最新-【数学】2018高考理科数学试题分类汇编——不等式 精品

合集下载

不等式高考真题

不等式高考真题

高考数学真题分类汇编不等式一、单选题1.(2021·全国(文))下列函数中最小值为4的是( ) A .224y x x =++B .4sin sin y x x=+C .222x x y -=+D .4ln ln y x x=+4.(2021·浙江)已知,,αβγ是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββγγα三个值中,大于12的个数的最大值是( ) A .0B .1C .2D .35.(2020·浙江)已知a ,b ∈R 且ab ≠0,对于任意x ≥0 均有(x –a )(x–b )(x–2a–b )≥0,则( ) A .a <0B .a >0C .b <0D .b >07.(2020·全国(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}9.(2019·浙江)设,a b ∈R ,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a => B .当101,104b a =>C .当102,10b a =-> D .当104,10b a =-> 12.(2018·全国(理))设0.2log 0.3a =,2log 0.3b =,则 A .0a b ab +<< B .0ab a b <+< C .0a b ab +<<D .0ab a b <<+16.(2017·山东(理))若a>b>0,且ab=1,则下列不等式成立的是 A .21log ()2a ba ab b +<<+ B .21log ()2a b a b a b<+<+ C . 21log ()2a b a a b b +<+< D . 21log ()2aba b a b +<+< 二、多选题18.(2020·海南)已知a >0,b >0,且a +b =1,则( )A .2212a b +≥ B .122a b ->C .22log log 2a b +≥- D三、填空题19.(2020·天津)已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为_________. 20.(2020·江苏)已知22451(,)x y y x y R +=∈,则22xy +的最小值是_______..23.(2019·天津(文)) 设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为________.24.(2019·天津(文)) 设x ∈R ,使不等式2320x x +-<成立的x 的取值范围为_________. 25.(2019·天津(理))设0,0,25x y x y >>+=,______.26.(2018·江苏)在ABC 中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 28.(2018·天津(理))已知,R a b ∈,且360a b -+=,则128ab+的最小值为_____________. 29.(2018·天津(文))已知a R ∈,函数()22220220x x a x f x x x a x ⎧++-≤=⎨-+->⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________. 30.(2017·山东(文))若直线1(00)x ya b a b+=>,>过点(1,2),则2a b +的最小值为_____. 31.(2017·天津(文))若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.32.(2017·北京(文))能够说明“设,,a b c 是任意实数,若a b c >>,则a b c +>”是假命题的一组整数,,a b c 的值依次为__________.33.(2017·江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是__________. 34.(2017·山东(文))若直线1(00)x ya b a b+=>,>过点(1,2),则2a+b 的最小值为______.