线段AB 所成的比为λ,证明:)(QB QA QP λ-⊥;(II )设直线AB 的方程是x -2y+12=0,过A 、B 两点的圆C 与抛物线在点A 处有共同的切线,求圆C 的方程. 22.(本小题满分14分)如图,直线2121:)21,0(1:21+=±≠≠-+=x y l k k k kx y l 与相交于点P.直线l 1与x 轴交于点P 1,过点P 1作x 轴的垂线交直线l 2于点Q 1,过点Q 1作y 轴的垂线交直线l 1于点P 2,过点P 2作x 轴的垂线交直线l 2于点Q 2,…,这样一直作下去,可得到一系列点P 1、Q 1、P 2、Q 2,…,点P n (n=1,2,…)的横坐标构成数列{}.n x(Ⅰ)证明*),1(2111N n x kx n n ∈-=-+; (Ⅱ)求数列{}n x 的通项公式;(Ⅲ)比较5||4||22122+PP k PP n 与的大小.2004年普通高等学校招生湖南卷理工农医类数学试题参考答案A13.4 14. 15.9 16.]101,0()0,101[⋃- 17.解:由)24cos()24sin()24sin()24sin(απαπαπαπ+⋅+=-⋅+得 .214cos =α 又.125),2,4(παππα=∈所以 于是 ααααααααααα2sin 2cos 22cos cos sin cos sin 2cos 1cot tan sin 2222-+-=-+-=--+18.解:(Ⅰ)设A 、B 、C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件.由题设条件有⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=-⋅=-⋅⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=⋅=⋅.92)()(,121))(1()(,41))(1()(.92)(,121)(,41)(C P A P C P B P B P A P C A P C B P B A P 即 由①、③得)(891)(C P B P -= 代入②得 27[P(C)]2-51P(C)+22=0. 解得 91132)(或=C P (舍去). 将 32)(=C P 分别代入 ③、② 可得 .41)(,31)(==B P A P 即甲、乙、丙三台机床各加工的零件是一等品的概率分别是.32,41,31(Ⅱ)记D 为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件,则 .653143321))(1))((1))((1(1)(1)(=⋅⋅-=----=-=C P B P A P D P D P 故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为.6519.(Ⅰ)证明 因为底面ABCD 是菱形,∠ABC=60°, 所以AB=AD=AC=a , 在△PAB 中, 由PA 2+AB 2=2a 2=PB 2 知PA ⊥AB. 同理,PA ⊥AD ,所以PA ⊥平面ABCD. (Ⅱ)解 作EG//PA 交AD 于G , 由PA ⊥平面ABCD.知EG ⊥平面ABCD.作GH ⊥AC 于H ,连结EH , 则EH ⊥AC ,∠EHG 即为二面角θ的平面角.又PE : ED=2 : 1,所以.3360sin ,32,31a AG GH a AG a EG =︒=== 从而 ,33tan ==GH EG θ .30︒=θ (Ⅲ)解法一 以A 为坐标原点,直线AD 、AP 分别为y 轴、z 轴,过A 点垂直平面PAD 的直线为x 轴,建立空间直角坐标系如图.由题设条件,相关各点的坐标分别为 所以 ).0,21,23(),31,32,0(a a AC a a AE == 设点F 是棱PC 上的点,,10),,21,23(<<-==λλλλλ其中a a a PC PF 则 )).1(),1(21),1(23(λλλ-+-=a a a 令 AE AC BF 21λλ+= 得 解得 .23,21,2121=-==λλλ 即 21=λ时,.2321AE AC BF +-=① ② ③B 亦即,F 是PC 的中点时,BF 、AC 、AE 共面.又 BF ⊄平面AEC ,所以当F 是棱PC 的中点时,BF//平面AEC. 解法二 当F 是棱PC 的中点时,BF//平面AEC ,证明如下, 证法一 取PE 的中点M ,连结FM ,则FM//CE. ①由 ,21ED PE EM ==知E 是MD 的中点. 连结BM 、BD ,设BD ⋂AC=O ,则O 为BD 的中点.所以 BM//OE. ②由①、②知,平面BFM//平面AEC.又 BF ⊂平面BFM ,所以BF//平面AEC. 证法二因为 )(2121DP CD AD CP BC BF ++=+= 所以 BF 、AE 、AC 共面.又 BF ⊄平面ABC ,从而BF//平面AEC.20.解:(Ⅰ).)2()(axe ax x xf +='(i )当a =0时,令 .0,0)(=='x x f 得若),0()(,0)(,0+∞>'>在从而则x f x f x 上单调递增; 若)0,()(,0)(,0-∞<'<在从而则x f x f x 上单调递减.(ii )当a <0时,令.20,0)2(,0)(ax x ax x x f -===+='或故得 若)0,()(,0)(,0-∞<'<在从而则x f x f x 上单调递减;若)2,0()(,0)(,20a x f x f a x ->'-<<在从而则上单调递增; 若,2a x ->),2()(,0)(+∞-<'ax f x f 在从而则上单调递减.(Ⅱ)(i )当a =0时,)(x f 在区间[0,1]上的最大值是.1)1(=f(ii )当02<<-a 时,)(x f 在区间[0,1]上的最大值是ae f =)1(.(iii )当2-≤a 时,)(x f 在区间[0,1]上的最大值是.4)2(22ea a f =-21.解:(Ⅰ)依题意,可设直线AB 的方程为 ,m kx y +=代入抛物线方程y x 42=得.0442=--m kx x ①设A 、B 两点的坐标分别是 ),(11y x 、122),,(x y x 则、x 2是方程①的两根. 所以 .421m x x -=由点P (0,m )分有向线段AB 所成的比为λ, 得.,012121x xx x -==++λλλ即又点Q 是点P 关于原点的对称点,故点Q 的坐标是(0,-m ),从而)2,0(m QP =. 所以 ).(QB QA QP λ-⊥(Ⅱ)由 ⎩⎨⎧==+-,4,01222y x y x 得点A 、B 的坐标分别是(6,9)、(-4,4).由 y x =2得 ,21,412x y x y ='=所以抛物线 y x 42=在点A 处切线的斜率为 36='=x y设圆C 的方程是,)()(222r b y a x =-+-则⎪⎩⎪⎨⎧-++=-+--=--.)4()4()9()6(,3192222b a b a b a b 解之得 .2125)4()4(,223,23222=-++==-=b a r b a所以圆C 的方程是 ,2125)223()23(22=-++y x即 .07223322=+-++y x y x22.