2004年高考.湖南卷.文科数学试题及答案
2004年高考试题湖南卷数学试题(文史类)

2004年高考试题湖南卷数学试题(文史类)数学(文史类)试题第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项最符合题目要求的. (1)函数1lg(1)y x=-的定义域是(A ){}|0x x < (B ){}|1x x > (C ){}|01x x << (D ){}|0,1x x x <>或 (2)设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则a 、b 满足 (A )1a b += (B )1a b -= (C )0a b += (D )0a b -=(3)设1()f x -是函数()f x =(A )1()21f x x --… (B )1()21f x x -+… (C )1()21fx x --… (D )1()21fx x -+…(4)如果双曲线2211312xy-=上点P ,那么点P 到右准线的距离是 (A )135(B )13 (C )5 (D )513(5)把正方形ABCD 沿对角线AC 折起,当以A 、B 、C 、D 四点为顶点且当棱锥体积最大时,直线BD 和平面ABC 所成的角的度数为(A )90 (B )60 (C )45 (D )30(6)某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是(A )分层抽样法,系统抽样法 (B )分层抽样法,简单随机抽样法 (C )系统抽样法,分层抽样法 (D )简单随机抽样法,分层抽样法(7)若2()2f x x ax =-+与()1a g x x =+在区间[1,2]上都是减函数,则a 的取值范围是(A )(1,0)(0,1)- (B )(1,0)(0,1]- (C )(0,1) (D )(0,1](8)已知向量(cos ,sin )θθ=a ,向量1)=-b ,则|2|a b -的最大值、最小值分别是(A)0 (B)4, (C )16,0 (D ) 4,0 (9)若函数2()f x x bx c =++的图象的顶点在第四象限,则函数()f x 的图象是(10)从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为 (A )56 (B )52 (C )48 (D )40(11)农民收入由工资性收入和其他收入两部分构成.2003年某地区农民人均收入为3150元(其中工资性收入为1800元,其他收入为1350元),预计该地区自2004年起的5内,农民的工资性收入将以每年6%的增长率增长,其他收入每年增加160元,根据以上数据,2008年该地区农民人均收入介于(A )4200元~4400元 (B )4400元~4600元 (C )4600元~4800元 (D )4800元~5000元(12)设集合{(,)|R}U x y x =∈、{(,)|20}A x y x y m =-+>、{(,)B x y x y n =+-0}… 那么点(2,3)()U P A C B ∈ 的充要条件是(A )1,5m n >-< (B )1,5m n <-< (C )1,5m n >-> (D )1,5m n <->第Ⅱ卷二、填空题:本大题共4个小题,每小题4分,共16分.把答案填在题中横线上.(13)过(1,2)P -且与曲线2342y x x =-+在点(1,1)M 处的切线平行的直线方程是 .(14)291()x x+的展开式中的常数项为 .(用数字作答)(15)F 1、F 2是椭圆22:184xyC +=的焦点,在C 满足12PF PF ⊥的点P 的个数是 .(16)若直线2y a =与函数2|1|(0,1)y a a a =->≠且的图象有两个公共点,则a 的取值范围是 .三、解答题:共大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)(A )(B )(C )(D )已知tan()24πα+=,求212sin cos cos ααα+的值.(18)(本小题满分12分)如图,在底面是菱形的四棱锥P A B C D -中,60,,ABC PA AC a ∠=== PB =PD =点E 是PD 的中点.(Ⅰ)证明PA ABCD ⊥平面, //;P B E A C 平面 (Ⅱ)求以AC 为棱,EAC 与DAC 为面的二面角θ的正切值.(19)(本小题满分12分)甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112,甲、乙两台机床加工的零件是一等品的概率为29.(Ⅰ)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(Ⅱ)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的的概率. (20)(本小题满分12分)已知数列{}n a 是首项为a 且公比q 不等于1的等比数列,n S 是其前n 项和,111,2,3,a a a 成等差数列.(Ⅰ)证明3612612,,S S S S -成等比数列; (Ⅱ)求和1423223n n T a a a na -=+++⋅⋅⋅+. (21)(本小题满分12分)如图,已知曲线21:(0)C y x x =…与曲线32:23(0)C y x x x =-+…线(01)x t t =<<与曲线1C 、2C 分别相交于点B 、D .(Ⅰ)写出四边形A B O D 的面积S 与t 的函数关系()S f t =(Ⅱ)讨论()f t 的单调性,并求()f t 的最大值.B CA D EP(22)(本小题满分14分)如图,过抛物线24x y =的对称轴上任一点(0,)(0)P m m >作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点.(Ⅰ)设点P分有向线段AB所成的比为λ,证明()Q P Q A Q B λ⊥- ;(Ⅱ)设直线AB 是方程是2120x y -+=,过A 、B 两点的圆C 与抛物线在点A 处共同的切线,求圆C 的方程.。
2004年高考全国卷(4)文科数学

2004年普通高等学校招生全国统一考试全国卷(Ⅳ)文科数学(甘肃、青海、宁夏、贵州、新疆等地)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{0,1,2,3,4,5}U =,集合{0,3,5}M =,{1,4,5}N =,则()U MC N =A .{5}B .{0,3}C .{0,2,3,5}D .{0,1,3,4,5} 2.函数)(2R x e y x ∈=的反函数为A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.正三棱柱侧面的一条对角线长为2,且与底面成45角,则此三棱柱的体积为 A .26 B .6 C .66 D .36 4.函数)1()1(2-+=x x y 在1=x 处的导数等于A .1B .2C .3D .45.为了得到函数x y )31(3⨯=的图象,可以把函数x y )31(=的图象A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度 6.