2014年春季新版新人教版七年级数学下学期5.1.1、相交线学案6

合集下载

5.1.1 相交线(导学案)七年级数学下册同步备课系列(人教版)

5.1.1 相交线(导学案)七年级数学下册同步备课系列(人教版)

学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________5.1.1 相交线 导学案一、学习目标:1.理解两条直线相交的特征及邻补角与对顶角的概念.2.掌握邻补角与对顶角的性质,并能运用它们的性质进行角的计算及解决简单的实际问题.重点:邻补角、对顶角的概念,对顶角的性质与应用. 难点:理解对顶角相等的性质.二、学习过程:情境引入你能在身边找出一些相交线的实例吗?(请画出下图中一组相交线)自学导航思考:观察剪刀工作过程,你能发现它的角有什么变化?如果把剪刀的构造看做两条相交的直线,你们想想它是一种怎样的几何结构?请画出抽象得出的几何图形.【归纳】___________________________________________________________ ___________________________________________________________________ 上图的几何描述为:________________________________. 合作探究探究:任意画两条相交的直线,在形成的四个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?根据这种位置关系将它们分类.作图_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________形成概念1.邻补角的概念:______________________________________________________________________________________________________________________________________ 图中还有哪些角也是邻补角呢?________________________________ 2.对顶角的概念:______________________________________________________________________________________________________________________________________ 图中还有哪些角也是邻补角呢?________________________________思考:上图中,∠1与∠3在数量上又有什么关系呢?___________. 请补全下列说理过程:∵ ∠1与∠2互补,∠3与∠2互补 (_________________) ∴ ∠1=∠3 (_________________)【归纳】对顶角的性质:__________________________. 考点解析考点1:邻补角的定义及性质★例1. 下列图形中,∠1与∠2互为邻补角的是( )_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【迁移应用】1.下列说法中正确的是( ) A.一个角的邻补角只有B.一个角的邻补角必定大于这个角C.相等的两个角不可能是邻补角D.一个角的邻补角可能是锐角、钝角或直角 2.如图,直线a ,b 相交.(1)∠1+∠2=_____°;∠3+∠4=____°. (2)∠4的邻补角是_________. (3)图中的邻补角共有_____对.3. 已知∠B 与∠A 互为邻补角,且∠B=2∠A,那么∠A=_____°.考点2:对顶角的定义及性质★★例2. 下列图形中,∠1和∠2互为对顶角的是( )【迁移应用】1.如图,直线 AB ,CD 相交于点O ,则∠1的对顶角是( ) A.∠2 B.∠3 C.∠4 D.∠3和∠4_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.如图,直线AB ,CD 相交于点O ,若∠AOD 减小30°则∠BOC ( ) A.增大30° B.增大150° C.不变 D.减小30°3.如图是一个对顶角量角器,用它测量角的原理是_____________.4.如图是一把剪刀,若∠AOB+∠COD=82°,则∠BOD=________.5.如图,直线AB ,CD 相交于点O ,∠AOC=(2x-10)°,∠BOD=(x+25)°,则x=_______.考点3:运用邻补角、对顶角的性质进行角度的计算★★★例3.【方程思想】如图,直线AB ,CD 相交于点O ,∠AOC = 80°,OE 把∠BOD 分成两部分,且∠BOE :∠DOE=2:3,求∠AOE 的度数._______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【迁移应用】1.如图,直线AB 与CD 相交于点O ,OA 平分∠COE,若∠DOE=70°,则∠BOD 的度数是( )A.75°B.65°C.55°D.105°2.如图,三条直线相交于一点,则 ∠1+∠2+ ∠3 =_____°.3.如图直线AB ,CD 相交于点O ,OA 平分∠EOC.若∠EOA:∠EOD=1:3,求∠BOD 的度数.考点4:利用邻补角与对顶角的性质解决实际问题★★★例4.【一题多解】如图是一块弯折的屏风,假设其背面不可到达,要测量其在地面上形成的∠AOB 的度数,你有什么方法?_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【迁移应用】【跨学科】将一根玻璃棒放入盛有水的烧杯中,一头露出水面,一头浸入水中,我们可发现浸入水中的部分“变弯了”.它真的变弯了吗? 其实没有,这只是光的折射现象,即光从空气射入水中,光线的传播方向发生改变如图,一束光AO 射入水中,在水中的传播路径为OB ,∠1与∠2是对顶角吗?如果不是对顶角,你能比较它们的大小吗?考点5:邻补角在折叠问题中的应用★★★★例5.【整体思想】如图,将五边形纸片ABCDE折叠,折痕为AF ,点D,E 分别落在点D′,E′处.已知∠AFC=76°,求∠CFD′的度数.【迁移应用】1. 如图,把一张长方形的纸片按如图所示的方式折叠后,B ,D 两点分别落在点B′,D ′处.若∠AOB ′=80°,则∠B′OG 的度数为_______.学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.如图,将长方形纸片折叠,使点A 落在点A′处,BC 为折痕,BD 为∠A′BE 的平分线,则∠CBD 的度数为________.考点6:相交线中的探究题★★★★★例6. (1)观察图①,图中共有____对对顶角,_____对邻补角; (2)观察图②,图中共有_____对对顶角,_____对邻补角; (3)观察图③,图中共有_____对对顶角,_____对邻补角;(4)若有n 条直线相交于一点,则可形成________对对顶角,________对邻补角.【迁移应用】观察下列图形,阅读下面的相关文字并回答后面的问题:(1)5条直线相交,最多有几个交点? (2)6条直线相交,最多有几个交点? (3)猜想:n 条直线相交,最多有几个交点?。