(Ⅰ)证明:设点P n 的坐标是),(n n y x ,由已知条件得点Q n 、P n+1的坐标分别是:由P n+1在直线l 1上,得.121211k kx x n n -+=++ 所以 ),1()1(211-=-+n n x k x 即 .*),1(2111N n x kx n n ∈-=-+(Ⅱ)解:由题设知 ,011,1111≠-=--=k x k x 又由(Ⅰ)知 )1(2111-=-+n n x kx ,所以数列 }1{-n x 是首项为,11-x 公比为k21的等比数列.从而 .*,)21(21,)21(111N n kx k k x nn n n ∈⨯-=⨯-=--即(Ⅲ)解:由⎪⎩⎪⎨⎧+=-+=,2121,1x y k kx y 得点P 的坐标为(1,1).所以 ,)21(2)21(8)11(2)1(2||2222222-+⨯=--++-=n n n n n kk k kx x PP (i )当2121,21||>-<>k k k 或即时,5||4212+PP k >1+9=10. 而此时 .5||4||2.10218||2,1|21|021222+<=+⨯<<<PP k PP PP k n n 故所以 (ii )当)21,0()0,21(,21||0⋃-∈<<k k 即时,5||4212+PP k <1+9=10.而此时 .5||4||2.10218||2,1|21|21222+>=+⨯>>PP k PP PP kn n 故所以。
2004高考数学试题(全国1理)及答案

2004年高考试题全国卷Ⅰ理参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60 1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b|=( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1)B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .(I C A)∪B=IB .(IC A)∪(I C B)=I C .A ∩(I C B)=φD .(I C A) (I C B)= I C B7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是A .[-21,21] B .[-2,2] C .[-1,1] D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH 的表面积为T ,则S T等于 ( )A .91B .94 C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥ 16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线;②两条互相垂直的直线;③同一条直线; ④一条直线及其外一点;在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A 、B 、C 、D 四部热线电话,已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望. 19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间. 20.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD 侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离,(II )求面APB 与面CPB 所成二面角的大小. 21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125PB PA =求a 的值. 22.(本小题满分14分)已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年高考试题全国卷1 理科数学(必修+选修Ⅱ)参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.0419.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数. (II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a 2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a 2)内为增函数,在区间(-a2,+∞)内为减函数.20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分. (I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=PB BC PB GA BC PB GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥ 等于所求二面角的平面角, 于是,772||||cos -=⋅=BC GA BC GA θ 所以所求二面角的大小为772arccos-π .解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a aaa e(II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a a a x a a x a a x 所以由得消去所以 22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分. 解:(I )a 2=a 1+(-1)1=0, a 3=a 2+31=3. a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k , 所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k k a 2k = a 2k -1+(-1)k =2123+k (-1)k -1-1+(-1)k =2123+k(-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nn n a。
2004年全国高考数学文科试卷含答案

