2011高考数学易错题解题方法大全5
2011年高考数学解题_高分策略——难点突破与培优提高(61页)文库

2011年高考数学复习“应试笔记”2011年高考数学解题·高分策略——难点突破和培优提高第I卷 160分部分一、填空题答卷提醒:重视填空题的解法和得分,尽可能减少失误,这是取得好成绩的基石!A、1~4题,基础送分题,做到不失一题!解题常用经典再现A1.集合性质和运算1、性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A = B.如果.【注意】:①Z= {整数}(√) Z ={全体整数} (×)②已知集合S 中A的补集是一个有限集,则集合A也是有限集.(×)③空集的补集是全集.④若集合A=集合B,则CBA = , CAB = CS(CAB)= D (注:CAB = ).2、若A={},则A的子集有个,真子集有个,非空真子集有个.3、4、 De Morgan公式:;.【提醒】:数轴和韦恩图是进行交、并、补运算的有力工具.在具体计算时不要忘了集合本身和空集这两种特殊情况,补集思想常运用于解决否定型或正面较复杂的有关问题。
A2.命题的否定和否命题*1.命题的否定和它的否命题的区别:命题的否定是,否命题是.命题“或”的否定是“且”,“且”的否定是“或”.*2.常考模式:全称命题p:;全称命题p的否定p:.特称命题p:;特称命题p的否定p:.A3.复数运算*1.运算律:⑴;⑵;⑶.【提示】注意复数、向量、导数、三角等运算率的适用范围.*2.模的性质:⑴;⑵;⑶.*3.重要结论:⑴;⑵;⑶;⑷,;⑸性质:T=4;.【拓展】:或.A4.幂函数的的性质及图像变化规律:(1)所有的幂函数在都有定义,并且图像都过点;(2)时,幂函数的图像通过原点,并且在区间上是增函数.特别地,当时,幂函数的图像下凸;当时,幂函数的图像上凸;(3)时,幂函数的图像在区间上是减函数.在第一象限内,当从右边趋向原点时,图像在轴右方无限地逼近轴正半轴,当趋于时,图像在轴上方无限地逼近轴正半轴.【说明】:对于幂函数我们只要求掌握的这5类,它们的图像都经过一个定点(0,0)和(0,1),并且时图像都经过(1,1),把握好幂函数在第一象限内的图像就可以了.A5.统计1.抽样方法:(1)简单随机抽样(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取.(2)分层抽样,主要特征分层按比例抽样,主要使用于总体中有明显差异.共同点:每个个体被抽到的概率都相等().2.总体分布的估计就是用总体中样本的频率作为总体的概率.总体估计掌握:一“表”(频率分布表);两“图”(频率分布直方图和茎叶图).⑴频率分布直方图用直方图反映样本的频率分布规律的直方图称为频率分布直方图。
高考数学易错点整理及解题的方法技巧

高考数学易错点整理及解题的方法技巧高考数学考试要取得好成绩,除了扎实的基础知识,还要掌握方法和技巧。
下面是小编整理的高中数学考试怎么答和方法技巧,希望能对大家有所帮助。
1、高考答题应先易后难,先做简单的数学题,再做复杂的数学题;根据自己的实际情况,跳过实在没有思路的高考数学题,从易到难。
2、先高分后低分,在高考数学考试的后半段时要特别注重时间,如两道题都会做,先做高分题,后做低分题,对那些拿不下来的数学难题也就是高分题应“分段得分” ,以增加在时间不足前提下的得到更多的分,这样在高考中就会增加数学超常发挥的几率。
3、同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。
引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。
建议同学们在分类讨论解题时,要做到标准统一,不重不漏。
4、高中数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。
它既是寻找问题解决切入点的“法宝” ,又是优化解题途径的“良方” ,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
1.不能实现二次函数,一元二次方程和一元二次不等式的相互转换。
2.二次函数令 y 为0→方程→看题目要求是什么→要么方程大于小于 0,要么刁塔(那个小三角形)b 的平方-4ac 大于等于小于 0 种.种。
3.比较大小时,对指数函数,对数函数,和幂函数的性质记忆模糊导致失误。
4.忽略对数函数单调性的限制条件导致失误。
5.函数零点定理使用不当致误。
f(a)xf(b)<0,则区间 ab 上存在零点。
6.忽略幂函数的定义域而致错。
2011高考数学经典易错题荟萃---教师版

有的学生一看到 ,常受选择答案(A)的诱惑,盲从附和。这正是思维缺乏反思性的体现。如果能以反思性的态度考察各个选择答案的来源和它们之间的区别,就能从中选出正确答案。
原方程有两个实根 ,∴
当 时, 的最小值是8;