等差数列}{n a 中,12324a a a ++=-,18192078a a a ++=,则此数列前20项和等于A .160B .180C .200D .2207.已知函数14log y x =与y kx =的图象有公共点A ,且点A 的横坐标为2,则kA .41-B .41C .21- D .218.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为A .03222=--+x y xB .0422=++x y xC .03222=-++x y xD .0422=-+x y x9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有 A .210种 B .420种 C .630种 D .840种 10.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于A .3-B .2-C .1- D.11.已知球的表面积为20π,球面上有,,A B C 三点.如果AB AC BC ===, 则球心到平面ABC 的距离为A .1B .2C .3D .2 12.ABC ∆中,,,a b c 分别为角,,A B C 的对边.如果,,a b c 成等差数列,30B ∠=,ABC ∆的面积为23,那么b =A .231+ B .31+ C .232+ D .32+ 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.已知函数)0(sin 21>+=A Ax y π的最小正周期为3π,则A = . 15.向量a 、b 满足()(2)4a b a b -+=-,且2a =,4b =,则a 与b 夹角的余弦值等于 .16.设y x ,满足约束条件:10x y y x y +≤⎧⎪≤⎨⎪≥⎩,则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知α为第二象限角,且sin 4α=,求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)已知数列{}n a 为等比数列,26a =,5162a =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设n S 是数列{}n a 的前n 项和,证明2211n n n S S S ++⋅≤. 19.(本小题满分12分)已知直线1l 为曲线22-+=x x y 在点(1,0)处的切线,2l 为该曲线的另一条切线,且.21l l ⊥(Ⅰ)求直线2l 的方程;(Ⅱ)求由直线1l 、2l 和x 轴所围成的三角形的面积. 20.(本小题满分12分)某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响. (Ⅰ)求这名同学得300分的概率; (Ⅱ)求这名同学至少得300分的概率. 21.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,8AB =,AD =侧面PAD为等边三角形,并且与底面所成二面角为60. (Ⅰ)求四棱锥P ABCD -的体积; (Ⅱ)证明PA BD ⊥. 22.(本小题满分14分)双曲线22221x ya b-=(1a >,0b >),的焦点距为2c ,直线l 过点(,0)a 和(0,)b ,且点(1,0)到直线l 的距离与点(1,0)-到直线l 的距离之和45s c ≥.求双曲线的离ABCDP心率e 的取值范围.2004年普通高等学校招生全国统一考试 文科数学(必修+选修Ⅱ)参考答案一、选择题1—12 B C A D D B A D B C A B二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.28 14.23 15.21- 16.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++=当α为第二象限角,且415sin =α时 41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α18.(本小题主要考查等比数列的概念、前n 项和公式等基础知识,考查学生综合运用基础知识进行运算的能力.满分12分.解:(I )设等比数列{a n }的公比为q ,则a 2=a 1q, a 5=a 1q 4. a 1q=6, 依题意,得方程组a 1q 4=162. 解此方程组,得a 1=2, q=3. 故数列{a n }的通项公式为a n =2·3n -1.(II ) .1331)31(2-=--=n n n S.1,113231332313231)33(3212122222122222212≤⋅=+⋅-+⋅-≤+⋅-++-=⋅++++++++++++n n n n n n n n n n n n n n n n S S S S S S 即19.本小题主要考查导数的几何意义,两条直线垂直的性质以及分析问题和综合运算能力.满分12分. 解:y ′=2x +1.直线l 1的方程为y=3x -3.设直线l 2过曲线y=x 2+x -2上 的点B (b, b 2+b -2),则l 2的方程为y=(2b+1)x -b 2-2因为l 1⊥l 2,则有2b+1=.32,31-=-b所以直线l 2的方程为.92231--=x y(II )解方程组⎪⎩⎪⎨⎧--=-=92231,33x y x y 得⎪⎪⎩⎪⎪⎨⎧-==.25,61y x 所以直线l 1和l 2的交点的坐标为).25,61(-l 1、l 2与x 轴交点的坐标分别为(1,0)、)0,322(-. 所以所求三角形的面积 .12125|25|32521=-⨯⨯=S20.本小题主要考查相互独立事件同时发生的概率和互斥事件有一个发生的概率的计算方法,应用概率知识解决实际问题的能力.满分12分. 解:记“这名同学答对第i 个问题”为事件)3,2,1(=i A i ,则 P (A 1)=0.8,P (A 2)=0.7,P (A 3)=0.6. (Ⅰ)这名同学得300分的概率 P 1=P (A 12A A 3)+P (1A A 2A 3)=P (A 1)P (2A )P (A 3)+P (1A )P (A 2)P (A 3) =0.8×0.3×0.6+0.2×0.7×0.6 =0.228.(Ⅱ)这名同学至少得300分的概率P 2=P 1+P (A 1A 2A 3)=0.228+P (A 1)P (A 2)P (A 3) =0.228+0.8×0.7×0.6 =0.564.21.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析问题能力.满分12分.解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD. 作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD ,所以∠PEO 为侧面PAD 与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6, 所以PO=33,四棱锥P —ABCD 的体积V P —ABCD =.963334831=⨯⨯⨯(Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得 P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--= 因为,002424=++-=⋅ 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.能过计算可得EO=3,AE=23, 又知AD=43,AB=8, 得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD. 所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.22.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分.解:直线l 的方程为1=+bya x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是 .525≤≤e。
