七年级数学下册《相交线与平行线》
七年级下册《相交线与平行线》教案优秀范文五篇

七年级下册《相交线与平行线》教案优秀范文五篇令公桃李满天下,何用堂前更种花。
今天小编为大家带来的是七年级下册《相交线与平行线》教案优秀范文,供大家阅读参考。
七年级下册《相交线与平行线》教案优秀范文一1两条直线的位置关系(第1课时)课时安排说明:《两条直线的位置关系》共分两课时,第一课时,主要内容是探索两条直线的位置关系,了解对顶角、余角、补角的定义及其性质;第二课时,主要内容是垂直的定义、表示方法、性质及其简单应用.一、学生起点分析学生的知识技能基础:学生在小学已经认识了平行线、相交线、角;在七年级上册中,已经对角及其分类有了一定的认识。
这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。
学生活动经验基础:在前面知识的学习过程中,教师为学生提供了广阔的可供探讨和交流的空间,学生已经经历了一些动手操作,探索发现的数学活动,积累了初步的数学活动经验,具备了一定的图形认识能力和借助图形分析问题解决问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,具备了一定的合作与交流能力。
二、教学任务分析针对七年级学生的学情,本节从学生熟悉的、感兴趣的情境出发,引导学生自主提炼归纳出同一平面内两直线的位置关系,了解补角、余角、对顶角的概念及其性质并能够进行简单的应用;通过“让学生经历观察、操作、推理、想象等探索过程” ,发展学生的空间观念及推理能力;能从实际情境中抽象出数学模型,为后续学习“空间与图形”这一数学领域而打下坚实的基础;激发学生从数学的角度认识现实,能够敏锐的发现问题、提出问题,并运用所掌握的数学知识初步解决问题;引导学生在思考、交流、表达的基础上逐步达成有关情感与态度目标. 本节内容在教材中处于非常重要的地位,起着承前启后的作用。
因此,本节课的目标是:1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。
人教版七年级下册数学课件第5章5.2.1平行线及其基本事实

精彩一题 17.问题:两条直线可以将平面分成几部分?
解:如图 a,两条直线平行时,它们将平面分成三部分; 如图 b,两条直线不平行时,它们将平面分成四部分.
【思路点拨】 根据三条直线的交点个数情况(0 个、1 个、2 个、 3 个)进行分类讨论.
精彩一题 根据上述内容,解答下面的问题. (1)上面问题的解题过程应用了__分__类____的数学思想(填“转 化”“分类”或“整体处理”); (2)三条直线可以将平面分成几部分? 解:如图所示.
【答案】A
课堂导练
4.如果线段 AB 与线段 CD 没有交点,则( C ) A.线段 AB 与线段 CD 一定平行 B.线段 AB 与线段 CD 一定不平行 C.线段 AB 与线段 CD 可能平行 D.以上说法都不正确
课堂导练 5.如图,将一张长方形纸对折三次,产生的折痕间的位置关系
是( C )
A.平行
B.垂直
C.平行和垂直 D.无法确定
课堂导练 6.如图,经过点 P 画一条直线使它与直线 l 平行.