当 时, 的最小值是18。
这时就可以作出正确选择,只有(B)正确。
(C)第三象限(D)第四象限
18.(2006年广东卷)若复数 满足方程 ,则
A. B. C. D.
解:由 ,故选D.
19、已知椭圆+y2= 1的离心率为,则m的值为____。4或(漏解)
20、椭圆的中心在原点,对称轴为坐标轴,椭圆短轴的一个顶点B与两焦点F1、F2组成的三角形的周长为4 + 2且∠F1BF2=,则椭圆的方程是。+y2= 1或x2+= 1(漏解)
A.0B.1C.2D.3
正确答案:D。
10.O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足
,则P的轨迹一定通过△ABC的( )
(A)外心(B)内心(C)重心(D)垂心
正确答案:B。
11.O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足
,则P的轨迹一定通过△ABC的( )
●忽视等价性变形,导致错误。
,但与不等价。
【例1】已知f(x) =ax +,若 求 的范围。
错误解法由条件得
②×2-①
①×2-②得
+ 得
正确解法由题意有 ,解得:
把 和 的范围代入得
●忽视隐含条件,导致结果错误。
【例2】
(1)设 是方程 的两个实根,则 的最小值是
思路分析本例只有一个答案正确,设了3个陷阱,很容易上当。
2011届高考数学易错点与应试技巧总结4

概念、方法、题型、易误点及应试技巧总结基本概念、公式及方法是数学解题的基础工具和基本技能,为此作为临考前的高三学生,务必首先要掌握高中数学中的概念、公式及基本解题方法,其次要熟悉一些基本题型,明确解题中的易误点,还应了解一些常用结论,最后还要掌握一些的应试技巧。
本资料对高中数学所涉及到的概念、公式、常见题型、常用方法和结论及解题中的易误点,按章节进行了系统的整理,最后阐述了考试中的一些常用技巧,相信通过对本资料的认真研读,一定能大幅度地提升高考数学成绩。
集合与简易逻辑一、集合元素具有确定性、无序性和互异性。
在求有关集合问题时,尤其要注意元素的互异性,如(1)设P 、Q 为两个非空实数集合,定义集合P+Q={|,}a b a P b Q +∈∈,若{0,2,5}P =,}6,2,1{=Q ,则P+Q 中元素的有________个。
(答:8)(2)设{(,)|,}U x y x R y R =∈∈,{(,)|20}A x y x y m =-+>,{(,)|B x y x y n =+-0}≤,那么点)()3,2(B C A P u ∈的充要条件是________(答:5,1<->n m );(3)非空集合}5,4,3,2,1{⊆S ,且满足“若S a ∈,则S a ∈-6”,这样的S 共有_____个。
(答:7)二.遇到A B =∅ 时,你是否注意到“极端”情况:A =∅或B =∅;同样当A B ⊆时,你是否忘记∅=A 的情形?要注意到∅是任何集合的子集,是任何非空集合的真子集。
如集合{|10}A x ax =-=,{}2|320B x x x =-+=,且A B B = ,则实数a =___.(答:10,1,2a =) 三.对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数依次为,n 2,12-n ,12-n .22-n如满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有______个。
【数学】高考数学易错题解题方法大全(5)

高考数学易错题解题方法大全(5)【范例1】若函数14)(2+-=x x x f 在定义域A 上的值域为[-3,1],则区间A 不可能为( )A .[0,4]B .[2,4]C .[1,4]D .[-3,5]答案:D【错解分析】此题容易错选为B ,C ,D ,错误原因是没有借助图象很好的掌握定义域和值域的关系。