人教版七年级数学下册5.1.1《相交线》教案

人教版七年级数学下册5.1.1《相交线》教案
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相交线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相交线的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相交线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
其次,注重培养学生的空间想象力。在解决实际问题时,我发现部分学生难以将题目中的信息与几何图形联系起来。为了改善这一点,我计划在今后的教学中,多设计一些空间想象力训练的环节,如让学生自己动手画图、制作模型等。
再次,加强小组合作学习的引导。在小组讨论和实验操作过程中,我发现有些学生参与度不高,依赖性强。针对这个问题,我将在今后的教学中加强对小组合作学习的引导,鼓励每个学生积极参与,培养他们的团队协作能力。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相交线的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对相交线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
1.理论介绍:首先,我们要了解相交线的基本概念。相交线是两条在平面内不平行且在某一点相遇的直线。它在几何学中有着重要的作用,可以帮助我们分析图形的性质和解决实际问题。

人教版数学七年级下册5.1.1:相交线(教案)

人教版数学七年级下册5.1.1:相交线(教案)
-在复杂图形中,找出相应的角,并应用判定方法判断两条直线是否平行。
-解决实际问题,将现实情境抽象为数学模型,并应用所学知识解决。
举例:对于内错角的识别,教师可以通过绘制多个相交线形成的复杂图形,指导学生如何在图形中准确找出内错角,并解释为什么内错角相等可以推断出两条直线平行。此外,教师应提供多个不同难度的练习题,帮助学生逐步突破难点,提高解题能力。
举例:讲解同位角相等时,教师可以通过具体的图形,如铁轨、桌面等生活中的实例,让学生直观地理解同位角的概念,并强调这是判断平行线的重要依据。
2.教学难点
-难点内容:本节课的难点在于学生对于相交线性质的深入理解和平行线判定方法的灵活运用。
-详细内容:
-理解同位角、内错角、同旁内角之间的关系,并能够正确辨识。
注意:由于教学重点与难点的描述通常不会达到2000字,这里的要求可能存在误解。以上内容已尽可能详细地列出了教学重点与难点的核心知识点和举例说明。在实际教案撰写中,这部分内容通常较为精简,但需要确保每个点都准确无误地传达了课程的核心要求。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相交线》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线相交的情况?”比如,十字路口的道路,桌面上的对角线等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相交线的奥秘。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相交线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