画法:(1)一落:把三角尺的一边落在__直__线__l____上; (2)二____靠____:紧靠三角尺的另一边放一直尺 AB;
课堂导练
(3)三____移____:把三角尺沿直尺的边移到三角尺的第一边恰 好经过点 P 的位置;
经 (1)过直直线线l 外(2一)靠点,(3有)移且只(有4)画
D.不存在或者只有一条
提一示条: 直点线击与这条进直入线习平题行
【点拨】 当点 第一五条章 直线相与交这线条与直平线行平线行
(第1)1直课线时l 平(2行)靠线及(3其)移基本(事4)画实
P
在直线
AB
上时,这样的直线不存在;当点
七年级数学下新思维第一讲 相交线与平行线

精心整理七年级数学下新思维第一讲相交线与平行线一、多条直线相交的交点问题1、平面内直线的交点问题--------公式平面内n条直线相交最多交点公式:2)1(-nn个(1)平面内直线的位置出现什么情况,直线的交点个数会减少?平面内直线的位置出现时,直线的交点个数会减少。
(两直线平行或多条直线交于同一点)(2)减少直线交点个数的方法:✍平行消减法-------------------每两条直线平行会减少一个交点✍交点重合法-------------------每三条直线交于同一点会减少2个交点每四条直线交于同一点会减少5个交点【测试1】平面内6条直线恰好有11个不同的交点,请画出满足条件的图形解:最多15个交点,减少3个。
(1)6条直线分3组平行,共减少3个【测试2】直线AB、CD相交于点O,OE⊥AB于点O,∠EOD:∠DOB=3:2,求∠COB的度数【测试3】如图,MO⊥NO,OG平分∠MOP,∠PON=3∠MOG,求∠GOP的度数四、根据角度关系判断直线平行-----判定直线平行的方法有哪些?1.判定定理2.平行公理的推论:【测试2】如图,已知CD‖EF,∠1+∠2=∠ABC,求证:AB‖GF五、平行性质的应用-------平行线有哪些性质?1、行路拐弯的平行问题-----规定正方向(正前方为起始边向左右拐),用箭头表示方向B【测试1】如图,一张条形纸片ABCD(AB∥CD)沿EF折叠后ED与BC的交点为G,D、C分别在D′、C′的位置上,若∠EF G=60°,则∠2=________(1)试证明∠B=∠ADG(2)求∠BCA的度数.3、如图,直线AB‖CD,则∠1+∠2+∠3+∠4+∠5+∠6=4、则∠1+∠2+∠3+∠4+∠5+∠6=5、如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=______°.。
七年级下册数学平行线与相交线

第一讲 两条直线的位置关系知识点一 :相交线、平行线的概念(1)相交线平行定义:若两条直线只有一个公共点,我们称这两条直线为相交线 (2)平行线定义:在同一平面内,不相交的两条直线叫做平行线(3)两套直线的位置关系:在同一平面内,两条直线的位置关系有相交和平行两种 (4)两条直线是指不重合的两条直线注意:1、两条直线在同一平面内2、我们有时说两条射线或线段平行,实际上是指它们所在的直线平行 知识点二:关于对顶角的定义和性质定义 对顶角:像这样直线AB 与直线CD 相交于O ,∠1与∠2有公共顶点,它们的两边互为反向延长线,这样的两个角叫做对顶角.注意:对顶角的判断条件:⎪⎩⎪⎨⎧无公共边有公共顶点两条直线相交另外,从对顶角的定义还可知:对顶角总是成对出现的,它们是互为对顶角;一个角的对顶角只有一个。
性质 同角或等角的对顶角相等。
一般题型 下列说法中,正确的是( ). A .有公共顶点,并且相等的角是对顶角 B .如果两个角不相等,那么它们一定不是对顶角 C .如果两个角相等,那么这两个角是对顶角 D .互补的两个角不可能是对顶角 练习 1、如图2-1,共有________对对顶角.图2-1知识点三: 互为余角、互为补角的概念及其性质定义:互为余角:如果两个角的和是直角,则这两个角互为余角. 互为补角:如果两个角的和是平角,则这两个角互为补角 钝角没有余角注意: 互为余角、互为补角只与角的度数有关,与角的位置无关. 性质 同角或等角的余角相等,同角或等角的补角相等一般例题 ⑴∵1∠和2∠互余,∴=∠+∠21_____(或2_____1∠-=∠) ⑵∵1∠和2∠互补,∴=∠+∠21_____(或2_____1∠-=∠)练习1、若∠α=50º,则它的余角是 ,它的补角是 。
若∠β=110º,则它的补角是 ,它的补角的余角是 。
2若∠1与∠2互余,∠3和∠2互补,且∠3=120º,那么∠1= 。
人教版七年级数学下册第5章相交线与平行线(教案)

