高分子化学-聚合方法

合集下载

高分子聚合反应机理和聚合度控制方法

高分子聚合反应机理和聚合度控制方法

高分子聚合反应机理和聚合度控制方法高分子聚合反应是一种重要的化学反应,用于合成各种高分子材料。

了解聚合反应的机理以及控制聚合度的方法对于高分子材料的制备和性能调控具有重要意义。

一、高分子聚合反应机理高分子聚合反应是指将单体分子通过共价键连接成长链高分子的过程。

聚合反应的机理可以分为自由基聚合、阴离子聚合、阳离子聚合和离子交换聚合等几种类型。

自由基聚合是最常见的聚合反应机理,其中单体分子通过自由基引发剂的作用产生自由基,然后自由基与单体分子发生反应,生成新的自由基,不断重复这一过程,最终形成高分子链。

自由基聚合具有反应速度快、适用范围广等优点,广泛应用于聚合物的合成。

阴离子聚合是指通过阴离子引发剂产生负离子自由基,与单体分子发生反应生成新的负离子自由基,最终形成高分子链的过程。

阴离子聚合反应速度较慢,但可以合成高纯度的高分子材料。

阳离子聚合是通过阳离子引发剂产生正离子自由基,与单体分子发生反应生成新的正离子自由基,最终形成高分子链的过程。

阳离子聚合适用于特定的单体和引发剂,常用于合成含有正电荷的高分子材料。

离子交换聚合是通过阳离子和阴离子之间的电荷吸引力使单体分子发生聚合反应,生成高分子链的过程。

离子交换聚合可用于合成具有特殊功能的高分子材料,如离子交换树脂。

二、聚合度的控制方法聚合度是指高分子链中单体分子的重复次数,也是衡量高分子材料链长的重要指标。

控制聚合度可以调节高分子材料的物理性质和化学性质。

1. 反应时间控制:通过控制聚合反应的时间,可以控制聚合度的大小。

反应时间越长,聚合度越高;反应时间越短,聚合度越低。

反应时间的控制需要根据具体的聚合反应体系和单体特性来确定。

2. 单体浓度控制:单体浓度是影响聚合度的重要因素之一。

单体浓度越高,聚合度越高;单体浓度越低,聚合度越低。

通过调节单体的浓度可以实现对聚合度的控制。

3. 引发剂的选择:不同的引发剂对聚合度的影响也不同。

选择合适的引发剂可以实现对聚合度的精确控制。

高分子聚合新技术

高分子聚合新技术

一、大分子偶氮化合物 大分子偶氮化合物可以通过三种途径来制得。 1.带取代基的低分子偶氮单体法:带取代基的偶 氮单体与具有官能团的聚合物或单体起反应。
从上述图表可知聚合速率与电荷密度成正比, 随着电荷密度的升高而加快。说明单体反离子沿 着模板的排列有一适宜范围,当单体双键之间的 距离大于0.4nm时,会产生阻聚作用。而(α,α, α)4—离聚体—SSA的双键平均距离在0.4nm范围 内,因此聚合速度快。6,10—离聚体—SSA根据 分子模型估算双键距离约为0.6一0.8nm,大于允 许距离0.4nm,因此聚合速率较慢。但值得注意 的是由于模板具有促化作用,即使采用6,10— 离聚体作为模板其聚合速率比无模板时仍然要高 出两个数量。
第二节 基团转移聚合的特点 阴离子型聚合反应的主要单体是单烯烃类(如苯 乙烯)和共轭二烯烃类(如丁二烯),即非极性单体; 极性单体容易导致副反应,从而使聚合体系失去活 性。相反,极性单体很适用于GTP技术;目前还仅 限于α,β-不饱和酯、酮、腈和二取代的酰胺等。 这类单体一般可用通式H2C=CR‘X表示,其中X= COOR、一CONH2、一COR和一CN。
特定结构的单体
制弹性体和光 敏性聚合物
环氧树脂
端羟基聚合物
二、引发剂
GTP的引发剂一般可分为下列几类:
Si的R“基团愈大,反应速度愈小;OR’基团中的R’可 有较大变化,借此可作为引入聚合物末端的不同官 能团。
总之,作为GTP的引发剂,含有较活泼 的R3M—C键或R3M—O键,极易被含活泼 氢的化合物分解,所以与阴离子型聚合的操 作和要求一样。在整个反应体系中必须避免 含质子化合物的存在,所有的仪器、设备和 试剂都要经过严格的干燥预处理,然后在抽 排空气和高纯氮气条件或真空中进行。