新人教版七年级下5.1.1相交线学案

新人教版七年级下5.1.1相交线学案

新人教版七年级下5.1.1相交线学案一、课前自主学习: (一)选择题1、下面四个图形中,∠1与∠2是对顶角的图形是( )2.下列图形中,∠1与∠2是邻补角的是( )3.如图(1),直线a 、b 相交于点O ,若∠1等于40°,则∠2=(A.50°B.60°C.140°D.160° 4.下列选项中是邻补角的是( )A.和为180°的两个角B.有公共顶点且互补的两个角C.有一条公共边且相等的两个角D.有公共顶点且有一条公共边,另一边互为反向延长线的两个角.5.下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等. A.1个 B.2个 C.3个 D.4个 (二)填空题6.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.7.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.8.已知∠A=50°,则∠A 的补角是 .9.如图(2)所示,∠1=∠2=70,那么∠COE=70°, 那么∠COB 等于 度.ABCD21212121ABCDa D10.某校初一年级在下午3:00开展―阳光体育活动‖.下午3:00这一时刻,时钟分针与时针所夹的角等于 . (三)解答题 11.如图(3),直线AB ,CD ,EF 相交于点O . (1)写出∠AOC ,∠BOE 的邻补角; (2)写出∠DOA ,∠EOC 的对顶角;(3)如果∠AOC =50°,求∠BOD ,∠COB 的度数.课前自主学习题答案:1.A ;2.D ;3.C ;4.D ;5.B ;6.对顶角;7.邻补角、对顶角;8.130°;9.145°;10.90°; 11. (1)∠AOC 的邻补角是∠AOD ,∠BOC ;∠BOE 的邻补角是∠AOE ,∠BOF.(2)∠DOA 的对顶角是∠BOC ;∠EOC 的对顶角是∠DOF. (3)∠BOD=50°,∠COB=130°.二、课堂互动探究 (1)知识要点梳理: 知识点一:邻补角:两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.知识点二:对顶角:两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为对顶角.知识点三:对顶角、邻补角的性质对顶角的性质:对顶角相等.邻补角的性质:邻补角互补注意点:(1)对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;(2)如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角(3)如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;B A反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。

人教版初中数学七年级下册5.1.1《相交线》教案

人教版初中数学七年级下册5.1.1《相交线》教案

《相交线》教案一、设计说明1.内容解析本节课的内容是在学习了直线、射线、线段、角的基础上,进一步研究两条直线的位置关系:相交.由于两条直线的位置关系与它们所成的角有直接的关系,所以我们首先要研究两条直线相交成有公共顶点的四个角的关系,即:对顶角与邻补角.为后面学习垂线、三线八角以及空间里的垂直关系打好基础.然后研究两条直线被第三条直线所截而形成的没有公共顶点的三角的关系,为研究平行线做好准备.对顶角相等的性质是证明角相等的一个重要的依据,并在以后的推理过程中有着广泛的应用.所以要求学生熟练掌握.同时,在教学过程中,要培养学生的识图能力和几何语言的表达能力,从而初步引入几何推理的格式,让学生知道推理要步步有据.2.三维目标(1)知识与技能:①理解邻补角与对顶角的概念.②掌握对顶角的性质.(2)过程与方法:①经历探究对顶角、邻补角的位置关系的过程,建立空间观念.②通过分析具体图形得到对顶角、邻补角的概念,发展学生的抽象概括能力.③通过小组学习等活动经历得出对顶角相等的过程,进一步提高学生应用已有知识解决数学问题的能力.(3)情感态度与价值观①通过对对顶角的探究,使学生初步认识数学与现实生活的密切联系.②通过师生的共同活动,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识,在独立思考的同时能够认同他人.3、重点、难点重点:邻补角与对顶角的概念.对顶角性质与应用.难点:理解对顶角相等的性质的探索.4、课时安排:1课时二、教学过程设计(一)创设情景问题1:观察下图,一把张开的剪刀能联想出什么几何图形?说一说,剪刀剪开纸片的过程中有关角的变化?师生活动:让学生观察,把剪刀的构造想象成两条相交直线.在剪刀剪开纸片的过程中,把手和刀刃之间的夹角不断发生变化,但是这些角之间存在着不变的位置和数量关系.设计意图:通过生活中的情景抽象出几何图形,培养他们的空间观念,发展几何直觉.把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题。

人教版数学七年级下册5.1.1《相交线》教学设计

人教版数学七年级下册5.1.1《相交线》教学设计

人教版数学七年级下册5.1.1《相交线》教学设计一. 教材分析人教版数学七年级下册5.1.1《相交线》是学生在学习了直线、射线、线段的基础上,进一步研究两条直线的关系。

本节课的主要内容是让学生掌握相交线的定义、性质和特点,并能够运用相交线的知识解决一些实际问题。

教材通过丰富的图形和实例,引导学生探究、发现相交线的特征,培养学生的观察能力、操作能力和抽象思维能力。

二. 学情分析学生在之前的学习中已经掌握了直线、射线、线段的基本知识,对于图形的认识和观察能力也有一定的基础。

但是,对于相交线的概念和性质,学生可能还比较陌生,需要通过实际操作和探究来理解和掌握。

此外,学生可能对于两条直线相交的多种情况分辨不清,需要在教学中进行针对性的指导。

三. 教学目标1.知识与技能:让学生掌握相交线的定义、性质和特点,能够识别和画出相交线。

2.过程与方法:通过观察、操作、探究等活动,培养学生的观察能力、操作能力和抽象思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和问题解决能力。