近五年(2017-2021)高考数学真题分类汇编四、不等式(答案解析)1.C 【解析】对于A ,()2224133y x x x =++=++≥,当且仅当1x =-时取等号,所以其最小值为3,A 不符合题意;对于B ,因为0sin 1x <≤,4sin 4sin y x x=+≥=,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,2422242xxx xy -=+=+≥=,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意;对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞,而ln x R ∈且ln 0x ≠,如当ln 1x =-,5y =-,D 不符合题意.故选:C .4.C【解析】法1:由基本不等式有22sin cos sin cos 2αβαβ+≤,同理22sin cos sin cos 2βγβγ+≤,22sin cos sin cos 2γαγα+≤,故3sin cos sin cos sin cos 2αββγγα++≤, 故sin cos ,sin cos ,sin cos αββγγα不可能均大于12. 取6πα=,3πβ=,4πγ=,则1111sin cos ,sin cos ,sin cos 4222αββγγα=<=>=>, 故三式中大于12的个数的最大值为2, 故选:C.法2:不妨设αβγ<<,则cos cos cos ,sin sin sin αβγαβγ>><<,由排列不等式可得:sin cos sin cos sin cos sin cos sin cos sin cos αββγγααγββγα++≤++,而()13sin cos sin cos sin cos sin sin 222αγββγαγαβ++=++≤, 故sin cos ,sin cos ,sin cos αββγγα不可能均大于12. 取6πα=,3πβ=,4πγ=,则1111sin cos ,sin cos ,sin cos 4222αββγγα=<=>=>, 故三式中大于12的个数的最大值为2,故选:C. 5.C 【解析】因为0ab ≠,所以0a ≠且0b ≠,设()()()(2)f x x a x b x a b =----,则()f x 的零点为123,,2x a x b x a b ===+当0a >时,则23x x <,1>0x ,要使()0f x ≥,必有2a b a +=,且0b <, 即=-b a ,且0b <,所以0b <;当0a <时,则23x x >,10x <,要使()0f x ≥,必有0b <.综上一定有0b <.故选:C 7.D 【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【解析】由2340x x --<解得14x -<<,所以{}|14A x x =-<<, 又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.9.A 【分析】若数列{}n a 为常数列,101a a a ==,则只需使10a ≤,选项的结论就会不成立.将每个选项的b 的取值代入方程20x x b -+=,看其是否有小于等于10的解.选项B 、C 、D 均有小于10的解,故选项B 、C 、D 错误.而选项A 对应的方程没有解,又根据不等式性质,以及基本不等式,可证得A 选项正确. 【解析】若数列{}n a 为常数列,则1n a a a ==,由21n n a a b +=+,可设方程20x x b -+=选项A :12b =时,2112n n a a +=+,2102x x -+=, 1210∆=-=-<,故此时{}n a 不为常数列,222112n n n n a a a +=+=+≥,且2211122a a =+≥,792a a ∴≥≥21091610a a >≥>,故选项A 正确;选项B :14b =时,2114n n a a +=+,2104x x -+=,则该方程的解为12x =,即当12a =时,数列{}n a 为常数列,12n a =,则101102a =<,故选项B 错误;选项C :2b =-时,212n n a a +=-,220x x --=该方程的解为1x =-或2,即当1a =-或2时,数列{}n a 为常数列,1n a =-或2,同样不满足1010a >,则选项C 也错误;选项D :4b =-时,214n n a a +=-,240x x --=该方程的解为12x =, 同理可知,此时的常数列{}n a 也不能使1010a >,则选项D 错误.