2004年高考试题全国卷2文科数学及答案(必修+选修Ⅰ四川吉林黑龙江云南等地区)(1)

2004年高考试题全国卷2文科数学(必修+选修Ⅰ)(四川、吉林、黑龙江、云南等地区)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的(1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)函数y =51+x (x ≠-5)的反函数是 (A )y =x1-5(x ≠0) (B )y =x +5(x ∈R ) (C )y =x1+5(x ≠0) (D )y =x -5(x ∈R ) (3)曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为(A )y =3x -4 (B )y =-3x +2 (C )y =-4x +3 (D )y =4x -5(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为(A )75° (B )60° (C )45° (D )30° (7)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称(D )与y =e -x 的图象关于坐标原点对称(8)已知点A (1,2),B(3,1),则线段AB 的垂直平分线的方程为(A )4x +2y =5 (B )4x -2y =5 (C )x +2y =5 (D )x -2y =5(9)已知向量a 、b 满足:|a |=1,|b |=2,|a -b |=2,则|a +b|=(A )1 (B )2 (C )5 (D )6 (10)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π (12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. (13)已知a 为实数,(x +a )10展开式中x 7的系数是-15,则a = (14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120 则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . (16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱 其中,真命题的编号是 (写出所有真命题的编号).三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本题满分12分)已知等差数列{a n },a 2=9,a 5 =21(Ⅰ)求{a n }的通项公式;(Ⅱ)令b n =n a2,求数列{b n }的前n 项和S n(18) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高. (19)(本小题满分12分)已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求 (Ⅰ)A 、B 两组中有一组恰有两支弱队的概率;(Ⅱ)A 组中至少有两支弱队的概率. (20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M . (Ⅰ)求证:CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小. (21)(本题满分12分)若函数f (x )=31x 3-21ax 2+(a -1)x +1在区间(1,4) 内为减函数,在区间(6,+∞)上为增函数,试求实数a 的取值范围(22)(本小题满分14分)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求OA 与OB 夹角的大小;(Ⅱ)设FB =AF λ,若λ∈[4,9],求l 在y 轴上截距的变化范围.2004年高考试题全国卷2文科数学(必修+选修Ⅰ)(四川、吉林、黑龙江、云南等地区)参考答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)B (4)C (5)A (6)C (7)D (8)B (9)D (10)B (11)B (12)C二、填空题:本大题共4小题,每小题4分,共16分. (13)-21 (14)5 (15)21x 2+y 2=1 (16)②④ 17.解:a 5-a 2=3d,d=4,a n =a 2+(n-2)d=9+4(n-2)=4n+1 {b n }是首项为32公比为16的等比数列,Sn=)12(15324-n. 18.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan = =2+6设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为2+619.(I) 解:有一组恰有两支弱队的概率762482523=C C C(II)解:A 组中至少有两支弱队的概率21481533482523=+C C C C C C 20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2,∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3, 又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM ,因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F ,则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23, ∴∠B 1GF 是所求二面角的平面角又B 1F 2=B 1B 2+BF 2=1+(22)2=23. ∴cos ∠B 1GF=332123223)21()23(222121221-=∙∙-+=∙-+FGG B FB FG G B即所求二面角的大小为π-arccos33 解法二:如图以C 为原点建立坐标系(I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1), =DM (0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=BD (-22,21,21),=G B 1),41,43,42(--∴01=∙G B BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴CD 与G B 1的夹角θ等于所求二面角的平面角,cos .33||||11-=∙∙=G B CD G B CD θ AB CA'B'C'DM A'CBAC'B'MDA BC A'B'C'DM F Gz XyA'C B AC'B'F MD G所以所求二面角的大小为π-arccos33 21.