高分子化学-第二章 缩聚和逐步聚合

高分子化学-第二章 缩聚和逐步聚合

N0
N0
反应程度与转化率的区别
转化率:参加反应的单体量占起始单体量的分数,是指已 经参加反应的单体的数目
反应程度:则是指已经反应的官能团的数目
例如: 一种缩聚反应,单体间双双反应很快全部变成二聚体,就 单体转化率而言,转化率达100%;而官能团的反应程度 仅50%
反应程度与平均聚合度的关系
聚合度是指高分子中含有的结构单元的数目
聚加成:形式上是加成反应,但反应机理是逐步反应。 如聚氨酯的合成(p17)。
开环反应:部分开环反应为逐步反应,如水、酸引发的己内 酰胺的开环反应。
氧化-偶合:单体与氧气的缩合反应, 如 2,6-二甲基苯酚和氧 气形成聚苯撑氧,也称聚苯醚。
2 逐步聚合反应的特点
官能团间的反应,无特定的活性中心;无所谓的引发、 增长、终止等基元反应;反应逐步进行,每一步的反 应速率和活化能大致相同;
[ H + ][ A- ] KHA =
[ HA ]
[ HA ] [ H + ] [ A- ] = KHA
代入式
-d [ COOH ] = k1k3[ COOH ][OH ][ H+]
dt
k 2KHA
催化用酸HA:可以是二元酸本身,但反应较慢,也可以是 外加酸,如H2SO4,大大加速
自催化缩聚反应
无外加酸,二元酸单体催化剂,[HA] = [COOH]
Flory对此进行了解释:
官能团等活性理论是近似的,不是绝对的,这一理论大大简化了研 究处理,可用同一平衡常数表示,整个缩聚过程可以用两种官 能团之间的反应来表征
COOH + HO
k1
OCO
k1
2. 线型缩聚动力学
不可逆条件下的缩聚动力学

高分子化学第5章

高分子化学第5章
–(1)水溶性有机高分子物质;
• 主要有聚乙烯醇等合成高分子,及纤维素衍生物、明胶等
–(2)不溶于水的无机粉末
• 主要有碳酸镁、滑石粉、高岭土等
水溶性有机高分子
• 高分子分散剂的作用机理主要是:
–吸附在液滴表面,形成一层保护膜,起着保 护胶体的作用;
–介质的粘度增加,有碍于两液滴的粘合;
–明胶、部分醇解的聚乙烯醇等的水溶液,还 使表面张力和界面张力降低,使液滴变小。
第五章 聚合方法
5.1 引言
聚合反应工程考虑的三个层次:
• 聚合机理和动力学(mechanism and kinetics)
–连锁:自由基、阴、阳离子、配位 –逐步:缩聚、聚加成、开环等
• 聚合过程(polymerization process)
–实施方法:本体、溶液、悬浮、乳液 –相态变化:分散性质、是否沉淀、是否存在界面等
• 丙烯腈连续溶液聚合 ; • 醋酸乙烯酯溶液聚合;
• 丙烯酸酯类溶液聚合。
例1. 聚丙烯腈(PAN)连续溶液聚合
• 连续均相溶液聚合:以51-52%的硫氰化钠(NaSCN)水 溶液为溶剂,AIBN为引发剂,pH5±0.2,温度75~85 ˚C,转化率70~75%。进料单体浓度17%,出料聚合 物浓度13%,脱除单体后直接用于纺制腈纶纤维。 • 连续沉淀聚合:以水为溶剂,过硫酸盐类氧化还原引 发体系,温度40~50 ˚C,转化率80%。聚合产物从反应 体系中沉淀出来,经洗涤、分离、干燥后重新配制成纺 丝溶液用于腈纶纺丝。
–沉淀聚合机理与均相聚合有些不同,主要反 映在凝胶效应上,影响因素和生产控制也有 差异。
• 液相聚合; • 气相聚合; • 固相聚合。
从工程角度考虑(需重视操作方式)