故选:A.12.B 【解析】.0.30.3log0.2,2a b log ==0.2211log0.3,0.3log a b∴==0.3110.4log a b ∴+= 1101a b ∴<+<,即01a b ab+<< 又a 0,b 0>< ab 0∴<即ab a b 0<+< 故选B.16.B 【解析】因为0a b >>,且1ab =,所以221,01,1,log ()log 1,2aba b a b ><<∴+= 12112log ()a ba ab a a b b b+>+>+⇒+>+ ,所以选B. 18.ABD 【解析】对于A ,()222221221a b a a a a +=+-=-+21211222a ⎛⎫⎪⎭+ ⎝≥-=,当且仅当12a b ==时,等号成立,故A 正确; 对于B ,211a b a -=->-,所以11222a b-->=,故B 正确;对于C ,2222221log log log log log 224a b a b ab +⎛⎫+=≤==- ⎪⎝⎭, 当且仅当12a b ==时,等号成立,故C 不正确;对于D ,因为2112a b =+≤++=,≤,当且仅当12a b ==时,等号成立,故D 正确;故选:ABD 19.4【解析】0,0,0a b a b >>∴+>,1ab =,11882222ab ab a b a b a b a b∴++=++++842a b a b +=+≥=+,当且仅当a b +=4时取等号,结合1ab =,解得22a b =-=+22a b =+=.故答案为:420.45【解析】∈22451x y y += ∈0y ≠且42215y x y -=∈42222221144+5555y y x y y y y -+=+=≥=,当且仅当221455y y =,即2231,102x y ==时取等号.∈22x y +的最小值为45.故答案为:45.23.92.【解析】由24x y +=,得24x y +=≥,得2xy ≤ (1)(21)221255592222x y xy x y xy xy xy xy xy ++++++===+≥+=,等号当且仅当2x y =,即2,1x y ==时成立.故所求的最小值为92.24.2(1,)3-【解析】2320x x +-<,即(1)(32)0x x +-<,即213x -<<,故x 的取值范围是2(1,)3-.25.(1)(2xxy +=0,0,25,0,x y x y xy >>+=>≥= 当且仅当3xy =,即3,1x y ==时成立,故所求的最小值为26.9【解析】由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得11,1ac a c a c=++=,因此1144(4)()559,c a a c a c a c a c +=++=++≥+=当且仅当23c a ==时取等号,则4a c +的最小值为9. 28.14【解析】由360a b -+=可知36a b -=-,且312228aa bb -+=+,因为对于任意x ,20x >恒成立,结合均值不等式的结论可得:3122224a b-+≥==.当且仅当32236a b a b -⎧=⎨-=-⎩,即31a b =-⎧⎨=⎩时等号成立.综上可得128ab +的最小值为14.29.1,28⎡⎤⎢⎥⎣⎦【解析】∈当0x >时,()f x x ≤即:222x x a x -+-≤,整理可得:21122a x x ≥-+,由恒成立的条件可知:()2max 11022a x x x ⎛⎫≥-+> ⎪⎝⎭,结合二次函数的性质可知: 当12x =时,2max 1111122848x x ⎛⎫-+=-+= ⎪⎝⎭,则18a ≥; ∈当30x -≤≤时,()f x x ≤即:222x x a x ++-≤-,整理可得:232a x x ≤--+, 由恒成立的条件可知:()()2min3230a x x x ≤--+-≤≤,结合二次函数的性质可知: 当3x =-或0x =时,()2min322x x --+=,则2a ≤;综合∈∈可得a 的取值范围是1,28⎡⎤⎢⎥⎣⎦,故答案为1,28⎡⎤⎢⎥⎣⎦.30.8【解析】因为直线1(00)x y a b a b+=>,>过点(1,2),所以121a b +=,因为00a b >,>,所以()124222248a b a b a b a b b a ⎛⎫+=++=+++≥+ ⎪⎝⎭,当且仅当4a bb a=,即2,4a b ==时取等号,所以2a b +的最小值为831.4【解析】44224141144a b a b ab ab ab ab +++≥=+≥= ,(前一个等号成立条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时取得,则当且仅当22,24a b ==时取等号).32.1,2,3---【解析】()123,1233->->--+-=->-,矛盾,所以−1,−2,−3可验证该命题是假命题. 33.30【解析】总费用为600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.故答案为30.34.8【解析】1212412(2)()448b a a b a b a b a b a b +=∴+=++=++≥+= ,当且仅当2b a = 时取等号.。