1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示平行线的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行线的定义、性质和判定方法,以及它们在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对平行线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
实践活动环节,分组的讨论和实验操作让同学们有了实际操作的机会,这有助于他们更好地消化吸收理论知识。但我观察到,有些小组在讨论时可能会偏离主题,需要在今后的教学中加强对讨论主题的引导。
至于学生小组讨论,我认为这是一个很好的互动和学习的机会。学生们能够在这个过程中相互启发,共同解决问题。不过,我也注意到,一些学生在讨论中较为沉默,可能需要我在以后的教学中更加关注这部分学生,鼓励他们积极参与。
-突破方法:通过动态几何软件或实物模型演示,让学生直观感受两条直线从不平行到平行的过程。
-判定方法的灵活运用:学生可能会在具体应用判定方法时感到困惑,尤其是在复杂的几何图形中。
人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下相交线和平行线知识点总结本章介绍了平面内两条直线相交与平行的关系,重点探讨了两条直线相交时形成角的特征、两条直线互相垂直的特性、两条直线平行的条件和特征,以及有关图形平移变换的性质。
本文将对其中的重点知识点进行总结。
5.1 相交线1.邻补角与对顶角当两条直线相交时,所形成的四个角具有不同的关系。
其中,对顶角是具有特殊位置关系的两个角,它们的大小相等;邻补角则是互为反向延长线的两个角,它们的和为180度。
2.垂线垂线是指当两条直线相交时,其中一个角为直角的情况。
垂线具有两个性质:一是过一点只有一条直线与已知直线垂直;二是连接直线外一点与直线上各点的垂线段最短。
3.垂线的画法画垂线的方法有两种:一是过直线上一点画已知直线的垂线;二是过直线外一点画已知直线的垂线。
画法可采用“一靠二移三画”的方法。
4.点到直线的距离点到直线的距离是指直线外一点到这条直线的垂线段的长度。
记忆时应结合图形进行理解。
本章内容的重点是垂线和其性质、平行线的判定方法和性质、平移和其性质,以及这些知识点的组织运用。
在研究这些知识点时,需要注意记忆其定义和性质,掌握其画法和应用方法。
垂线是指从一个点垂直于一条直线或平面的线段,而垂线段则是垂线的长度。
它们都具有垂直的性质,可以用来计算点到直线的距离或两点间的距离。
点到直线的距离是特殊的两点(即已知点与垂足)间距离,而两点间的距离是点与点之间的长度。
线段和距离都是长度的概念,但线段是一种图形,不能等同于距离。
平行线是指在同一平面内不相交的两条直线,它们的位置关系只有两种:相交和平行。
判断两条直线的位置关系可以根据它们的公共点个数来确定,有且只有一个公共点时两直线相交,无公共点时两直线平行,两个或两个以上公共点时两直线重合。
平行公理指出,经过直线外一点,有且只有一条直线与这条直线平行。
同时,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
三线八角是指两条直线被第三条直线所截形成的八个角,包括同位角、内错角和同旁内角。
七年级数学下册第五章《相交线与平行线》简介

七年级下册第五章“相交线与平行线”简介(2012修订)七年级下册第5章是“相交线与平行线”,本章主要研究平面内不重合的两条直线的位置关系:相交与平行.对于相交,研究了两条直线相交所成的角的位置关系和数量关系;对于平行,借助于一条直线与另外两条直线相交所成的角,研究了平行线的判定和性质.在此基础上,学习了平移的有关知识.在本章,学生还要学习通过简单推理得出数学结论的方法,培养言之有据的思考习惯.本章共安排了四个小节以及两个个选学内容,教学时间约需14课时,具体分配如下(仅供参考):5.1 相交线3课时5.2 平行线及其判定3课时5.3 平行线的性质4课时5.4 平移2课时数学活动小结2课时一、教科书内容和本章学习目标1.本章知识结构本章知识结构如下图所示:2.教科书内容平面内两条直线的位置关系是“图形与几何”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究了两条直线相交的情形,探究了两直线相交所成的角的位置和大小关系,给对顶角对顶角对于推理能力的培养,在本章,不仅要求学生通过观察、思考、探究等活动归纳出图形的概念和性质,还要求“说理”和“简单推理”,并了解证明,把推理和证明作为探究得出结论的自然延续.本章这样的地方还是很多的,例如“对顶角相等”性质的得出,由判定两直线平行的方法1,得出方法2、3,由平行线的性质1,得出性质2、3,以及一些例、习题中,等等.