四. 教学重难点1.重点:相交线的定义、性质和特点。

2.难点:对于两条直线相交的多种情况的理解和判断。

五. 教学方法1.引导探究法:通过提出问题,引导学生观察、操作、思考,从而发现相交线的特征。

2.合作交流法:让学生在小组内进行讨论、分享,培养学生的团队合作意识。

3.实例分析法:通过具体的实例,让学生理解和应用相交线的知识。

六. 教学准备1.教具:多媒体教学设备、黑板、粉笔、直线、射线、线段教具。

2.学具:学生作业本、直线、射线、线段教具。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾直线、射线、线段的知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过展示直线、射线、线段的教具,让学生观察并指出哪些是相交线。

学生尝试给出相交线的定义。

3.操练(10分钟)教师给出几个实例,让学生判断哪些是相交线,并说明理由。

人教版七年级数学下册5.1.1《相交线》教学设计

人教版七年级数学下册5.1.1《相交线》教学设计

人教版七年级数学下册5.1.1《相交线》教学设计一. 教材分析《相交线》是人教版七年级数学下册第五章第一节的内容,主要介绍相交线的概念、性质和应用。

通过学习相交线,学生能够理解直线、射线和线段的特征,掌握相交线的定义和性质,并能够运用相交线解决一些实际问题。

本节课的内容是学生进一步学习几何图形的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析学生在学习本节课之前,已经掌握了直线、射线和线段的基本概念,对于一些基本的几何图形有一定的了解。