解:=)('x f x 2-ax+a-1, 函数f(x)在区间(1,4)内为减函数,在区间(6,+∞)上为增函数. 设=)('x f x 2-ax+a-1=0的两根为1,a-1,则614≤-≤a ,75≤≤a . 22.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1. 将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OB OA ∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3. 41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y x OB OAcos<OB OA ,>=.41413||||-=∙∙OB OA OB OA 所以OA 与OB 夹角的大小为π-arccos41413. 解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1 (3)联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1)当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或-12-λλ由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --解:(II)由定比分点公式求解考的范围不出超出这些公式的^_^ 等差数列: 通项公式:an=a1+(n-1)d ; 求和公式1:Sn=a1n +n (n-1)d/2; 求和公式2:Sn=n (a1+an )/2; 中间公式:如果m+n=2k ;m ,n ,k ∈N ;则对于等差数列有:2ak=am+an ; 相等公式:如果m+n=p+q ;m ,n ,p ,q ∈N ,则对于等差数列:am+an=ap+aq ; 等比数列: 通项公式:an=a1q^(n-1); 求和公式1:Sn=a1(1-q^n )/(1-q )(q≠1); 求和公式2:Sn=(a1-anq )/(1-q )(q≠1); 中间公式:如果m+n=2k ;m ,n ,k ∈N ;则对于等比数列有:(ak )²=am*an ; 相等公式:如果m+n=p+q ;m ,n ,p ,q ∈N ,则对于等差数列:am*an=ap*aq ; 解题时常用: n=1时,a1=s1=? n≥2时,an=Sn-S (n-1)=? 遇到无法求解通项公式时,想办法讲所给已知条件化成等比数列或者等差数列;还有利用所求出的前几项(比如求出了a1,a2,a3),猜想数列的通项公式,然后利用数学归纳法去证明;数学归纳法的步骤是:第一步,当n=1时,成立;第二步,假设n=k 时成立,证明n=k+1时也成立。
02---2004年高考数学试题(全国文科)

2004年普通高等学校招生全国统一考试数学试题(全国文)一、选择题(每小题5分,共60分)1.设集合M ={(x,y)|x 2+y 2=1,x ∈R,y ∈R},N ={(x,y)|x 2-y =0,x ∈R,y ∈R},则集合M ∩N 中元素的个数为A1 B2 C3 D42.函数y =|sin 2x |的最小正周期是 A 2π B π C2π D4π 3.记函数y =1+3-x 的反函数为y =g(x),则g(10)=A2 B -2 C3 D -14.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为A81 B120 C168 D1925.圆x 2+y 2-4x =0在点P(1,3)处的切线方程为Ax +3y -2=0 Bx +3y -4=0Cx -3y +4=0 Dx -3y +2=0 6.6)x1x (-的展开式中的常数项为 A15 B -15 C20 D -207.设复数z 的辐角主值为32π,虚部为3,则z 2= A -2-23i B -23-2i C2+23i D23+2i8.设双曲线的焦点在x 轴上,两条渐近线为y =21±x ,则该双曲线的离心率为e =A5 B 5 C 25 D 45 9.不等式1<|x +1|<3的解集为A(0,2) B(-2,0)∪(2,4) C(-4,0) D(-4,-2)∪(0,2)10.正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为 A 322 B 2 C 32 D 324 11.在三角形ABC 中,AB =3,BC =13,AC =4,则边AC 上的高为 A 223 B 233 C 23 D33 12.将4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有A12种 B24种 C36种 D48种二、填空题(每小题4分,共16分)13.函数y =)1x (log 21 的定义域是____。
2004高考全国卷4文科数学试题含答案(必修+选修Ⅰ甘肃青海宁夏贵州新疆等地区)

因为 l1⊥l2,则有 2b+1= − 1 , b = − 2 .
3
3
所以直线 l2 的方程为 y = − 1 x − 22 . 39
y = 3x − 3,
(II)解方程组
y
=
−
1 3
x
−
22 9
得
x y
= =
1 6
−
,
5 2
.
所以直线 l1 和 l2 的交点的坐标为 (1 ,− 5). 62
32n+2 − 2 3n+1 + 1
32n+2 − 2 3n+1 + 1
即 Sn Sn+2 S2
n+1
1.
19.本小题主要考查导数的几何意义,两条直线垂直的性质以及分析问题和综合运算能力.
满分 12 分.
解:y′=2x+1.
直线 l1 的方程为 y=3x-3.
设直线 l2 过曲线 y=x2+x-2 上 的点 B(b, b2+b-2),则 l2 的方程为 y=(2b+1)x-b2-2
P D
F EO A
图2
C B
因为 直线 AF 为直线 PA 在平面 ABCD 内的身影,所以 PA⊥BD.
22.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分 12 分.
解:直线 l 的方程为 x + y = 1,即 bx + ay − ab = 0. ab
由点到直线的距离公式,且 a 1 ,得到点(1,0)到直线 l 的距离
20.(本小题满分 12 分) 某同学参加科普知识竞赛,需回答 3 个问题.竞赛规则规定:答对第一、二、三问题分
2004高考全国卷4文科数学试题及答案(必修+选修Ⅰ甘肃青海宁夏贵州新疆等地区)

13. (x 1 )8 展开式中 x5 的系数为
.
x
14.已知函数 y 1 sin x ( A 0) 的最小正周期为 3 ,则 A=
.