2004年普通高等学校招生全国统一考试数学(文史类)(老课程)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至10页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷参考公式:三角函数的和差化积公式)]sin()[sin(21cos sin βαβαβα-++=)]sin()[sin(21sin cos βαβαβα--+= )]cos()[cos(21cos cos βαβαβα-++= )]cos()[cos(21sin sin βαβαβα--+-=一、选择题 (1)设集合(){}22,1,,M x y xy x R y R =+=∈∈,(){}2,0,,N x y xy x R y R =-=∈∈,则集合MN 中元素的个数为( )A .1B .2C .3D .4(2)函数sin2xy =的最小正周期是( ) A .2πB .πC .2πD .4π(3) 记函数13xy -=+的反函数为()y g x =,则(10)g =( ) A . 2B . 2-C . 3D . 1-(4) 等比数列{}n a 中,29,a = 5243a =,则{}n a 的前4项和为( )A . 81B . 120C .168D . 192正棱台、圆台的侧面积公式l c c S )(21+'=台侧其中c ′、c 分别表示上、下底面周长,l 表示 斜高或母线长 台体的体积公式334R V π=球 其中R 表示球的半径(5) 圆2240x y x +-=在点(P 处的切线方程是( )A . 20x +-=B . 40x +-=C . 40x -+=D . 20x +=(6) 61x ⎫⎪⎭展开式中的常数项为( )A . 15B . 15-C .20D . 20-(7) 设复数z 的幅角的主值为23π2z =( )A . 2--B . 2i -C . 2+D . 2i(8) 设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =( )A . 5B .C .2 D . 54(9) 不等式113x <+<的解集为( )A . ()0,2B . ()()2,02,4-C . ()4,0-D . ()()4,20,2--(10) 正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( )A .B .C .3D .(11) 在ABC 中,3,4AB BC AC ===,则边AC 上的高为( )A .B .C .32D .(12) 4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( )A . 12 种B . 24 种C 36 种D . 48 种第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在题中横线上. (13) 函数)1(log 21-=x y 的定义域是 .(14) 用平面α截半径为R 的球,如果球心到平面α的距离为2R,那么截得小圆的面积与球 的表面积的比值为 . (15) 函数)(cos 21sin R x x x y ∈-=的最大值为 . (16) 设P 为圆122=+y x 上的动点,则点P 到直线01043=--y x 的距离的最小值为 .三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)解方程.012242=--+x x(18) (本小题满分12分)已知α为锐角,且αααααα2cos 2sin sin cos 2sin ,21tan -=求的值.(19) (本上题满分12分)设数列}{n a 是公差不为零的等差数列,S n 是数列}{n a 的前n 项和,且,9221S S =244S S =,求数列}{n a 的通项公式.20.(本小题满分12分)某村计划建造一个室内面积为800m 2的矩形蔬菜温室,在温室内,沿左、右两侧与后侧内墙各保留1m宽的通道,沿前侧内墙保留3m宽的空地。
2004年普通高等学校招生全国统一考试(重庆理)

2004年普通高等学校招生全国统一考试数学(理工农医类)(重庆卷)本试卷分第Ⅰ部分(选择题)和第Ⅱ部分(非选择题)共150分 考试时间120分钟.第Ⅰ部分(选择题 共60分)参考公式:如果事件A 、B 互斥,那幺 P(A+B)=P(A)+P(B)如果事件A 、B 相互独立,那幺 P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率kn kkn n P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y =( )A .[1,)+∞B .23(,)+∞C .23[,1]D .23(,1] 2.设复数z z i z 2,212-+=则, 则22Z Z -=( ) A .–3 B .3 C .-3i D .3i3.圆222430x y x y +-++=的圆心到直线1x y -=的距离为 ( )A .2B .2C .1D 4.不等式221x x +>+的解集是( )A .(1,0)(1,)-+∞B .(,1)(0,1)-∞-C .(1,0)(0,1)-D .(,1)(1,)-∞-+∞5.sin163sin 223sin 253sin313+=( )A .12-B .12 C .2- D .26.若向量 a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=- ,则向量a 的模为 ( )A .2B .4C .6D .127.一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是:( )A .0a <B .0a >C .1a <-D .1a >8.设P 是60 的二面角l αβ--内一点,,PA PB αβ⊥⊥平面平面,A,B 为垂足,4,2,PA PB ==则AB 的长为( )A .B .C .D .9. 若{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0n S >成立的最大自然数n 是:( ) A .4005B .4006C .4007D .400810.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为: ( )A .43B .53C .2D .7311.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为: ( ) A .110B .120C .140 D .112012.若三棱锥A-BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与△ABC 组成图形可能是( )(C ) (D )第Ⅱ部分(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.若在5(1)ax +的展开式中3x 的系数为80-,则_______a =.14.曲线23112224y x y x =-=-与在交点处切线的夹角是______,(用幅度数作答) 15.如图P 1是一块半径为1的半圆形纸板,在P 1的左下端剪去一个半径为12的半圆后得到图形P 2,然后依次剪去一个更小半圆(其直径为前一个被剪掉半圆的半径)得圆形P 3、P 4、…..,P n ,…,记纸板P n 的面积为n S ,则lim ______n x S →∞=.16.对任意实数K ,直线:y kx b =+与椭圆:)20(sin 41cos 23πθθθ<≤⎩⎨⎧+=+=y x 恒有公共点,则b 取值范围是_______________三、解答题:本题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数44sin cos cos y x x x x =+-的最小正周期和最小值;并写出该函数在[0,]π上的单调递增区间。
2004年数学全国卷1