【解题指导】注意到1)4()0(,3)2(14)(22==--=+-=f •f •x x x x f ,结合函数)(x f y =的图象不难得知)(x f 在[0,4]、[2,4]、[1,4]上的值域都为[-3,1],而在[-3,5]上的值域不是[-3,1].【练习1】已知函数()y f x =是定义在R 上的奇函数,且()12f =,对任意x R ∈,都有()()2(2)f x f x f +=+ 成立,则()2007f =( )A .4012B .4014C .2007D .2006【范例2】已知全集I ={大于3-且小于10的整数},集合{0,1,2,3}A =,{4,2,0,2,4,6,8}B =--,则集合B A C I )(的元素个数有 ( )A.3个B.4个C.5个D.6个 答案:B【错解分析】此题容易错选为C ,错误原因是看清全集I ={大于3-且小于10的整数},而不是大于等于3-。
【解题指导】{2,1,0,,8,9}I =-- ,{}9,8,7,6,5,4,1,2--=A C U ,{},8,6,4,2-=⋂B A C U ,故集合B A C U ⋂的元素个数有4个.【练习2】设全集U 是实数集R ,{}2|4M x x >=,{}2|log (1)1N x x =-<,则图中阴影部分所表示的集合是( )A .{}|21x x -≤<B .{}|22x x -≤≤C .{}|12x x <≤D .{}|2x x <【范例3】下列函数中,在其定义域内既是奇函数又是增函数的是( ) A. 3,y x x R =∈ B. sin ,y x x R =∈ C. lg ,0y x x => D. 3,2xy x R ⎛⎫=∈ ⎪⎝⎭答案:A【错解分析】此题容易错选为B ,C ,D ,错误原因是没看清楚题目考查的是函数的两个性质。
2011高考数学备考易错点汇总

高中数学易错点汇总1.在应用条件A∪B=B,A∩B=A 时,易忽略A是空集Φ的情况。
2.求解与函数有关的问题易忽略定义域优先的原则,尤其是在与实际生活相联系的应用题中,判断两个函数是否是同一函数也要判断函数的定义域,求三角函数的周期时也应考虑定义域。
3.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称,优先考虑定义域对称。
4.解对数不等式时,易忽略真数大于0、底数大于0且不等于1这一条件。
5.用判别式法求最值(或值域)时,需要就二次项系数是否为零进行讨论,易忽略其使用的条件,应验证最值。
6.用判别式判定方程解的个数(或交点的个数)时,易忽略讨论二次项的系数是否为0。
尤其是直线与圆锥曲线相交时更易忽略。
7.用均值定理求最值(或值域)时,易忽略验证“一正(几个数或代数式均是正数)二定(几个数或代数式的和或者积是定值)三等(几个数或代数式相等)”这一条件。
8.用换元法解题时,易忽略换元前后的等价性。
9.求反函数时,易忽略求反函数的定义域。
10.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示,而应用逗号连接多个区间。
11.用等比数列求和公式求和时,易忽略公比q=1的情况。
12.已知Sn求a n时, 易忽略n=1的情况。
13.用直线的点斜式、斜截式设直线的方程时, 易忽略斜率不存在的情况;题目告诉截距相等时,易忽略截距为0的情况。
14.求含系数的直线方程平行或者垂直的条件时,易忽略直线与x轴或者y轴平行的情况。
15.用到角公式时,易将直线L1、L2的斜率k1、k2的顺序弄颠倒;使用到角公式或者夹角公式时,分母为零不代表无解,而是两直线垂直。
16.在做应用题时, 运算后的单位要弄准,不要忘了“答”及变量的取值范围;在填写填空题中的应用题的答案时, 不要忘了单位。
应用题往往对答案的数值有特殊要求,如许多时候答案必须是正整数。
17.在分类讨论时,分类要做到“不重不漏、层次分明,进行总结”。
2011年高考备考:解答高考数学难题的技巧

一、调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
二、“内紧外松”,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
三、沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
四、“六先六后”,因人因卷制宜在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。
1.先易后难。