2A
15.向量
a
、b
满足(
a
-
b
)·(2
a
+
b
)=-4,且|
a
|=2,|
b
|=4,则
a
与
b
夹角的余弦值
等于
.
16.设 x, y 满足约束条件:
x y 1,
参考答案
一、选择题
1—12 B C A D D B A D B C A B
二、填空题:本大题共 4 小题,每小题 4 分,共 16 分.把答案填在题中横线上.
A.1
B. 2
C. 3
D.2
12.△ABC 中,a、b、c 分别为∠A、∠B、∠C 的对边.如果 a、b、c 成等差数列,
∠B=30°,△ABC 的面积为 3 ,那么 b= 2
()
1 3
A.
2
B.1 3
2 3
C.
2
D. 2 3
第Ⅱ卷
二、填空题:本大题共 4 小题,每小题 4 分,共 16 分.把答案填在题中横线上
()
A.160
B.180
C.200
D.220
7.已知函数 y log 1 x与y kx 的图象有公共点 A,且点 A 的横坐标为 2,则 k ( )
4
A. 1 4
1
B.
4
C. 1 2C 的半径为 2,圆心在 x 轴的正半轴上,直线 3x 4 y 4 0 与圆 C 相切,则圆
B. y ln(2x)(x 0)
2004年高考数学试题(全国4文)及答案

2004年高考试题全国卷Ⅳ文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率 P n (k)=C k n P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合U={0,1,2,3,4,5},集合M={0,3,5},N={1,4,5},则M ∩(N C U )= ( )A .{5}B .{0,3}C .{0,2,3,5}D . {0,1,3,4,5} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为 ( )A .26B .6C .66 D .36 4. 函数)1()1(2-+=x x y 在1=x 处的导数等于 ( )A .1B .2C .3D .45.为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度 6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .2207.已知函数kx y x y ==与41log 的图象有公共点A ,且点A 的横坐标为2,则k ( )A .41-B .41 C .21-D .21 8.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆 C 的方程为( )A .03222=--+x y xB .0422=++x y x球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π其中R 表示球的半径C .03222=-++x y xD .0422=-+x y x9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有 ( )A .210种B .420种C .630种D .840种 10.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于( )A .-3B .-2C .-1D .-511.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=BC=23,则球心到平面ABC 的距离为A .1B .2C .3D .212.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上 13.8)1(xx -展开式中5x 的系数为 .14.已知函数)0(sin 21>+=A Ax y π的最小正周期为3π,则A= . 15.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)已知数列{n a }为等比数列,.162,652==a aC(Ⅰ)求数列{n a }的通项公式;(Ⅱ)设n S 是数列{n a }的前n 项和,证明.1212≤⋅++n n n S S S 19.(本小题满分12分)已知直线1l 为曲线22-+=x x y 在点(1,0)处的切线,2l 为该曲线的另一条切线,且.21l l ⊥(Ⅰ)求直线2l 的方程;(Ⅱ)求由直线1l 、2l 和x 轴所围成的三角形的面积.20.(本小题满分12分)某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.(Ⅰ)求这名同学得300分的概率; (Ⅱ)求这名同学至少得300分的概率. 21.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 22.(本小题满分14分)双曲线)0,1(12222>>=-b a by a x 的焦距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围.2004年高考试题全国卷4文科数学(必修+选修Ⅰ)参考答案一、选择题1—12 B C A D D B A D B C A B二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.23 15.21- 16.2 三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++=当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α18.(本小题主要考查等比数列的概念、前n 项和公式等基础知识,考查学生综合运用基础知识进行运算的能力.满分12分. 解:(I )设等比数列{a n }的公比为q ,则a 2=a 1q, a 5=a 1q 4.依题意,得方程组⎩⎨⎧=1626411q a q a 解此方程组,得a 1=2, q=3.故数列{a n }的通项公式为a n =2·3n -1. (II ) .1331)31(2-=--=n n n S .1,113231332313231)33(3212122222122222212≤⋅=+⋅-+⋅-≤+⋅-++-=⋅++++++++++++n n n n n n n n n n n n n n n n S S S S S S 即19.本小题主要考查导数的几何意义,两条直线垂直的性质以及分析问题和综合运算能力.满分12分. 解:y ′=2x +1.