2004年高考试题全国卷Ⅰ 理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题 :本大题共12小题,每小题6分,共601.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b|=( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1)B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .(I C A)∪B=IB .(IC A)∪(I C B)=I C .A ∩(I C B)=φD .(I C A) (I C B)= I C B7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点 为P ,则||2PF =( )A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( ) A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH的表面积为T ,则ST等于( )A .91B .94C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P的轨迹方程为 .15.已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项 1___n a ⎧=⎨⎩12n n =≥ 16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线 ②两条互相垂直的直线 ③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A 、B 、C 、D 四部热线电话,已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望. 19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD 侧面PAD 为边长等于2的正三角形,底面ABCD为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离,(II )求面APB 与面CPB 所成二面角的大小. 21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值. 22.(本小题满分14分)已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年高考试题全国卷1 理科数学(必修+选修Ⅱ)(河南、河北、山东、山西、安徽、江西等地区)参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分. 解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.0419.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分. 解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数. (II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE.∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到:,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=PB BC PB GA 于是有所以θ,.⊥⋅⊥ 等于所求二面角的平面角, 于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AEEG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a aaa e(II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a a a x aa x a a x 所以由得消去所以22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分. 解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3.a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k,所以a 2k+1-a 2k -1=3k +(-1)k,同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k k a 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k(-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nn n a。
2004年高考理科数学全国卷(word版含答案)

2004年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k(1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60。
1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1) B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .( IA)∪B=IB .( IA)∪( I B)=I C .A ∩( IB)=φD .( I A)∪( I B)=I B 7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点 球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径为P ,则||2PF = ( )A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象 ( )A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH 的表面积为T ,则S T等于( )A .91B .94 C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n},满足a1=1,a n=a1+2a2+3a3+…+(n-1)a n-1(n≥2),则{a n}的通项1, n=1,a n= ,n≥2.16.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是 .