(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上。

写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设1i2i 1iz -=++,则||z = A .0 B .12C .1D .2 2.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C {|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。

为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .12 5.设函数32()(1)f x x a x ax =+-+。

若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .28.设抛物线24C y x :的焦点为F ,过点(2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FNA .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ。

2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设z=+2i,则|z|=()A.0B.C.1D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 11.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

2018年高考全国二卷(全国卷Ⅱ)理科数学试题及答案

2018年高考全国二卷(全国卷Ⅱ)理科数学试题及答案

2018年高考全国二卷(全国卷Ⅱ)理科数学试题及答案1.已知复数 $\frac{1+2i}{1-2i}=\frac{-43}{55}$,求其值。

2.已知集合 $A=\{(x,y)|x+y^2\leq 3,x\in Z,y\in Z\}$,求$A$ 中元素的个数。

3.函数 $f(x)=\frac{e^x-e^{-x}}{x^2}$ 的图像大致为什么样子?4.已知向量 $a,b$ 满足 $|a|=1$,$a\cdot b=-1$,求 $a\cdot (2a-b)$ 的值。

5.双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为 $3$,求其渐近线方程。

6.在$\triangle ABC$ 中,$\cos A=\frac{4}{5}$,$BC=1$,$AC=5$,求 $AB$ 的值。

7.设计一个程序框图来计算 $S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots-\frac{1}{100}$。

8.XXX猜想是“每个大于 $2$ 的偶数可以表示为两个素数的和”,在不超过 $30$ 的素数中,随机选取两个不同的数,其和等于 $30$ 的概率是多少?9.在长方体 $ABCD-A_1B_1C_1D_1$ 中,$AB=BC=1$,$AA_1=3$,求异面直线$AD_1$ 和$DB_1$ 所成角的余弦值。

10.若 $f(x)=\cos x-\sin x$ 在 $[-a,a]$ 上是减函数,求$a$ 的最大值。

11.已知 $f(x)$ 是定义域为 $(-\infty,+\infty)$ 的奇函数,满足 $f(1-x)=f(1+x)$,且 $f(1)=2$,求$f(1)+f(2)+f(3)+\cdots+f(50)$ 的值。

12.已知 $F_1,F_2$ 是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的左、右焦点,$A$ 是椭圆的左顶点,点 $P$ 在过 $A$ 且斜率为 $3$ 的直线上,$\triangle PF_1F_2$ 是等腰三角形,且 $\angleF_1PF_2=120^\circ$,求椭圆的离心率。