直线l 1的方程为y=3x -3.设直线l 2过曲线y=x 2+x -2上 的点B (b, b 2+b -2),则l 2的方程为y=(2b+1)x -b 2-2因为l 1⊥l 2,则有2b+1=.32,31-=-b 所以直线l 2的方程为.92231--=x yy图1(II )解方程组⎪⎩⎪⎨⎧--=-=92231,33x y x y 得⎪⎪⎩⎪⎪⎨⎧-==.25,61y x 所以直线l 1和l 2的交点的坐标为).25,61(-l 1、l 2与x 轴交点的坐标分别为(1,0)、)0,322(-. 所以所求三角形的面积 .12125|25|32521=-⨯⨯=S20.本小题主要考查相互独立事件同时发生的概率和互斥事件有一个发生的概率的计算方法,应用概率知识解决实际问题的能力.满分12分. 解:记“这名同学答对第i 个问题”为事件)3,2,1(=i A i ,则 P (A 1)=0.8,P (A 2)=0.7,P (A 3)=0.6. (Ⅰ)这名同学得300分的概率P 1=P (A 12A A 3)+P (1A A 2A 3)=P (A 1)P (2A )P (A 3)+P (1A )P (A 2)P (A 3) =0.8×0.3×0.6+0.2×0.7×0.6=0.228. (Ⅱ)这名同学至少得300分的概率P 2=P 1+P (A 1A 2A 3)=0.228+P (A 1)P (A 2)P (A 3)=0.228+0.8×0.7×0.6=0.564.21.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析 问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD. 作PO ⊥平面在ABCD ,垂足为O ,连结OE.根据三垂线定理的逆定理得OE ⊥AD ,所以∠PEO 为侧面PAD 与底面所成的二面角的平面角,由已知条件可知∠PEO=60°,PE=6,所以PO=33,四棱锥P —ABCD 的体积V P —ABCD =.963334831=⨯⨯⨯(Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--= 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.能过计算可得EO=3,AE=23,又知AD=43,AB=8,得.ABADAE EO =所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.22.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab a y b x 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是 .525≤≤e。
2004年全国高考数学文科试卷含答案

2004年普通高等学校招生全国统一考试数学(文史类)(老课程)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至10页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷参考公式:三角函数的和差化积公式)]sin()[sin(21cos sin βαβαβα-++=)]sin()[sin(21sin cos βαβαβα--+= )]cos()[cos(21cos cos βαβαβα-++= )]cos()[cos(21sin sin βαβαβα--+-=一、选择题 (1)设集合(){}22,1,,M x y xy x R y R =+=∈∈,(){}2,0,,N x y xy x R y R =-=∈∈,则集合MN 中元素的个数为( )A .1B .2C .3D .4(2)函数sin2xy =的最小正周期是( ) A .2πB .πC .2πD .4π(3) 记函数13xy -=+的反函数为()y g x =,则(10)g =( ) A . 2B . 2-C . 3D . 1-(4) 等比数列{}n a 中,29,a = 5243a =,则{}n a 的前4项和为( )A . 81B . 120C .168D . 192正棱台、圆台的侧面积公式l c c S )(21+'=台侧其中c ′、c 分别表示上、下底面周长,l 表示 斜高或母线长 台体的体积公式334R V π=球 其中R 表示球的半径(5) 圆2240x y x +-=在点(P 处的切线方程是( )A . 20x +-=B . 40x +-=C . 40x -+=D . 20x +=(6) 61x ⎫⎪⎭展开式中的常数项为( )A . 15B . 15-C .20D . 20-(7) 设复数z 的幅角的主值为23π2z =( )A . 2--B . 2i -C . 2+D . 2i(8) 设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =( )A . 5B .C .2 D . 54(9) 不等式113x <+<的解集为( )A . ()0,2B . ()()2,02,4-C . ()4,0-D . ()()4,20,2--(10) 正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( )A .B .C .3D .(11) 在ABC 中,3,4AB BC AC ===,则边AC 上的高为( )A .B .C .32D .(12) 4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( )A . 12 种B . 24 种C 36 种D . 48 种第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在题中横线上. (13) 函数)1(log 21-=x y 的定义域是 .(14) 用平面α截半径为R 的球,如果球心到平面α的距离为2R,那么截得小圆的面积与球 的表面积的比值为 . (15) 函数)(cos 21sin R x x x y ∈-=的最大值为 . (16) 设P 为圆122=+y x 上的动点,则点P 到直线01043=--y x 的距离的最小值为 .三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)解方程.012242=--+x x(18) (本小题满分12分)已知α为锐角,且αααααα2cos 2sin sin cos 2sin ,21tan -=求的值.