①两条平行直线②两条互相垂直的直线③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是(写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xx xxxxf2sin2cossincossin)(2 24 4-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥 P—ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD 与底面ABCD所成的二面角为120°.(I)求点P到平面ABCD的距离,Array(II)求面APB与面CPB所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值.22.(本小题满分14分)已知数列1}{1 a a n 中,且 a 2k =a 2k -1+(-1)K,a 2k+1=a 2k +3k, 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年普通高等学校招生全国统一考试理科数学(必修+选修I )参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37.P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2P(ξ=4)= 0.52×0.42=0.04于是得到随机变量ξ的概率分布列为:19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.(II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a a a a e (II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a aa x a a x a a x 所以由得消去所以22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分.解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3.a 4=a 3+(-1)2=4,a 5=a 4+32=13,所以,a 3=3,a 5=13.(II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k ,所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1,……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)],由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k ka 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k (-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nnn a。
2004年普通高等学校招生全国统一考试

2004年普通高等学校招生全国统一考试数学(理科)北京卷考试说明(北京教育考试院编)Ⅰ.考试性质普通高等学校招生全国统一考试是为高校招生而进行的选拔性考试。
考试的指导思想是:有助于高等学校选拔新生,有助于中学实施素质教育,有助于培养学生的创新精神与实践能力。
试题应有较高的信度、效度、必要的区分度和适当的难度。
Ⅱ.考试要求数学科高考旨在考查中学数学的基础知识、基本技能、基本思想和方法,考查逻辑思维能力、运算能力、空间想象能力以及分析和解决问题的能力。
根据原国家教育委员会1990年颁布的《全日制中学数学教学大纲(修订本)》和有关中学数学教学内容的调整意见,对考试内容的知识要求和能力要求说明如下:1.知识要求对知识的要求由低到高分为了解、理解、掌握、灵活和综合运用四个层次,且高一级的层次要求包含低一级的层次要求。
了解、理解、掌握为对知识的基本要求(详见Ⅳ.考试内容),灵活和综合运用不对应具体的考试内容:(1)了解(A):对所列知识内容有初步的认识,会在有关的问题中进行识别和直接应用。
(2)理解(B):对所列知识内容有理性的认识,能够解释、举例或变形、推断,并利用所列知识解决简单问题。
(3)掌握(C):对所列知识内容有较深刻的理性认识,形成技能,并能利用所列知识解决有关问题。
(4)灵活和综合运用(D)系统地把握知识的内在联系,并能运用相关知识分析、解决较复杂的或综合性的问题。
2.能力要求(1)逻辑思维能力:会对问题或资料进行观察、比较、分析、综合、抽象和概括;会用演绎、归纳和类比进行推理;能够合乎逻辑、准确、清晰地进行表述。
(2)运算能力:会根据概念、公式、法则正确地对数、式、方程进行变形和运算;能分析条件,寻求与设计合理、简捷的运算途径,能根据要求对数据进行估计,并能进行近似计算。
(3)空间想象能力:能根据条件画出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合与变形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2004年普通高等学校招生全国统一考试Ⅰ(四川、吉林、黑龙江、云南等地)理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟. 第I 卷(选择题 共60分) 参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B )如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60。
1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .22.已知函数=-=+-=)(.)(.11lg )(a f b a f xx x f 则若( )A .bB .-bC .b1 D .-b13.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( )A .7B .10C .13D .44.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1)B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .( IA)∪B=IB .( IA)∪( I B)=I C .A ∩( IB)=φD .( I A)∪( I B)= I B 7.椭圆1422=+yx的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点球的表面积公式S=42R π其中R 表示球的半径,球的体积公式V=334R π, 其中R 表示球的半径为P ,则||2PF = ( )A .23B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l的斜率的取值范围是 ( ) A .[-21,21] B .[-2,2] C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象 ( )A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH 的表面积为T ,则ST 等于( ) A .91B .94 C .41D .3111.