第54题+不等式的概念与性质-2018精品之高中数学(理)黄金100题系列+Word版含解析

第54题+不等式的概念与性质-2018精品之高中数学(理)黄金100题系列+Word版含解析

第54题 不等式的概念与性质I .题源探究·黄金母题【例1】已知0,0,a b c >><求证:c c a d>. 【证明】10,0,0a b ab ab>>∴>>.于是11,a b ab ab ⋅>⋅即11,b a >由0c <,得c c a d>. 精彩解读【试题来源】人教版A 版必修5P 74例1.【母题评析】本题考查了不等式的重要性质.作为基础题,不等式性质的应用,是历年来高考的一个常考点. 【思路方法】熟记不等式性质,应用不等式的性质解题.II .考场精彩·真题回放【例2】【2017高考山东理7】若0a b >>,且1ab =,则下列不等式成立的是 ( ) A .()21log 2a b a a b b +<<+ B .()21log 2a b a b a b<+<+ C .()21log 2a ba ab b +<+< D .()21log 2a b a b a b +<+<【答案】B【解析】因为0a b >>,且1ab =,所以221,01,1,log ()log 1,2aba b a b ><<∴<+>= 12112log ()a ba ab a a b b b+>+>+⇒+>+,所以选B . 【例3】【2016高考新课标I 】若101a b c >><<,,则 ( ) A .cca b < B .ccab ba < C .log log b a a c b c < D .log log a b c c < 【答案】C【命题意图】这类题主要考查不等式的性质、指数函数、对数函数、幂函数的性质.本题能较好的考查考生分析问题、解决问题的能力等. 【考试方向】这类试题在考查题型上,通常以选择题或填空题的形式出现,难度中等偏易,考查基础知识的识记与理解.【难点中心】比较指数式或对数式的大小,若幂的底数相同或对数的底数相同或幂的指数相同,通常利用指数函数或对数函数或幂函数的单调性进行比较;若底数不同,可考虑利用中间量进行【解析】用特殊值法.令3a =,2b =,12c =,得112232>,选项A错误;11223223⨯>⨯,选项B 错误;2313log 2log 22<,选项C 正确;3211log log 22>,选项D 错误,故选C . 【例4】【2017高考北京理13】能够说明“设,,a b c 是任意实数.若a b c >>,则a b c +>”是假命题的一组整数,,a b c 的值依次为______________________________. 【答案】1,2,3---.【解析】()123,1233->->--+-=->-相矛盾,∴验证是假命题. 【例5】【2017高考北京文14】某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (1)男学生人数多于女学生人数; (2)女学生人数多于教师人数; (3)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为__________. ②该小组人数的最小值为__________. 【答案】6,12【解析】设男生数,女生数,教师数为,,a b c ,则2,,,c a b c a b c >>>∈N第一小问:max 846a b b >>>⇒=;第二小问:min 3,635,412.c a b a b a b c =>>>⇒==⇒++=比较.也可以利用特殊值法.III .理论基础·解题原理1.比较法原理:0,0,0.a b a b a b a b a b a b ->⇔>-<⇔<-=⇔= 2.a b b a >⇔<(反对称性); 3.若,,a b b c >>则a c >(传递性)4.若a b >,则a c b c +>+;5.若,0a b c >>,则ac bc >;若,0a b c ><,则ac bc <; 6.若,a b c d >>,则a c b d +>+; 7.若0,0a b c d >>>>,则ac bd >;9.若0a b >>,则(),2n n a b n N n >∈≥;IV .题型攻略·深度挖掘【考试方向】这类试题在考查题型上,通常以选择题或填空题的形式出现,一般难度较小,往往考查对基础知识的识记与理解. 【技能方法】解决此类问题的关键是在不等式的求解证明中,必须在不等式的常见性质体系下进行分析.(1)用作差比较法比较数式的大小关键是变形,常将两个代数式作差后变形为常数或平方和的形式或几个因式积的形式等,常有的变形技巧有因式分解、配方、通分、分母(分子)有理化等.作差比较法的一般步骤:作差——变形——与0比较大小——下结论.(2)当用作差法难以比较数式的大小时,可以试用作商比较法(前提是两个代数式同号).作商比较法的一般步骤:作商——变形——与1比较大小——下结论.(3)在运用不等式的性质时,一定要掌握它们成立的条件.如两边同乘以(或除以)一个正数,不等号的方向不变,若同乘以(或除以)一个负数,则不等号的方向改变.因此在分式不等式中,若不能肯定分母是正数还是负数,则不要轻易去分母.又如,同向不等式相乘、不等式两边同时乘方或(或开方)时,要求不等式两边都是正数.