(19) (本上题满分12分)设数列}{n a 是公差不为零的等差数列,S n 是数列}{n a 的前n 项和,且,9221S S =244S S =,求数列}{n a 的通项公式.20.(本小题满分12分)某村计划建造一个室内面积为800m 2的矩形蔬菜温室,在温室内,沿左、右两侧与后侧内墙各保留1m宽的通道,沿前侧内墙保留3m宽的空地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2004年普通高等学校招生全国统一考试数学(文史类)(湖南卷)一、选择题:本大题 共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合要求的. 1.函数)11lg(xy -= 的定义域为( )A .{}0|<x xB .{}1|>x xC .{}10|<<x xD .{}10|><或x x2.设直线 ax+by+c=0的倾斜角为α,且sin α+cos α=0,则a,b 满足 ( )A .1=+b aB .1=-b aC .0=+b aD .0=-b a3.设)(1x f -是函数f(x)=x 的反函数,则下列不等式中恒成立的是( )A .12)(1-≤-x x f B .12)(1+≤-x x fC .12)(1-≥-x x fD .12)(1+≥-x x f4.如果双曲线1121322=-y x 上一点P 到右焦点的距离为13, 那么点P 到右准线的距离是( )A .513 B .13 C .5 D .135 5.把正方形ABCD 沿对角线AC 折起,当A 、B C 、D 四点为顶点的三棱锥体积最大时,直线BD 与平面ABC 所成的角的大小为 ( )A .90°B .60°C .45°D .30°6.某公司甲、乙、丙、丁四个地区分别有150 个、120个、180个、150个销售点.公司为了调查产品的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②.则完成这两项调查宜采用的抽样方法依次为 ( )A .分层抽样法,系统抽样法B .分层抽样法,简单随机抽样法C .系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法7.若f(x)=-x 2+2ax 与1)(+=x ax g 在区间[1,2]上都是减函数,则a 的值范围是 ( )A .)1,0()0,1(⋃-B .]1,0()0,1(⋃-C .(0,1)D .]1,0(8.已知向量)sin ,(cos θθ=,向量)1,3(-=则|2|-的最大值,最小值分别是( ) A .0,24B .24,4C .16,0D .4,0=x2+b x+c/)10.从正方体的八个顶点中任取三个点作为三角形,直角三角形的个数为()A.56 B.52 C.48 D.4011.农民收入由工资性收入和其它收入两部分构成.2003年某地区农民人均收入为3150元(其中工资性收入为1800元,其它收入为1350元), 预计该地区自2004年起的5 年内,农民的工资性收入将以每年6%的年增长率增长,其它收入每年增加160元。
根据以上数据,2008年该地区农民人均收入介于()A.4200元~4400元B.4400元~4600元C.4600元~4800元D.4800元~5000元12.设集合U={(x,y)|x∈R,y∈R}, A={(x,y)|2x-y+m>0}, B={(x,y)|x+y-n≤0},那么点P(2,3))(BCAU⋂∈的充要条件是()A.5,1<->nm B.5,1<-<nmC.5,1>->nm D.5,1>-<nm二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.13.过点P(-1,2)且与曲线y=3x2-4x+2在点M(1,1)处的切线平行的直线方程是__________. 14.92)1(xx+的展开式中的常数项为___________(用数字作答)15.F1,F2是椭圆C:14822=+xx的焦点,在C上满足PF1⊥PF2的点P的个数为__________. 16.若直线y=2a与函数y=|a x-1|(a>0,且a≠1)的图象有两个公共点,则a的取值范围是_______.三、解答题:本大题共6小题,共74分. 解答应写出必要的文字说明、证明过程或运算步骤.17.(本小题满分12分).coscossin21,2)4tan(2的值求已知ααααπ+=+AxDCxB18.(本小题满分12分)如图,在底面 是菱形的四棱锥P —ABC D中,∠ABC=600,PA=AC=a ,PB=PD=a 2,点E 是PD 的中点.(I )证明PA ⊥平面ABCD ,PB ∥平面EAC ;(II )求以AC 为棱,EAC 与DAC 为面的二面角 的正切值.19.(本小题满分12分)甲、乙、机床加工的零件不是一等品的概率为41,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为121,甲、丙两台机床加工的零件都是一等品的概率为92.(Ⅰ)分别求甲、乙、丙三台机床各自加工零件是一等品的概率;(Ⅱ)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率. 20.(本小题满分12分)已知数列{a n }是首项为a 且公比q 不等于1的等比数列,S n 是其前n 项的和,a 1,2a 7,3a 4 成等差数列.(I )证明 12S 3,S 6,S 12-S 6成等比数列; (II )求和T n =a 1+2a 4+3a 7+…+n a 3n-2. 21.(本小题满分12分)如图,已知曲线C 1:y=x 3(x ≥0)与曲线C 2:y=-2x 3+3x (x ≥0)交于O ,A,直线x =t(0<t<1)与曲线C 1,C 2分别交于B ,D.(Ⅰ)写出四边形ABOD 的面积S 与t 的函数关系式S=f(t); (Ⅱ)讨论f(t)的单调性,并求f(t) 的最大值.D22.(本小题满分14分)如图,过抛物线x 2=4y 的对称轴上任一点P (0,m )(m>0)作直线与抛物线交于A,B 两点,点Q 是点P 关于原点的对称点。