就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2.先熟后生。
通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的策略,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。
2011届高考数学易错点与应试技巧总结5—三角函数

概念、方法、题型、易误点及应试技巧总结三角函数14、正弦函数和余弦函数的图象:正弦函数sin y x =和余弦函数cos y x =图象的作图方法:五点法:先取横坐标分别为0,3,,,222ππππ的五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。
15、正弦函数sin ()y x x R =∈、余弦函数cos ()y x x R =∈的性质: (1)定义域:都是R 。
(2)值域:都是[]1,1-,对sin y x =,当()22x k k Z ππ=+∈时,y 取最大值1;当()322x k k Z ππ=+∈时,y 取最小值-1;对cos y x =,当()2x k k Z π=∈时,y 取最大值1,当()2x k k Z ππ=+∈时,y 取最小值-1。
如(1)若函数sin(3)6y a b x π=-+的最大值为23,最小值为21-,则=a __,=b _ (答:1,12a b ==或1b =-);(2)函数x x x f cos 3sin )(+=(]2,2[ππ-∈x )的值域是____(答:[-1, 2]);(3)若2αβπ+=,则6y cos sin βα=-的最大值和最小值分别是____ 、_____(答:7;-5);(4)函数2()2cos sin()3f x x x x π=+sin cos x x +的最小值是_____,此时x =__________(答:2;()12k k Z ππ+∈);(5)己知21cos sin =βα,求αβcos sin =t 的变化范围 (答:1[0,]2);(6)若αβαcos 2sin 2sin22=+,求βα22sin sin +=y 的最大、最小值(答:1max =y ,222min -=y )特别提醒:在解含有正余弦函数的问题时,你深入挖掘正余弦函数的有界性了吗?(3)周期性:①sin y x =、cos y x =的最小正周期都是2π;②()sin()f x A x ωϕ=+和()cos()f x A x ωϕ=+的最小正周期都是2||T πω=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010高考数学易错题解题方法大全(5)【范例1】已知命题:p R x ∈∃,022≤++a ax x .若命题p 是假命题,则实数a 的取值范围是( )A .10><a a 或 B. 10≥≤a a 或 C. 10≤≤a D. 10<<a答案:D【错解分析】此题容易错选为B ,错误的原因是没有很好的利用原命题与其否命题的关系。
【解题指导】命题p 是假命题⇔┓p 是真命题⇔对任意x R ∈,220x ax a ++>恒成立244001a a a ⇔∆=-<⇔<<.【练习1】若[]2,5x ∈“或{}14x x x x ∈<>或”是假命题,则x 的取值范围是( )A .()()+∞⋃∞-,51, B.[)5,4 C. [)12, D. (]()+∞⋃∞-,54,【范例2】若函数)(212)(为常数a k k x f xx ⋅+-=在定义域上为奇函数,则的值为k ( ) A . 1 B. 1- C. 1± D. 0 答案:C【错解分析】此题容易错选为A ,错误原因是直接利用了0)0(=f ,万万不可。
【解题指导】利用定义:0)()(=+-x f x f ,22()()1212x x xxk k f x f x k k ----+-=++⋅+⋅仔细化简到底。
【练习2】已知函数)(x f 是定义在)3,3(-上的奇函数,当30<<x 时,)(x f 的图象如图所示,则不等式/()cos 0f x x <的解集是 ( )A .)3,2()1,0()2,3(ππ--B .)3,2()1,0()1,2(ππ--C .(,2)(2,)22ππ--xyO1 3。