(4)应用不等式的性质解题的常见类型及方法:①注意观察从已知不等式到目标不等式的变化,它是如何变形的,这些变形是否符合不等式的性质及性质的条件;②若比较大小的两式是指数或对数模型,注意联想单调性;③恰当运用赋值法和淘汰法探究解答选择题、填空题. 【易错指导】(1)比较大小时,要把各种可能的情况都考虑进去,对不确定的因素进行分类讨论,每一步运算都要准确,每一步推理都要有充分的依据.(2)不等式性质的等价性:在不等式的基本性质中,对表达不等式性质的各不等式,要注意“箭头”是单向还是双向,也就是说每条性质是否具有可逆性.(3)由于同向不等式相加或相乘会使范围变大,所以在求有关不等式取值范围的问题时,尽量少用不等式相加或相乘,次数越少越好,最好“一次性”不等关系的运算求得待求整体的范围,这是避免出错的一条捷径.V .举一反三·触类旁通考向1 利用不等式的性质判定大小【例1】【2018河南焦作高三第四次模拟】已知0a b >>,则下列不等式中成立的是( )A .11a b >B .22log log a b <C .1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .1122a b -->【答案】C【例2】【2018河北衡水中学高三十五模】已知330c c a b<<,则下列选项中错误的是( ) A .b a > B .ac bc > C .0a b c -> D .ln 0ab> 【答案】D【解析】330c c a b <<,当0c <时,110a b >>,即b 0a >>,∴b a >,ac bc >,0a bc->成立,此时01a b <<,∴ln 0ab<,故选D . 【例3】【2018江西吉安一中、九江一中等八所重点中学高三4月联考】若1a >,01c b <<<,则下列不等式不正确的是( )A .log 2018log 2018a b >B .log log b c a a<C .()()aac b c c b b ->- D .()()cba c a a c a ->- 【答案】D【解析】根据对数函数的单调性可得log 20180log 2018a b >>,log log b c a a <,故A 、B 正确.∵1a >,01c b <<<,∴0a a c b <<,0c b -<,0c b a a <<,0a c ->, ∴()()aac b c c b b ->-,()()cba c a a c a -<-,则C 正确,D 错误.故选D .【名师点睛】函数单调性的判断:(1)常用的方法有:定义法、导数法、图象法及复合函数法. (2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数; (3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性. 【跟踪练习】1.【2018北京丰台区高三一模】已知0a b <<,则下列不等式中恒成立的是A .11a b> B < C .22a b > D .33a b > 【答案】A2.【2018北京十一学校高三3月模拟】设 4.20.60.60.6,7,log 7a b c ===,则,,a b c 的大小关系是A .c b a <<B .c a b <<C .b c a <<D .a b c << 【答案】B【解析】0< 4.20.6<1,0.67>1,0.6log 7<0,所以b>a>c ,选B .3.【2018四川成都第七中学高三上学期模拟】设12523log 2,log 2,a b c e ===,则,,a b c 的大小关系是( )A .a b c <<B .b a c <<C .b c a <<D .c b a << 【答案】B【解析】因为()12523log 20,1,log 20,1a b c e=∈==,所以b a c <<,选B .考向2 求范围的问题【例4】【2018黑龙江双鸭山市一中高二4月月考】已知15,13a b a b ≤+≤-≤-≤,则32a b -的取值范围是 ( )A .[]6,14-B .[]2,14-C .[]2,10-D .[]6,10- 【答案】C【解析】设()()32x y a b a b a b -=++-,易得:1x 2=,5y 2=, ∴()()[]15322,1022a b a b a b -=++-∈-,故选C . 【名师点睛】根据不等式组确定二元目标式范围的方程有二,其一:利用待定系数法表示目标,直接加减一次即可;其二:利用线性规划的方法处理.【例5】三个正数a ,b ,c 满足a ≤b +c ≤2a ,b ≤a +c ≤2b ,则ba的取值范围是________. 【答案】23,32⎡⎤⎢⎥⎣⎦【例6】【2018辽宁大连渤海高级中学高二上学期期中考试】设()2f x ax bx =+,且()112f -≤-≤,()214f ≤≤,求()2f -的取值范围.【答案】()1210f -≤-≤【解析】试题分析:由()2f x ax bx =+ 得()242f a b -=-.已知()()1,1f f - 的范围,用()()1,1f f -表示,a b ,再把()242f a b -=-化简,然后根据不等式的性质可得所求范围.