但是,对于相交线的概念和性质可能还比较陌生,需要通过实例和练习来进一步理解和掌握。

此外,学生可能对于相交线在实际问题中的应用还不够熟悉,需要通过一些具体的案例来引导和启发。

三. 教学目标1.知识与技能:学生能够理解相交线的概念,掌握相交线的性质,并能够运用相交线解决一些实际问题。

2.过程与方法:学生通过观察、操作和思考,培养空间想象能力和逻辑思维能力。

3.情感态度与价值观:学生能够积极参与课堂活动,克服困难,自主学习,培养对数学的兴趣和自信心。

四. 教学重难点1.重点:相交线的概念和性质。

2.难点:相交线在实际问题中的应用。

五. 教学方法1.情境教学法:通过实物和图形,引导学生观察和操作,激发学生的学习兴趣和积极性。

2.问题驱动法:通过提出问题,引导学生思考和探究,培养学生的逻辑思维能力。

3.合作学习法:学生进行小组讨论和合作,促进学生之间的交流和互助。

六. 教学准备1.教具准备:直尺、圆规、三角板、白板等。

2.教学素材:相交线的图片、实例和练习题。

3.教学环境:教室布置成有利于学生思考和交流的环境。

七. 教学过程1.导入(5分钟)教师通过展示一些实际的图形,如交叉的道路、铁路等,引导学生观察和思考这些图形的特征。

提问:这些图形有什么共同的特点?学生通过观察和思考,能够发现这些图形的共同特点是它们由两条直线相交而成。

教师引导学生总结出相交线的概念。

新人教版七年级数学下册《5.1.1相交线》优秀教学设计

新人教版七年级数学下册《5.1.1相交线》优秀教学设计

5.1相交线5.1.1相交线1.理解对顶角和邻补角的概念,能在图形中辨认;(重点)2.掌握对顶角相等的性质和它的推证过程;(重点、难点)3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.一、情境导入同学们,你们看这座宏伟的大桥,它的两端有很多斜拉的平行钢索,桥的侧面有许多相交钢索组成的图案;围棋棋盘的纵线相互平行,横线相互平行,纵线和横线相交.这些都给我们以相交线、平行线的形象.在我们生活中,蕴涵着大量的相交线和平行线.那么两条直线相交形成哪些角?这些角又有什么特征?二、合作探究探究点一:对顶角和邻补角的概念【类型一】对顶角的识别下列图形中∠1与∠2互为对顶角的是()解析:观察∠1与∠2的位置特征,只有C中∠1和∠2同时满足有公共顶点,且∠1的两边是∠2的两边的反向延长线.故选C.方法总结:判断对顶角只看两点:①有公共顶点;②一个角的两边分别是另一个角的两边的反向延长线.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】邻补角的识别如图所示,直线AB和CD相交所成的四个角中,∠1的邻补角是________.解析:根据邻补角的概念判断:有一个公共顶点、一条公共边,另一边互为延长线.∠1和∠2、∠1和∠4都满足有一个公共顶点和一条公共边,另一边互为延长线,故为邻补角.故答案为∠2和∠4.方法总结:邻补角的定义包含了两层含义:相邻且互补.但需要注意的是:互为邻补角的两个角一定互补,但互补的角不一定是邻补角.变式训练:见《学练优》本课时练习“课堂达标训练”第2题探究点二:对顶角的性质【类型一】利用对顶角的性质求角的度数如图,直线AB、CD相交于点O,若∠BOD=42°,OA平分∠COE,求∠DOE的度数.解析:根据对顶角的性质,可得∠AOC 与∠BOD 的关系,根据OA 平分∠COE ,可得∠COE 与∠AOC 的关系,根据邻补角的性质,可得答案.解:由对顶角相等得∠AOC =∠BOD =42°.∵OA 平分∠COE ,∴∠COE =2∠AOC =84°.由邻补角的性质得∠DOE =180°-∠COE =180°-84°=96°.方法总结:解决此类问题的关键是在图中找出对顶角和邻补角,根据两种角的性质找出已知角和未知角之间的数量关系.变式训练:见《学练优》本课时练习“课堂达标训练”第9题【类型二】 结合方程思想求角度如图,直线AC ,EF 相交于点O ,OD是∠AOB 的平分线,OE 在∠BOC 内,∠BOE =12∠EOC ,∠DOE =72°,求∠AOF 的度数.解析:因为已知量与未知量的关系较复杂,所以想到列方程解答,根据观察可设∠BOE =x ,则∠AOF =∠EOC =2x ,然后根据对顶角和邻补角找到等量关系,列方程.解:设∠BOE =x ,则∠AOF =∠EOC =2x .∵∠AOB 与∠BOC 互为邻补角,∴∠AOB =180°-3x .∵OD 平分∠AOB ,∴∠DOB =12∠AOB =90°-32x .∵∠DOE =72°,∴90°-32x+x =72°,解得x =36°.∴∠AOF =2x =72°.方法总结:在相交线中求角的度数时,就要考虑使用对顶角相等或邻补角互补.若已知关系较复杂,比如出现比例或倍分关系时,可列方程解决角度问题.变式训练:见《学练优》本课时练习“课后巩固提升”第3题【类型三】 应用对顶角的性质解决实际问题如图,要测量两堵墙所形成的∠AOB 的度数,但人不能进入围墙,如何测量?请你写出测量方法,并说明几何道理.解析:可以利用对顶角相等的性质,把∠AOB转化到另外一个角上.解:反向延长射线OB到E,反向延长射线OA到F,则∠EOF和∠AOB是对顶角,所以可以测量出∠EOF的度数,∠EOF的度数就是∠AOB的度数.方法总结:解决此类问题的关键是根据对顶角的性质把不能测量的角进行转化.变式训练:见《学练优》本课时练习“课后巩固提升”第7题探究点三:与对顶角有关的探究问题我们知道:两直线交于一点,对顶角有2对;三条直线交于一点,对顶角有6对;四条直线交于一点,对顶角有12对……(1)10条直线交于一点,对顶角有________对; (2)n (n ≥2)条直线交于一点,对顶角有________对.解析:(1)仔细观察计算对顶角对数的式子,发现式子不变的部分及变的部分的规律,得出结论,代入数据求解.如图①,两条直线交于一点,图中共有(4-2)×44=2对对顶角;如图②,三条直线交于一点,图中共有(6-2)×64=6对对顶角;如图③,四条直线交于一点,图中共有(8-2)×84=12对对顶角……按这样的规律,10条直线交于一点,那么对顶角共有(20-2)×204=90(对).故答案为90;(2)利用(1)中规律得出答案即可.