2 .Read x If x<5 Then y ← x 2+1 Elsey ←5xPrint yD . (0,)(,0)22ππ-【范例3】右图是由所输入的x 值计算y 值的一个算法程序,若x 依次取数列{}24n n+(n ∈*N ,n ≤2009)的项,则所得y 值中的最小值为( )A .25 B.17 C.20 D. 26答案:B【错解分析】此题容易错选为A ,错误原因是没有理解x 的取值范围。
【解题指导】4442≥+=+n n nn ,又⎩⎨⎧≥<+=55512x xx x y 作出其图象,观察单调性可知当4=x 时最小17.本题在新的情境中考查学生算法语言,是比较好的创新能力试题,值得重视.【练习3】根据如图所示的伪代码,可知输出的结果T 为( )A .624 B.625C.676D.1275 【范例4】当1a <时,12)(--='a x x f 且a f =)0(,则不等式()0f x <的解集是( ) A . ⎭⎬⎫⎩⎨⎧+<21a x x B. {}1x x a << C.{}1><x a x x 或 D. {|1}x a x <<答案:D【错解分析】此题容易错选为B ,错误原因是忘记了条件1a <。
【解题指导】0))(1()1()(2<--=++-=a x x a x a x x f .【练习4】曲线ln y x x =在(,)M e e 处的切线在,x y 轴上的截距分别为,a b ,则a b +=( )A .32e -B .12e -C .12e D .32e【范例5】利用计算机在区间()0,1上产生两个随机数a 和b ,则方程2b x a x=-有实根的概率为( )T ←1I ←3While I<50T ←T +II ←I +2 End While Print TA .0B .12C .43 D .1答案:B【错解分析】此题容易出现的错误很多,主要是对方程2b x a x=-有实根进行有效的转化,和利用作图计算几何概型理解不好。
【解题指导】方程2b x a x=-有实根等价于022=+-b x a x 的判别式0≥∆,即b a ≥由⎩⎨⎧<<<<1010b a ,可作出正方形,应满足的条件为b a ≥,画图计算面积之比.【练习5】一只蚂蚁在边长分别为5,12,13的三角形的边上随机爬行,则其恰在离三个顶点距离都大于1的地方的概率为( ) A.54 B.53 C.60π D.3π【范例6】若数列{}{},n n a b 、的通项公式分别是a a n n ⋅-=+2007)1(,nb n n 2008)1(2+-+=,且n n b a <,对任意n N *∈恒成立,则常数a 的取值范围是( ) A.[)1,2- B. [)+∞-,2 C. []1,2- D. ()1,∞-答案:A【错解分析】此题容易错在不知道讨论奇偶性,以及n 是偶数时,要从2开始。
【解题指导】当n 是奇数时,由n n b a <得12a n<-,1a <;当n 是偶数时,由n n b a <得12a n-<+,2,2a a -≤≥-,因此常数a 的取值范围是[)1 ,2-.【练习6】已知数列{}n a 的通项公式是n n a n λ+-=2(其中*∈N n )是一个单调递减数列,则常数λ的取值范围( )A. (-∞,1)B. (-∞,2)C. (-∞,0)D. (-∞,3)【范例7】曲线)4cos()4sin(2ππ-+=x x y 和直线在21=y 在y 轴右侧的交点按横坐标从小到大依次记为 ,3,2,1P P P ,则4,2P P 等于 . 答案: π【错解分析】此题容易错选为2π,错误原因是想当然的认为2,4P P 是半个周期。
【解题指导】x y 2sin 1+=,作出函数图象,知π==T P P 4,2. 【练习7】函数x x f 2sin 21)(=,对于任意的x ∈R ,都有)()()(21x f x f x f ≤≤,则21x x -的最小值为 .【范例8】幂函数αx y =,当α取不同的正数时,在区间[]1,0上它们的图像是一族美丽的曲线(如图).设点)1,0(),0,1(B A ,连接AB ,线段AB 恰好被其中的两个幂函数βαx y x y ==,的图像三等分,即有.NA MN BM ==那么,αβ= . 答案:1【错解分析】此题容易错很多,错误的主要原因是没有考虑到借助与点M ,N 的坐标去求两个幂函数βαx y x y ==,。
