几何公差选择及检测

合集下载

几何 公差

几何 公差
下一页 返回
第一节 心脏除颤仪
• 非同步直流电除颤则在心室颤动和心室扑动等 急救状态下应用,电极脉冲的发放与R波无关, 放电由人工控制,可发生在心动周期的任何时 期,按下放电开关即可放电。心脏除颤仪开机 后自动默认为非同步状态,室颤、室扑急救时 切记采用非同步模式。
• 心脏除颤仪有单相波除颤和双相波除颤两种,
的纱布)、治疗碗(清洁纱布1块)、抢救药品, 重症护理记录单。
上一页 下一页 返回
第一节 心脏除颤仪
• 2. 病人取平卧位,解开衣领、裤带,暴露胸部, 除去病人身上的导电物质。
• 3. 开机(按下power on钮),检查调节除颤仪 模式为非同步电除颤,同步电复律按下(sync) 开关。取下除颤电极板,表面涂满导电糊(或 在病人体表电击处放置大于电击板面积的四层 生理盐水纱布)。
• 6. 嘱所有人不得接触病人及病床,呼叫“准备 除颤”,电极板紧贴皮肤并加压同时按下放电 开关shock。
• 7. 放电完毕后立即观察心电示波,室颤波形有 上一页 下一页 返回
第一节 心脏除颤仪
• 再次观察除颤效果,是否恢复窦性心律,以及 神志、生命体征、皮肤情况,若恢复窦性心律, 给予持续心电监护。
第4章 几何公差
• 4. 1 概述 • 4. 2 形状公差 • 4. 3 位置公差 • 4. 4 公差原则 • 4. 5 几何公差的选用 • 4. 6 几何误差的检测原则
上一页 下一页 返回
4. 1 概述
• 1.零件的要素
• 构成零件几何特征的点、线、面均称要素(图4.1)。要素可从不同角度 来分类。
• 8. 协助病人取适宜体位,清洁皮肤,安慰病人, 整理床单位。
• 9. 关闭电源,开关置OFF位置,清洁电极板和 仪器,充电备用。洗手、记录。

几何公差及检测

几何公差及检测
最大(小)实体要求符号的标注
项项目目四四 几几何何公公差差及及检检测
3)可逆要求符号 的标注 可逆要求应与最大实体要求或最小实体要求同时使用,
其符号 标注在 或 的后面。可逆要求用于最大实体 要求时的标注方法如图(a)所示;可逆要求用于最小实体 要求时的标注方法如图 (b)所示:
可逆要求是指中心要素 的形位误差值小于给出 的形位公差值,允许在 满足零件功能要求的前 提下扩大尺寸公差的一 种要求。
3.初步掌握几何公差的选用方法; 4. 了解几何误差检测原则和未注几何公差的规定。
项项目目四四 几几何何公公差差及及检检测
任务一 几何公差概述
如图所示,轴类零件的几何要素标注,试分析图 中几何公差项目及其符号的含义。
项项目目四四 几几何何公公差差及及检检测
在机械加工过程中,工件、刀具、机床的变形,相对 运动的关系不准确,各种频率的振动以及定位不准确等原 因,都会使零件几何要素的形状和相对位置产生误差(形位 误差)。
项项目目四四 几几何何公公差差及及检检测
几何公差概述 几何工程的标注方法 几何工程及几何公差带 几何公差原则及要求 几何公差的选择 几何公差的检测
项项目目四四 几几何何公公差差及及检检测
学习目标
1.掌握几何工差特征项目的名称、符号、标注方 法和几何公差带的含义;
2.理解独立原则、相关要求在图样上的标注、含义 、检测手段和主要应用场合;
几何公差的每一个项目都规定了专门的符 号,见教材中表4-1。
项项目目四四 几几何何公公差差及及检检测
几何公差的项目及其符号
项项目目四四 几几何何公公差差及及检检测
练习: 对图中的几何公差项目及其符号含义进行解释。
几何公差项目及其符号含义的解释

几何量公差与检测_第3 章 孔、轴公差与配合

几何量公差与检测_第3 章 孔、轴公差与配合

上验收极限
下验收极限
安全裕度
四、有关配合的术语及定义 配合( fit ):公称尺寸相同,相互结合的孔与轴公
差带之间的关系。
三 种 关 系
间隙配合
过渡配合
过盈配合