试题解析:由已知得()()1{ 1f a b f a b-=-=+,∴()()()()112{112f f a f f b +-=--=,∴()()()()()11112424222f f f f f a b +----=-=⨯-⨯()()131f f =+-,∵()()112,3316f f -≤-≤∴-≤-≤,∵()214f ≤≤,∴()()113110,f f -≤+-≤∴()1210f -≤-≤.【名师点睛】利用不等式的性质可以求参数或某些代数式的取值范围,但在变换过程中要注意掌握、准确使用不等式的性质.求含有字母的代数式的取值范围时,要注意题设中的条件.如本例若忽视αβ<,则会导致取值范围变大. 【跟踪练习】1.【2018广西防城港市高中毕业班1月模拟】已知0,0,22a b a b >>+=,若24a b m +>恒成立,则实数m 的取值范围是__________. 【答案】4m <2.【2018江苏邗江中学高二下学期期中考试】若不等式(﹣1)n •a <3对任意的正整数n 恒成立,则实数a 的取值范围是_____. 【答案】【解析】分析:将不等式进行参数分离,求函数的最值即可得到结论. 详解:当为奇数时,不等式可化为,即,要使得不等式对任意自然数恒成立,则,当为偶数时,不等式可化为,要使得不等式对任意自然数恒成立,则,即,综上,.【名师点睛】本题主要考查了不等式恒成立问题,将不等式的恒成立转化为求式子的最值问题解决恒成立问题是解答恒成立问题的基本方法,着重考查分析问题和解答问题的能力.3.【2018北京市海淀区育英学校高一下期期中考试】若实数a ,b 满足02a <<,01b <<,则a b -的取值范围是__________. 【答案】()1,2-【解析】01,10b b <<∴-<-<,02,12a a b <<∴-<-<,故答案为()1,2-.4.设等差数列{a n }的前n 项和为S n ,若1≤a 5≤4,2≤a 6≤3,则S 6的取值范围是________. 【答案】[-12,42]【名师点睛】本题是一道易错题,如果根据1≤a 5≤4,2≤a 6≤3分别求出1,a d 的范围,再求S 6=6a 1+15d 的范围,实际上是错误的.这里涉及到不等式取等的问题,可以利用线性规划的知识,也可以利用解答中的整体代入的方法.考向3 不等式的性质与充要条件【例7】【2018广东省中山市高二上学期期末复习】若,a b 为实数,则22a b >是0a b >>的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不也不必要条件 【答案】B【解析】当0a b >>时,22a b >成立,当3,1a b =-=-时,满足22a b >,但0a b >>不成立,即“22a b >”是“0a b >>”的必要不充分条件,故选B .【例8】【2018广东中山市高二上学期理科数学期末考试】条件甲:24{03x y xy <+<<<;条件乙:01{23x y <<<<,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不也不必要条件 【答案】B 【解析】由01{23x y <<<<,根据不等式的性质可得24{ 03x y xy <+<<<;由01{23y x <<<<,而15,22x y ==时,24{03x y xy <+<<<成立,01{ 23y x <<<<不成立,所以甲是乙的必要不充分条件,故选B .【例9】下列四个不等式:①a <0<b ;②b <a <0;③b <0<a ;④0<b <a ,其中能使11a b<成立的充分条件有________. 【答案】①②④【解析】①a <0<b ⇒1a <0,1b >0⇒1a <1b ;②b <a <0⇒1a <1b ;③b <0<a ⇒1a >1b;④0<b <a ⇒1a <1b.故答案为:①②④. 【跟踪练习】1.【2018天津蓟州区第一中学高二第一学期第二次月考】①一个命题的逆命题为真,它的否命题一定也为真: ②在中,“”是“三个角成等差数列”的充要条件;③是的充要条件; ④“”是“”的充分必要条件;以上说法中,判断错误的有_______________. 【答案】③④有,又由,则,故在中,“”是“三个角成等差数列”的充要条件,②正确;对于③,当,则满足,而不满足,则是的不必要条件,③错误;对于④,若,当时,有,则“”是“”的不必要条件,④错误,故答案为③④.2.【2018衡水金卷(四)】设p :3402x xx-≤,q :()22210x m x m m -+++≤,若p 是q 的必要不充分条件,则实数m 的取值范围为( )A .[]2,1-B .[]3,1-C .[)(]2,00,1-⋃D .[)(]2,10,1--⋃ 【答案】D【解析】设p :3402x xx-≤的解集为A ,所以A={x|-2≤x <0或0<x≤2},设q :()22210x m x m m -+++≤的解集为B ,所以B={x|m≤x≤m+1},由题知p 是q 的必要不充分条件,即得B 是A 的真子集,所以有010{01{ 2 1.122m m m m m m >+<⇒<≤⇒-≤<-+≤≥-或综合得m ∈[)(]2,10,1--⋃,故选D .3.设,x y R ∈,则4()0x y x -<是x y <的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A。