对于推理,由于学生还比较陌生,不知道应由什么,根据什么,得出什么,对于推理所用的三段论的形式——由小前提得到结论,以大前提作为理由,一下子也很难适应.因此,逐步深入地让学生学会说理,是本章的一个难点.解决以上难点的关键是要按照教科书的安排,一步一步地,循序渐进地引入推理论证的内容.在本章,结合正文的相关内容,进行初步的说理训练;在本章最后,学习了命题及命题的构成后,学生也能对推理的理由,三段论的表达形式有进一步的认识,用这样前一步为后一步做准备,逐步提高,慢慢教会的办法克服难点.3.本章学习目标(1对顶角对顶角(5)通过具体实例,了解定义、命题、定理、的意义,会区分命题的条件和结论.知道证明的意义和证明的必要性,知道证明要合乎逻辑.了解反例的作用,知道利用反例可以判断一个命题是错误的.二、编写时考虑的几个问题1.内容呈现上充分体现认知过程,给学生提供探索与交流的时间和空间在内容处理上,教科书加强了实验几何的成分,将实验几何与论证几何有机结合.论证几何在培养人的逻辑思维能力方面起着重要作用,而实验几何则是发现几何命题和定理的有效工具,在培养人的直觉思维和创造性思维方面起着重要的作用.对于几何中的结论,教科书多数是先让学生通过画图、折纸、剪纸、度量或做试验等活动,探索发现几何结论,然后再对结论进行说明、解释或论证,为由实验几何到论证几何的过渡做好铺垫.对于本章中的一些概念、性质、公理和定理,教科书大多是通过设问、设置“思考”“探究”“归纳”以及“数学活动”等栏目,让学生通过探索活动来发现结论,经历知识的“再发现”过程,在探究活动的过程中发展创新思维能力,改变学生的学习方式.例如,对于“对顶角,教科书首先设置一个“讨论”栏目,让学生度量两条相交直线所成的角的大小,对顶角这样就将实验几何与论证几何相结合.通过这样的“数学活动”培养学生的探究能力和创新意识.2.注意加强直观性密切联系实际,体现知识的形成和应用过程,以实际问题为出发点和归宿是编写这套教科书特别关注的问题.几何图形是从实际中抽象出来的,所以几何图形的定义、性质都是比较抽象的,这一点对于学生来说有一定的困难.为了减少学生学习的困难,在编写这一章时,我们注意根据七年级学生的认知特点,加强了直观教学,使教学内容尽量贴近学生的生活.许多概念、性质、定理的引入都是从解决实际问题的需要来出发的(如从剪刀剪开布片的过程引入研究两条相交直线所成角的问题,从灌溉挖渠的问题引入垂线段最短的性质,等等);在教材编写时,也注意为利用实物、模型、计算机等多种教学手段提供材料,让学生在运动变化中寻找图形的不变的位置关系和数量关系,从而有利于发现图形的性质(如对顶角的性质,垂线、平行线的概念的引入等等).在研究有关数学概念、性质后,再注意把所学知识应用到实际生活中(例如画交通路口示意图、检验一些平行问题、绘制住房平面图等等).在教学时,也应注意从实际问题出发,引导学生自己多观察、多动手、勤思考,结合适合当地特点的一些问题,抽象出隐含在这些实际问题中的数学问题,引入本章要学习的相关内容,通过对数学问题的研究,学习有关的数学概念和方法,并利用所学知识解决更多的实际问题,体现具体——抽象——具体的过程,提高学生学习数学的兴趣,培养他们应用所学知识解决问题的能力.3.循序渐进地安排技能训练这一章的教学,除了要学习一些数学知识以外,还担负着一些技能和能力的培养和训练的任务.这既有几何语言、图形方面的,也有说理、推理方面的.这些内容,都是进一步学习空间与图形知识的基础.教科书在这方面也是作了精心安排,在教学时应当注意按照由简单到复杂,由模仿到独立操作的顺序,逐步提高要求.在这一章,要求学生进行说理和简单推理,为今后进行推理论证的进行准备.因此,也就要求学生能用较准确的语言表达学过的概念、性质,学会一些简单的、基本的推理语言(如“因为……所以……”“由……得……”等),要能区分命题的条件和结论等,能用文字语言表达说理过程,能用符号语言表达简单的推理过程,为今后进行推理论证打下一个良好的基础.对此,教科书也进行了周密的安排.例如,教科书在通过说理的方式得出了对顶角的性质的基础上,进一步的把这个说理过程写成“因为……所以……”的形式;把利用垂直的定义判断角的关系的推理过程写成“因为……所以……”的形式;后续说明“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行”以及证明“在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条”的过程中,采用严格的证明形式,等等.这样安排,目的就是让学生循序渐进的接触推理与证明,逐步养成言之有据的习惯,并逐渐学会用符号语言表达推理过程.