间隙配合(Clearance fit) 具有间隙(含最小间隙等于零)的配合。 孔的公差带位于轴的公差带之上,通常指孔大、轴 小的配合。
2.2)精度高的(7、8级精度以上的)基本偏 差J~ZC的换算过程(轴比孔的精度高一级)
在标准中先定下来
+ 0 -
基轴制
h
基本尺寸
ES ei
+ 0 -
H
基孔制 基本尺寸
基本偏差J~ZC的换算过程图
(2)换算规则 1)通用规则:同名代号的孔和轴的基本偏差的绝对值相 等,而符号相反,即从公差带图解看,孔的基本偏差是 轴的基本偏差相对于零线的倒影。

同名同级配合: 与
基孔制、基轴制同名配合的配合性质
间隙配合:只要是同名配合,配合性质一定相同(保持孔和轴的精度 不变的情况下,与孔和轴所处的精度等级无关). 过渡配合与过盈配合: 高精度时,孔的基本偏差用特殊规则换算, 同名配合且孔比轴低一 级,的配合性质才相同(此时是适用特殊规则). 低精度时,孔的基本偏差用通用规则换算,孔、轴必须同名同级配合, 配合性质才相同(此时是适用通用规则). 即:
特点:其间隙或过盈的数值都较小,一般来讲,
过渡配合的工件精度都较高
过渡配合( Transition fit )
若孔与轴配合的最大间隙为+41um,配合公差为 过渡 配合 89um,则此配合为_______
配合制
基准制------为了设计和制造上的经济性,把其

精度设计第4章 几何公差

精度设计第4章 几何公差

最小条件及最小包容区域

最小条件是提取被测要素对其拟合要素的最大变 动量为最小。
最小包容区域是包容被测提取要素并且有最小宽 度或直径的区域,即满足最小条件的包容区域。 方向位置公差要求的被测提取要素的最小包容区 域,构成要素与基准应保持方向要求。 位置公差要求的被测提取素的最小包容区域,构 成要素与基准既保持方向要求,还应保持理想位 置要求。
• 一、几何误差的评定 • 几何公差带与最小包容区域(包容被测实际要素 并且具有最小宽度或直径的区域)都具有大小、 形状和方位三要素,二者的形状和方位相同,大 小不同。 • 最小包容区域的尺度即为几何误差值; • 零件的几何误差合格条件: • f(几何误差值)<t(几何公差值),即被测要 素的最小包容区域必须被相应的几何公差带所包 容。
平行平 面形状
平行直线形状
四棱柱 形状
同心圆 形状 同轴圆柱面
t
圆柱 形状
形状公差
• 单一要素对其理想要素允许的变动量。其公 差带只有大小和形状,无方向和位置的限制。 • 直线度 _ • 平面度 _ • 圆度 _ • 圆柱度 _
直线度公差
•直 线 度 公 差 用 于 控 制 直线和轴线的形状误差, 根据零件的功能要求, 直线度可以分为在给定 平面内,在给定方向上 和在任意方向上三种情 •在给定平面内的直线度 况。 •在给定方向内的直线度
a)六孔组的图样标注 b)六孔组的几何框图 c)六孔组的位置度公差带
面轮廓度
• 面轮廓度公差带是包 络一系列直径为公差 值t的球的两包络面之 间的区域,诸球的球 心应位于理想轮廓面 上。如图所示。 • 面轮廓度也分无基准 要求的面轮廓度公差、 有基准要求的面轮廓 度公差。
公差带的特点

几何公差与几何误差检测

几何公差与几何误差检测

56
(二)定位公差带的特点 1、定位公差带相对于基准具有确定的位置,其位置由理论 正确尺寸确定。(同轴度和对称度的理论正确尺寸为零,图 样上不必标注。) 2、定位公差带具有综合控制被测要素的形状、方向和位置 的功能。 因此,在保证功能要求的 前提下,给出了定位公差 的要素一般不再规定形状 和定向公差,只有对该要 素的形状和方向有更高的 要求时,才同时给出形状、 定向公差,但公差数值应 小于定位公差值。如:
7
4.2 几何公差在图样上的表示方法
国家标准规定,几何公差应采用框格代号标注。无法采用框 格代号标注时,才允许在技术要求中用文字加以说明。 一、几何公差框格和基准符号 1、公差框格
8
注意: ◇公差框格一律水平放置 ◇指引线从一端引出,且必须垂直于框格 ◇指引线允许折弯
9
2、基准代号 构成:基准方格(内写表示基准的大写英文字母)和基准三角 形(涂黑的或空白的),用细实线连接。 基准代号的字母规定不得采用E、F、I、J、L、M、O、P、R。 注意: 无论基准符号在图样上的方向如何,方框内的字母均应水平 书写。
一、零件几何要素及其分类 各种零件尽管几何特征不同,但都是由称为几何要素的点、 线、面所构成,如图所示:
3
按要素结构特征分 ①组成要素(轮廓要素):具体构成零件外形的点、线、面。 按是否具有定形尺寸分为尺寸要素(具有定形尺寸的几何形 状)和非尺寸要素(不具有定形尺寸的几何形状)。 ②导出要素(中心要素):轮廓要素的对称中心所表示的点、 线、面各要素,如零件上的轴线、球心、圆心、两平行平面 的中心平面等,它是抽象的。 导出要素依存于对应的尺寸要素。 按要素存在状态分 ①理想要素:具有几何学意义的要素。——不存在任何误差 ②实际要素:零件上实际存在的要素。