2018年全国高考理科数学(全国一卷)试题及参考答案(2021年整理)

2018年全国高考理科数学(全国一卷)试题及参考答案(2021年整理)

(完整word)2018年全国高考理科数学(全国一卷)试题及参考答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word)2018年全国高考理科数学(全国一卷)试题及参考答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word)2018年全国高考理科数学(全国一卷)试题及参考答案(word版可编辑修改)的全部内容。

2018年全国普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。

) 1、设z=,则∣z ∣=()A 。

0B.C.1D.2、已知集合A={x|x 2-x —2>0},则A =()A 、{x |-1〈x 〈2}B 、{x |—1≤x ≤2}C 、{x |x<-1}∪{x |x>2}D 、{x|x ≤-1}∪{x |x ≥2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=()建设前经济收入构成比例 建设后经济收入构成比例A、—12B、—10C、10D、125、设函数f(x)=x3+(a—1)x2+ax。

2018年(理科数学)(新课标Ⅱ)试卷真题+参考答案+详细解析

2018年(理科数学)(新课标Ⅱ)试卷真题+参考答案+详细解析

2018年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)12(12ii+=- ) A .4355i --B .4355i -+C .3455i --D .3455i -+2.(5分)已知集合22{(,)|3A x y x y =+,x Z ∈,}y Z ∈,则A 中元素的个数为( ) A .9B .8C .5D .43.(5分)函数2()x x e e f x x--=的图象大致为( ) A . B .C .D .4.(5分)已知向量a ,b 满足||1a =,1a b =-,则(2)(a a b -= ) A .4B .3C .2D .05.(5分)双曲线22221(0,0)x y a b a b-=>>3( )A .2y x =B .3y x =C .2y = D .3y = 6.(5分)在ABC ∆中,5cos 2C =,1BC =,5AC =,则(AB = ) A .42B 30C 29D .257.(5分)为计算11111123499100S =-+-+⋯+-,设计了如图的程序框图,则在空白框中应填入( )A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.(5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A .112B .114C .115D .1189.(5分)在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为( )A .15B 5C 5D 210.(5分)若()cos sin f x x x =-在[a -,]a 是减函数,则a 的最大值是( )A .4πB .2π C .34π D .π11.(5分)已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+,若(1)2f =,则(1)(2)(3)(50)(f f f f ++++= )A .50-B .0C .2D .5012.(5分)已知1F ,2F 是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,A 是C 的左顶点,点P 在过A 且斜3的直线上,△12PF F 为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23 B .12 C .13 D .14二、填空题:本题共4小题,每小题5分,共20分。

2018年黑龙江全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

2018年黑龙江全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

2018年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)=()A.i B.C.D.2.(5分)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.43.(5分)函数f(x)=的图象大致为()A.B.C.D.4.(5分)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.05.(5分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x6.(5分)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.27.(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+4 8.(5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.9.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.10.(5分)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C.D.π11.(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f (1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.5012.(5分)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高考数学试题分类汇编
不等式
一. 选择题:
1.(天津卷8)已知函数2,0()2,0xxfxxx,则不等式2()fxx的解集是
( A )
A.[1,1] B.[2,2] C.[2,1] D.[1,2]

2.(江西卷9)若121212120,01aabbaabb,且,则下列代数式中值
最大的是A
A.1122abab B.1212aabb C.1221abab D.12

3.(陕西卷6)“18a”是“对任意的正数x,21axx≥”的( A )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件

4.(浙江卷3)已知a,b都是实数,那么“22ba”是“a>b”的D
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
5.(海南卷6)已知1230aaa,则使得2(1)1iax(1,2,3)i都成立的x取
值范围是( B )

A.(0,11a) B. (0,12a) C. (0,31a) D. (0,32a)

二. 填空题:
1.(上海卷1)不等式11x<的解集是 .(0,2)
2.(山东卷16)若不等式|3x-b|<4的解集中的整数有且仅有1,2,3,则
b
的取值范围 。(5,7).

3.(江苏卷11)已知,,xyzR,230xyz,则2yxz的最小值 .3
4.(江西卷14)不等式31122xx的解集为 .(,3](0,1]
5.(广东卷14)(不等式选讲选做题)已知aR,若关于x的方程
2
104xxaa有实根,则a的取值范围是 .1
0,

4






相关文档
最新文档