承接“图形认识初步”,本章仍旧要重视文字语言、符号语言、图象语言等几种不同语言的相互转化,注意“几何模型→图形→文字→符号”这个抽象的过程,使抽象和直观结合起来,在图形的基础上发展其他语言.在教科书中也注意了由不同方向对图形、文字和符号间转化的设计安排,安排了这样一些练习、习题,教学时也要注意这方面的训练.本章也要求学生能用各种绘图工具画出垂线、平行线,平移一个简单的图形等,教科书还安排了“你有多少画平行线的方法”的数学活动,通过这些内容,让学生较快适应,把几何图形与语句表示、符号表示联系起来,使学生能从多角度表示图形、认识图形、把握图形.4.渗透研究几何问题的内容和方法“相交线与平行线”是“图形与几何”领域的基础内容,对这部分内容的研究也包含了研究几何图形的基本内容、套路和方法,教科书在这方面也注意加强渗透.例如,本章内容呈现时,注意让学生通过观察实物、模型和图形,通过观察、测量、实验、归纳、对比、类比等来寻找图形中的位置关系和数量关系,从而发现图形的性质.同时,注意通过“推理”获得数学结论的方法,培养学生言之有据的习惯和有条理地思考、表达的能力,完成由实验几何到论证几何的过渡.再如,图形的性质、图形的判定是研究几何图形的基本问题,本章重点研究的就是相交线的性质对顶角,垂直、平行的的判定和性质等.为了更好的让学生认识什么是“性质”,什么是“判定”,教科书在小结部分对此专门做了阐述,即“图形的判定”讨论的是确定某种图形需要什么条件(两条直线与第三条直线相交,具备“同位角相等”,就有“两直线平行”);“图形的性质”讨论的是这类图形有怎样的共同特性(两条直线只要平行,它们被第三条直线所截时,就一定有同位角相等).另外,在很多情况下,图形的判定与性质具有互逆的关系,对此,教科书在“平行线的性质”一节的开头,通过提问“利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果两条直线平行,同位角、内错角、同旁内角又各有什么关系呢?这就是我们下面要学习的平行线的性质.”渗透了这种关系.还有,在“相交线”一节,教科书从“两条直线相交”到“三条直线相交(两条直线被第三条直线所截)”,都是研究它们所成的角的关系.通过“根据结构特征对这些角进行分类”,对顶角三条直线所截是三条直线相交的特殊情形,这些特殊情形不仅在后续的几何图形研究中起着重要的作用,而且在生活中也有广泛的应用,这也是我们研究这些“特例”的重要原因.这些思路和方法也都是几何图形研究的重要内容和方法,教科书也都进行了渗透.三、对教学的几个建议1.有意识地培养学生有条理的思考和表达对于推理能力的培养,本套教科书按照“说点儿理”“说理”“简单推理”“用符号表示推理”等不同层次分阶段逐步加深地安排.本章对于推理的要求还处在初步阶段,只是结合知识的学习,识图、画图、几何语言的训练从“说理”过渡到“简单推理”.例如,在推导“对顶角,在平行线的判定(由判定方法1得到判定方法2),平行线的性质(由性质1得出性质2)时,教科书展示了一个简单推理的过程.这些过程中,都没有采用“已知……,求证……,证明”的形式逻辑格式,而是用说理和简单推理的方式展示推理的过程,但强调让学生经历推理的过程,感受推理论证的作用,使说理、推理作为观察、实验、探究得出结论的自然延续.教学中要注意循序渐进逐步提高学生的推理能力,要鼓励学生用自己的语言说明理由,在书写格式上不作统一要求,可以用自然语言,可以结合图形进行说明,可以用箭头等形式表明自己的思路,也可以用数学符号语言表示说理、简单推理的过程,等等.总之,要注意逐步提高、不要急于要求学生用数学符号语言书写,不能操之过急.另外,说理、推理的内容是本章的教学难点,教科书中注意对学生循序渐进地进行训练.由于学生的认知能力有差别,基础也不同,所以教学中一方面要按要求有计划地组织好教学,另一方面要注意因材施教.对于学习有困难的学生,一定要一步一步地使每阶段的训练到位,不要急于求成;对接受能力强的学生,要及时调整教学要求,保护他们学习的积极性,满足他们的求知欲,对于教科书中的一些要求说明理由的习题,也可以要求他们把推理的过程用简单的符号化的语言表示出来.2.注意突出重点内容这一章的内容比较丰富,除了要研究平面内两条直线间的位置关系(重点是垂直和平行关系),还包括平移以及一些有关命题的内容,由于教学时间有限,为了使学生集中精力掌握最基础的知识,并形成一定的能力,教学时应注意突出重点.例如,研究两条直线的位置关对顶角对顶角念都是结合图形,分析其位置关系给出的;垂直、平行的概念则是承接了前面学段学过的概念.对于同位角、内错角、同旁内角的内容,教科书是在研究两条直线相交的基础上,进一步研究三条直线相交的角度引入的,主要是为接下来研究平行做准备.这里要求学生掌握基本概念即可,不要做过多的变式训练.