(I )设点P 分有向线段AB 所成的比为λ,证明:)(QB QA QP λ-⊥(II )设直线AB 的方程是x -2y+12=0,过A,B 两点的圆C 与抛物线在点A 处有共同的切线,求圆C 的方程.2004年普通高等学校招生全国统一考试 数学参考答案(文史类)( 湖南卷)1.D2.D3.C4.A5.C6.B7.D8.D9.A 10.C 11.B 12.A 13.2x -y+4=0 14.84 15.2 16.)21,0( 17.(本小题满分12分)解:由.31tan ,2tan 1tan 1)4tan(==-+=+ααααπ得于是.3213121)31(1tan 21tan cos cos sin 2cos sin cos cos sin 21222222=+⨯+=++=++=+ααααααααααα 18.(Ⅰ)证法一 因为底面ABCD 是菱形,∠ABC=60°,所以AB=AD=AC=a , 在△PAB 中, 由PA 2+AB 2=2a 2=PB 2 知PA ⊥AB. 同理,PA ⊥AD ,所以PA ⊥平面ABCD.因为 DA DC ED CB DC PD PB ++=++=2 .)()(+=+++= 所以 、、共面.又PB ⊄平面EAC ,所以PB//平面EAC. 证法二 同证法一得PA ⊥平面ABCD.连结BD ,设BD ⋂AC=O ,则O 为BD 的中点.连结OE ,因为E 是PD 的中点,所以PB//OE.又PB ⊄平面EAC ,OE ⊂平面EAC ,故PB//平面EAC. (Ⅱ)解 作EG//PA 交AD 于G ,由PA ⊥平面ABCD. 知EG ⊥平面ABCD.作GH ⊥AC 于H ,连结EH ,则EH ⊥AC ,∠EHG 即为二面角θ的平面角. 又E 是PD 的中点,从而G 是AD 的中点,.4360sin ,21,21a AG GH a AG a EG =︒===所以 .332tan ==GH EG θ 19.(本小题满分12分)解:(Ⅰ)设A 、B 、C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件.由题设条件有⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=-⋅=-⋅⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=⋅=⋅.92)()(,121))(1()(,41))(1()(.92)(,121)(,41)(C P A P C P B P B P A P C A P B P A P 即 由①、③得)(891)(C P B P -= 代入②得 27[P(C)]2-51P(C)+22=0. 解得 91132)(或=C P (舍去). 将 32)(=C P 分别代入 ③、② 可得 .41)(,31)(==B P A P 即甲、乙、丙三台机床各加工的零件是一等品的概率分别是.32,41,31(Ⅱ)记D 为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件,则 .653143321))(1))((1))((1(1)(1)(=⋅⋅-=----=-=C P B P A P D P D P 故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为.6520.(Ⅰ)证明 由4713,2,a a a 成等差数列, 得41734a a a +=,即 .3436aq a aq += 变形得 ,0)1)(14(33=-+q q 所以14133=-=q q 或(舍去).由 .1611211)1(121)1(123316136=+=----=q qq a q q a S S .1611111)1(1)1(166611216126612==-+=-----=-=-q q qq a q q a S S S S S 得.12661236S S S S S -= 所以12S 3,S 6,S 12-S 6成等比数列. ① ② ③(Ⅱ)解:.3232)1(36323741--++++=++++=n n n naqaq aq a na a a a T 即 .)41()41(3)41(212a n a a a T n n --⋅++-⋅+-⋅+= ①①×)41(-得: a n a n a a a T n n n )41()41()41(3)41(24141132---⋅++-⋅+-⋅+=--.)41()54(54)41()41(1])41(1[a n a a n a n n n -⋅+-=-⋅-----=所以 .)41()542516(2516a n a T n n -⋅+-=21.(本小题满分12分)解:(Ⅰ)由⎪⎩⎪⎨⎧+-==,3233x x y xy 得交点O 、A 的坐标分别是(0,0),(1,1).),33(21||21|01|||21)(3t t BD BD S S t f OBD ABO +-==-⋅=+=∆∆ 即 ).10().(23)(3<<--=t t t t f(Ⅱ).2329)(2+-='t t f 令0)(='t f 解得 .33=t 当,0)(,330>'<<t f t 时从而)(t f 在区间)33,0(上是增函数; 当,0)(,133<'<<t f t 时从而)(t f 在区间)1,33(上是减函数. 所以当 33=t 时,)(t f 有最大值为 .33)33(=f 22.解:(Ⅰ)依题意,可设直线AB 的方程为 ,m kx y +=代入抛物线方程y x 42=得.0442=--m kx x ①设A 、B 两点的坐标分别是 ),(11y x 、122),,(x y x 则、x 2是方程①的两根. 所以 .421m x x -=由点P (0,m )分有向线段所成的比为λ, 得.,012121x xx x -==++λλλ即又点Q 是点P 关于原点的对称点,故点Q 的坐标是(0,-m ),从而)2,0(m =.).)1(,(),(),(21212211m y y x x m y x m y x λλλλλ-+--=+-+=-])1([2)(21m y y m λλλ-+-=-⋅221212122212144)(2])1(44[2x mx x x x m m x x x x x x m +⋅+=++⋅+= .0444)(2221=+-⋅+=x mm x x m 所以 ).(λ-⊥(Ⅱ)由 ⎩⎨⎧==+-,4,01222y x y x 得点A 、B 的坐标分别是(6,9)、(-4,4).由 y x =2得 ,21,412x y x y ='=所以抛物线 y x 42=在点A 处切线的斜率为36='=x y设圆C 的方程是,)()(222r b y a x =-+-则⎪⎩⎪⎨⎧-++=-+--=--.)4()4()9()6(,3192222b a b a b a b 解之得 .2125)4()4(,223,23222=-++==-=b a r b a所以圆C 的方程是 ,2125)223()23(22=-++y x即 .07223322=+-++y x y x。