由(1)得n (n ≥2)条直线交于一点,对顶角的对数为2n (2n -2)4=n (n -1).故答案为n (n -1). 方法总结:解决探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数据的变化特征.变式训练:见《学练优》本课时练习“课后巩固提升”第9题 三、板书设计两条直线相交⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫邻补角对顶角对顶角相等求角的大小本节课通过对学生身边熟悉的事物引入,让学生感受到生活中处处有数学,数学与我们的生活密不可分;学生经历合作探究过程获得新知,并能用所学的新知识来解决实际问题.这样教学更能激发学生学习数学的兴趣,提升学生的能力,促进学生的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册第五章相交线与平行线学案
5.1.1 相交线
一 教学目标:
1.理解对顶角和邻补角的概念,能在图形中辨认. 2.掌握对顶角相等的性质和它的推证过程. 3.会用对顶角的性质进行有关的推理和计算 二 自主预习
1、什么是互为余角?互为补角?
2、互为余角、互为补角有什么性质?
3、画直线AB 、CD 相交于点O ;小于平角的角有几个?
4、什么是邻补角、对顶角?对顶角有什么性质? 三 教学设计
[探究一] 小组讨论,解决问题1、2、3、4.
1、任意画两条相交直线,在形成的四个角中,两两相配共组成几对角?各对角存在怎样的位置关系?
2、用量角器分别量一量各个角的度数,各类角的度数有什么关系?为什么?
3、完成下表: 两直线相交
所形成的角
位置关系 数量关系
分 类
43
21O
D
C B
A
4、什么是邻补角?什么是对顶角?它们各有什么特点?
[探究二]小组讨论,解决问题.
1、∠1、∠2的邻补角是什么?它们有什么关系?
2、对顶角有什么性质?
3、如图,直线a,b 相交,∠1=40°,求∠2,∠3,∠4的度数.
b
a
4
3
21
四 巩固落实
1、下列说法,你同意吗?如果错误,如何订正.
①邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两角的另一条边共同在一条直线上.
②邻补角可看成是平角被过它顶点的一条射线分成的两个角. ③邻补角是互补的.
2、下列各图中∠1、∠2是邻补角吗?为什么?
3、下列说法正确的有( )
①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等. A.1个 B.2个 C.3个 D.4个 4、如图所示,∠1和∠2是对顶角的图形有( )
1
21
21
2
2
1
A.1个
B.2个
C.3个
D.4个
5、直线AB 与CD 相交于点O. 已知∠ BOC=60°, 请你说出图中各个角的度数.
6、如图,直线AB 、CD 、EF 相交于点O ,AOE ∠的对顶角是 ,COF ∠的邻补角是 ______ ;若AOC ∠:
AOE ∠=2:3, 130=∠EOD ,则BOC ∠=________.
7、如图,直线AB 、CD 相交于点O. (1)若∠AOC+∠BOD=100°,求各角的度数.
(2)若∠BOC 比∠AOC 的2倍多33°,求各角的度数.
O D C
B
A
2 1 2 1 1 2
五 巩固提高 (一)判断题
1.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )
2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( ) (二)选择题
1.如图所示,三条直线AB 、CD 、EF 相交于一点O,则∠AOE+∠DOB+∠COF 等于( • )
A.150°
B.180°
C.210°
D.120° (三)填空题 1、如图1所示,AB 与CD 相交所成的四个角中,∠1的邻补角是______,∠1的对顶角___.
3
4
D C
B
A 1
2O
F
E
D C
B A O D
C
B
A 60︒
30︒
34
l 3
l 2
l 1
12
(图1) (图2) (图3) (图4)
2、如图1所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______.
3、如图2所示,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角是_____,∠AOC 的邻补角是
_______;若∠AOC=50°,则∠BOD=______,∠COB=_______.
4、如图3所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠AOC•的度
数为( ) A.62° B.118° C.72° D.59°
5、如图4所示,直线L 1,L 2,L 3相交于一点,则下列答案中,全对的一组是( ) A.∠1=90°,∠2=30°,∠3=∠4=60°; B.∠1=∠3=90°,∠2=∠4=30
C.∠1=∠3=90°,∠2=∠4=60°;
D.∠1=∠3=90°,∠2=60°,∠4=30° 6、 如图5所示,已知直线AB,CD 相交于O,OA 平分∠EOC,∠EOC=70°,则∠BOD=•______.
O
E D C
B A
O
D
C B
A
1
2
O
E D C
B
A
(图5) (图6) (图7) 7、 对顶角的性质是______________________.
8、 如图6所示,直线AB,CD 相交于点O,若∠1-∠2=70,则∠BOD=_____,∠2=____. 9、如图7所示,直线AB,CD 相交于点O,OE 平分∠AOC,若∠AOD-∠DOB=50°,•则∠EOB=___
O
F E
D C B A
(四)解答题
1、如图所示,直线AB,CD 相交于点O,已知∠AOC=70°,OE 把∠BOD 分成两部分,• 且 ∠BOE:∠EOD=2:3,求∠EOD 的度数.
2.两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少?
O E
D C
B A。

相关文档
最新文档