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( ) A .12513 B .12516 C .12518D .1251912.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项 1, n=1,a n =,n ≥2. 16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 . ①两条平行直线 ②两条互相垂直的直线 ③同一条直线 ④一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 求函数xxx x x x f 2sin 2cos sincos sin)(2244-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A 、B 、C 、D 四部热线电话,已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望. 19.(本小题满分12分) 已知,R a ∈求函数axex x f 2)(=的单调区间.20.(本小题满分12分) 如图,已知四棱锥 P —ABCD ,PB ⊥AD 侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°. (I )求点P 到平面ABCD 的距离,(II )求面APB 与面CPB 所成二面角的大小.21.(本小题满分12分) 设双曲线C :1:)0(1222=+>=-y x l a yax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125PB PA =求a 的值.22.(本小题满分14分)已知数列1}{1=a a n 中,且 a 2k =a 2k -1+(-1)K, a 2k+1=a 2k +3k,其中k=1,2,3,…….(I )求a 3, a 5;(II )求{ a n }的通项公式.2004年普通高等学校招生全国统一考试 理科数学(必修+选修I )参考答案一、选择题 DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分. 解:xx xx x x x f cos sin 22cossin)cos(sin)(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cossin 122+=+=--=x x x x x xx 所以函数f (x )的最小正周期是π,最大值是43,最小值是41.18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.04于是得到随机变量ξ的概率分布列为:ξ 0 1 2 3 4 P0.090.30.370.20.04所以E ξ=0×0.09+1×0.3+2×0.37+3×0.2+4×0.04=1.8.19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分. 解:函数f (x )的导数:.)2(2)(22axax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数. (II )当,02,02,02>-<>+>x ax ax x a 或解得由时由.02,022<<-<+x aax x 解得所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2.所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数.20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE.∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60° 由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯,即点P 到平面ABCD 的距离为23.(II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG. 又知).0,233,2(),0,23,1(-C A 由此得到:,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=PB BC PB GA BC PB GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥ 等于所求二面角的平面角, 于是,772||||cos -=⋅⋅=BC GA BC GA θ所以所求二面角的大小为772arccos-π .解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC.∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB ,∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23.在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AEEG =23,又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23.21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+=的取值范围为即离心率且且e e e a a aaa e(II )设)1,0(),,(),,(2211P y x B y x A .125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a aax a ax aa x 所以由得消去所以22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分.解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3. a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13.(II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k,所以a 2k+1-a 2k -1=3k +(-1)k,同理a 2k -1-a 2k -3=3k -1+(-1)k -1,……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k-1)+21[(-1)k-1],于是a 2k+1=.1)1(21231--++kka 2k = a 2k -1+(-1)k=2123+k(-1)k -1-1+(-1)k=2123+k(-1)k=1.{a n }的通项公式为:当n 为奇数时,a n =;121)1(232121-⨯-+-+n n当n 为偶数时,.121)1(2322-⨯-+=nnna。