【解题指导】因为M ,N 为A ,B 的三等分点,所以)31,32(),32,31(N M 【练习8】如果幂函数122)33(--+-=m mx m m y 的图象不过原点,则m 的取值是 .【范例9】2{|3100}A x x x =-->,{|121}B x a x a =+≤≤-,U R =,且A C B U ⊆,求实数a 的取值范围 . 答案:(,3]-∞【错解分析】此题容易错填[]3,3-,错误原因是漏掉考虑A 为空集的情况。
【解题指导】2{3100}{25}U C A x x x x x =--≤=-≤≤121UB C A a a ⊆⇔+>-或21215a a -≤+≤-≤3a ⇔≤ 【练习9】设0)1)((:;1|34:|≤---≤-a x a x q x p ,若p 是q 的充分不必要条件,则实数a 的取值范围是 .【范例10】设双曲线221x y -=的两条渐近线与直线22x =围成的三角形区域(包含边界)为D ,点(,)P x y 为D 内的一个动点,则目标函数2z x y =-的最小值为 . 答案:-22【错解分析】此题容易错填322,错误原因是死记住最高点时取到最大值,最低点时取到最小值,而没有灵活掌握。
【解题指导】这里2z x y =-,中间是减号,最小值在直线最高时取得。
N MyB Ax【练习10】若不等式组⎪⎪⎩⎪⎪⎨⎧≤+≥≤+≥-a y x y y x y x 0220 表示的平面区域是一个三角形及其内部,则a 的取值范围是 .【范例11】已知M 是抛物线x y=2上一点,N 是圆1)3(22=+-yx 上的动点,则MN 的最小值是 . 答案:1211-【错解分析】此题容易错在没有将MN 转化M 为到焦点距离,以及考虑不到消元化归的思想。
【解题指导】如图,设M 是x y=2上一点,||||||MC NC MN ≥+,所以MN 的最小值即为点M 到圆心C 的距离减去半径R 。
设),(2•y •y M 是抛物线x y=2上一点,则 2422225)3(||y y yy MC -=+-=411)25(922+-=+y ,∴210±=y 时,211||min =MC ,∴.1211||min •MN -=【练习11】已知曲线)0,0(12222>>=-•b •a by ax 的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 . 【范例12】某市出租车收费标准如下:起步价为8元,起步里程为3km (不超过3km 按起步价付费);超过3km 但不超过8km 时,超过部分按每千米2.15元收费;超过8km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元。
现某人乘坐一次出租车付费22.6元,则此次出租车行驶了__ ___km.答案:9【错解分析】此题容易错选为10,错误原因是不能准确地列出乘坐一次出租车付费y 与此次出租车行驶的里程x 之间的函数关系式。
【解题指导】乘坐一次出租车付费y 与此次出租车行驶的里程x 之间的函数关系式为⎪⎩⎪⎨⎧>+⨯-+⨯+≤<+⨯-+≤+=8186.2)8(15.25883115.2)3(8318x x x x x y【练习12】一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3mg/mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL ,那么,一个喝了少量酒后的驾驶员,至少经过 小时,才能开车?(精确到1小时).【范例13】 高考数学试题中共有10道选择题,每道选择题都有4个选项,其中有且仅有一个是正确的.评分标准规定:“每题只选1项,答对得5分,不答或答错得0分.” 某考生每道题都给出了一个答案,已确定有6道题的答案是正确的,而其余题中,有两道题都可判断出两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只能乱猜,试求出该考生:(1)得50分的概率;(2)得多少分的可能性最大;【错解分析】此题容易错在审题不清,考虑不全等方面。