再如,对于命题、定理、证明等概念,在本章,要求学生在学过一些命题(包括数与代数的以及图形与几何的)的基础上,了解命题的概念以及命题的构成(如果……那么……的形式),知道命题的真假,了解定理的概念等,知道什么是证明等,不要在这里过多要求.由于内容较多,每课教学时都要突出一两个重点,课堂活动也要围绕这一两个重点进行.例如,讲5.1.1 对顶角教对于教科书中的探究栏目,可以设计一个表格,由两条直线相交的图形,让学生寻找其中所成的角,对它们进行分类,根据位置关系对它们“命名”,然后寻找它们的大小关系,最后再进行说理.在课堂上识图、画图、语言训练、作练习都可以主要围绕找“对顶角”或应用“对顶角相等”进行.3.把握好对推理与证明的教学要求在“平行线的性质”一节的最后,在介绍了命题、定理等概念的基础上,教科书结合一个完整的证明过程介绍了什么是证明.同时,教科书也安排了一些在给出的推理过程中,填写一些关键步骤和推理的理由的练习和习题.教学中,要把握好对证明的教学要求,即要求学生知道什么是证明,能在给出的推理过程中,填出一些关键步骤和理由即可,不要求学生写出完整的证明过程.这样做,目的在于逐步培养学生言之有据的习惯,为完成由实验几何到论证几何的过渡打下基础.而不是几何证明的方法和技巧.4.处理好平移内容从课程标准看,图形的变化是“图形与几何”领域中一块重要的内容,图形的变化主要包括图形的平移、图形的轴对称、图形的旋转和图形的相似等.通过对图形的平移、旋转、折叠等活动,使图形动起来,有助于发现图形的几何性质,因此图形的变化是研究几何问题的有效的工具.平移是一种基本的图形变化.在“平移”一节中,教科书首先从观察几个由图形的平移得到的美丽图案入手,分析这些图案的共同特点,发现每一个图案都是由一个图形经过平行移动得到的.通过探索平移前后两个图形之间的关系,发现“两个图形大小形状完全相同”“新图形中的每一点都是由原图形中的某一点移动后得到的,这两个点是对应点”“各组对应点间的连线平行且相等”等平移的基本性质,并学习利用平移设计图案和分析解决实际生活中的问题.对于平移的内容,本章只是一个初步认识,本册书在“平面直角坐标系”中还安排了“用坐标表示平移”的内容,从数的角度用代数的方法研究平移,将平移从数和形两方面统一起来,使学生对平移有更深刻的了解,为今后使用平移发现几何结论,研究几何问题打下基础;另外,在八年级下册“四边形”一章,还结合平行四边形的判定和性质对平移过程中“对应点的连线平行且相等”的性质作了理论的推导;在九年级上册“旋转”中,还要求学生能综合应用平移、轴对称、旋转等变换进行图案设计,认识和欣赏它们在现实生活的应用.这样处理平移内容,能使学生从感性到理性、从静态到动态逐步加深对平移的理解,有助于他们逐步掌握平移的内容.在教学时要注意教科书的安排,完成好这部分内容的教学.5.重视信息技术的应用信息技术工具的使用能为学生的数学学习和发展提供丰富多彩的教育环境和有力的学习工具.利用信息技术工具,可以很方便地制作图形,可以很方便地让图形动起来.许多计算机软件还具有测量功能,这也有利于我们在图形的运动变化的过程中去发现其中的不变的位置关系和数量关系,有利于发现图形的性质,这可以使得许多传统的数学教学做不到或做不好的事情变得容易起来.在这一章,信息技术工具是大有用武之地的,教科书还专门安排了一个“信息技术应用”的选学栏目,对教科书中一些可以应用信息技术的地方进行了举例说明.例如,我们随意画两条相交直线,就得到了一个相交线的“模型”,这个模型比我们用木条做成的模型又进一步,它不仅可以随意转动,通过寻找转动过程中角的不变的位置关系得到邻补角对顶角还可以利用软件的测量功能,测出这些角的大小,再观察转动过程中角的大小的变化,去发对顶角术工具的优势所在.其他探索垂线的性质、探索平行线的性质和判定方法也是类似的.因此,有条件的学校,应尽可能多的使用计算机或图形计算器等信息技术工具,帮助学生的数学学习.。
初一下册数学相交线与平行线的知识点

开学已经有几天了,新的第一章知识掌握的怎么样了呢这一单元主要是概念和性质定理一定要理解清楚,可以在这篇文章梳理一下,一定能帮到你!一、相交线1.邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
2.垂线⑴定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
符号语言记作:如图所示:AB⊥CD,垂足为 O⑵垂线性质 1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)⑶垂线性质 2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