几何误差 公差 检测原则

几何误差 公差 检测原则

几何误差公差检测原则几何误差公差检测原则引言:在工程设计和制造过程中,为了确保产品的几何精度和质量,人们常常需要对几何误差进行检测和控制。

而公差则是指制造过程中所能容许的误差范围,它是保证产品能够正常工作和相互配合的重要指标。

本文将介绍几何误差和公差的概念,并探讨几何误差公差检测的原则。

一、几何误差的概念几何误差是指在零件加工和装配过程中,由于加工设备、工艺和材料的限制,所出现的与设计要求不符的几何形状偏差。

例如,平面度、圆度、直线度、倾斜度、圆柱度等都是常见的几何误差。

几何误差的存在会导致产品的功能失效、寿命缩短甚至丧失使用价值。

二、公差的概念公差是指在设计和制造过程中,为了保证产品的可制造性和可用性,所规定的允许的最大和最小尺寸差。

公差是对几何误差的一种控制手段,它可以避免产品在制造和使用过程中出现过度适配或不适配的问题。

公差可以通过标注在工程图纸上的尺寸链、尺寸组和公差尺寸链等形式进行表示。

三、几何误差公差检测原则1. 合理性原则:几何误差公差的设定应符合产品的实际使用需求和制造工艺的可行性。

公差范围不能过于宽泛,以免影响产品的质量和性能;同时,也不能过于严格,以避免制造过程的复杂性和成本的增加。

2. 适应性原则:几何误差公差的选择应根据具体的零件形状和功能要求进行。

不同的零件在尺寸和形状上具有不同的特点,因此其公差设置也应有所区别。

例如,对于需要精密配合的零件,公差应该较小;而对于一些不需要精密配合的零件,公差可以适当放大。

3. 一致性原则:几何误差公差应在整个产品设计和制造过程中保持一致。

公差的设定应符合国家和行业标准,并且在设计、加工、装配等各个环节中保持一致。

这样可以确保不同零件之间的互换性和可替代性,提高产品的可靠性和可维护性。

4. 可测性原则:几何误差公差应具备可测性和可检测性。

公差的设定应便于检测和测量,以便及时发现和纠正几何误差。

同时,也应考虑到测量设备的精度和测量方法的可行性,确保公差检测的准确性和可靠性。

第四章 几何公差及检测-I

第四章 几何公差及检测-I
Ø0.03 A-B
Øt
A-B
A
B
A
B
ø
27
第三章 形状和位置公差及检测
规则6:当基准为三基
面体系时,用大写字母 按优先次序标在框格第 3格至第5格内。 规则7:当被测要素与基 准要素允许对调而标注
任选基准时,只要将原
来的基准符号的粗短横 线改为箭头即可。
28
第三章 形状和位置公差及检测
四、形位公差的简化标注方法
43
第三章 形状和位置公差及检测
44
第三章 形状和位置公差及检测
3.4 位置公差 位置公差——是指关联实际要素的位置对基准所允许 的变动全量。 位置公差带——是限制关联实际要素变动的区域,被 测实际要素位于此区域内为合格,区域的大小由公差值决 定。 一、基准 基准是确定被测要素的方向、位置的参考对象。 单一基准——由一个要素建立的基准称为单一基准。
单一要素:对要素本身提出形状公 差要求的被测要素。 关联要素:相对基准要素有方向或
(和)位置功能要求而给出位置公
差要求的被测要素。
12
第三章 形状和位置公差及检测
4)要素按检测关系分类
被测要素:是指有形位公差要求的要素即被控制的要素。 基准要素:是用来确定被测要素方向和位置的参照要素, 应为理想要素。 0.05 A 基准 要素
10
第三章 形状和位置公差及检测
2. 分类: 1)按结构特征分类
(1)轮廓要素(新标准:组成要素) 构成零件外形的点、线、面各要素。 特点:具体,看得见。 (2)中心要素(新标准:导出要素) 指构成零件轮廓要素对称中心所表示得点、线、面各要素。 如:圆柱面的轴线,两平行平面的中心平面等。 特点:抽象,看不见。
第三章 形状和位置公差及检测
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档