3.垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。
注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。
画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。
4.点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
应该结合图形进行记忆。
如图,PO⊥AB,同 P 到直线 AB 的距离是 PO 的长。
PO 是垂线段。
PO 是点 P 到直线 AB所有线段中最短的一条。
现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用。
5.如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下册《相交线与平行线》
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
七年级数学下册《相交线与平行线》单元测试卷
(时间:45分钟满分:100分)姓名
一、选择题(每小题4分,共24分)
1.下面四个图形中,∠1与∠2是对顶角的图形的个数是()
A.0 B.1 C.2 D.3
121
2
12
1
2
2.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是()
A.第一次右拐50°,第二次左拐130°。
B.第一次左拐50°,第二次右拐50°。
C.第一次左拐50°,第二次左拐130°。
D.第一次右拐50°,第二次右拐50°。
3.同一平面内的四条直线满足a⊥b,b⊥c,c⊥d,则下列式子成立的是() A.a∥b B.b⊥d
C.a⊥d D.b∥c
4.三条直线两两相交于同一点时,对顶角有m对,交于不同三点时,对顶角有n 对,则m与n的关系是()
A.m = n B.m>n
C.m<n D.m + n = 10
5.如图,若m∥n,∠1 = 105°,则∠2 =()
A.55° B.60° C.65° D.75°
1
2
m
n
6.下列说法中正确的是()
A.有且只有一条直线垂直于已知直线。
B.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
C.互相垂直的两条直线一定相交。
D.直线c外一点A与直线c上各点连接而成的所有线段中,最短线段的长是3cm,则点A到直线c的距离是3cm。
二、填空题(每小题4分,共20分)
7.两个角的两边两两互相平行,且一个角的
1
2
等于另一个角的
1
3
,则这两个角的度数分别为。
8.猜谜语(打本章两个几何名称)。
剩下十分钱;两牛相斗。
9.下面生活中的物体的运动情况可以看成平移的是。
2
3
(1)摆动的钟摆。
(2)在笔直的公路上行驶的汽车。
(3)随风摆动的旗帜。
(4)摇动的大绳。
(5)汽车玻璃上雨刷的运动。
(6)从楼顶自由落下的球(球不旋转)。
10.如图,直线AB 、CD 相交于点O ,OE ⊥AB ,O 为垂足,如果∠EOD = 38°,
则∠AOC = ,∠COB = 。
O
D E
C
B
A
1
2
D C B
A
(第10题图) (第11题图)
11.如图,AC 平分∠DAB ,∠1 =∠2。
填空:因为AC 平分∠DAB ,所以∠1
= 。
所以∠2 = 。
所以AB ∥ 。
三、做一做(本题10分)
12.已知三角形ABC 、点D ,过点D 作三角形ABC 平移后的图形。
D
C
B A
四、算一算(本题10分)
13.如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B = 30°,你能算出∠EAD 、∠
DAC 、∠C 的度数吗?
D C
B
A
E
五、想一想(每空3分,共12分)
14.如图,EF ∥AD ,∠1 =∠2,∠BAC = 70°。
将求∠AGD 的过程填写完整。
因为EF ∥AD ,所以 ∠2 = 。
又因为 ∠1 = ∠2,所以 ∠1 = ∠3。
所以AB ∥ 。
所以∠BAC + = 180°。
又因为∠BAC = 70°,所以∠AGD = 。
G
F E
D
C
B
A
32
1
六、实际应用:(本大题两小题,共24分)
15.结合本班实际,画出班级的简易平面图形,找出其中的垂线和平行线。
(本题11分)
16.如图,有两堵墙,要测量地面上所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外。
如何测量(运用本章知识)
(本题13分)
4。