高分子化学第二章-缩聚及逐步聚合

高分子化学第二章-缩聚及逐步聚合
2.2.2 缩聚反应分类
l 按反应热力学的特征分类 平衡缩聚反应 指平衡常数小于 103 的缩聚反应 不平衡缩聚反应 平衡常数大于 103
l按生成聚合物的结构分类 线型缩聚 体型缩聚
2.2.3 特点
缩聚反应是缩合聚合反应的简称,是缩合反应多 次重复结果形成缩聚物的过程。 1、典型缩合反应——形成低分子化合物
3 、反应程度与数均聚合度的关系
数均聚合度是指高分子中含有的结构单元的数目。
Xn

起始单体数目

达到平衡时同系物数目(大分子数)
N0 N
代入反应程度关系式
P = N0-N = 1- N
N0
N0
P = 1- 1 Xn

1 Xn = 1-P
一般 Xn 100~200 P提高到
0.99~0.995
300 250 200
a. 密闭体系中,nw=P
Xn

1 P
K=
1 nw
K
当M n 104 , P 1, X n
K nw
平衡缩聚中数均聚合度与平衡常数
及小分子副产物浓度三者关系
Xn只与温度有关,与其他无关。(因为nw平衡时为定值)
b. 敞开体系,水排出,则 nw为体系中剩余的。
说明:X
的影响因素
n
密闭体系,只与T有关 敞开体系,与排出的水有关
3、缩聚中的副反应 副反应
消去反应 化学降解 链交换反应
消去反应
HOOC(CH2)nCOOH
HOOC(CH2)nH + CO2
二元酸脱羧温度(℃)
己二酸 300~320 庚二酸 290~310 辛二酸 340~360 壬二酸 320~340 癸二酸 350~370

高分子化学-11(开环聚合)

高分子化学-11(开环聚合)

聚合机理动力学
引发: R-Z + C
增长:
M* +
n
R-Z
M*
Z: 单体的功能基 C: 离子型或分子型引发剂
(RO-, OH-, H+, BF3, H2O)
M-(R-Z)*n-
开环聚合归连锁聚合还是逐步聚合有两方面:
a. 聚合动力学方程 b. 聚合物分子量随时间分布
环醚的开环聚合--- 聚醚的制备
rz离子型或分子型引发剂ro聚合物分子量随时间分布环醚的开环聚合聚醚的制备一般用阳离子引发剂引发clch33?二氯亚甲基丁氧环四氢呋喃二氧五环但三元环醚用阴离子阳离子配位聚合均可
Chapter 7 开环聚合反应 ( Ring opening polymerization )
一、概述-开环聚合的单体及特点
一般用阳离子引发剂引发
CH3
CH2Cl
CH2CH3
O
环氧乙烷
能开环:o
丁氧环
O
环氧乙烷
o
O
环氧氯丙烷
CH2Cl CH2Cl 3,3'-二(氯亚甲基)丁氧环
O
环氧丁烷
o
四氢呋喃
oo
二氧五环
o
不能开环:
o
o
四氢砒喃 二氧六环
环醚的活性次序为:环氧乙烷>丁氧环>四氢呋喃 但三元环醚用阴离子、阳离子、配位聚合均可。
(CH2)5
H2O
+ O
C
NH
HO2C(CH2)5NH2
(2) 氨基酸本身逐步缩聚
COOH H 2 N CO NH H 2O
(3) 氨基上氮向己内酰胺亲核进攻,增长相同。
..

高分子化学 缩聚反应的实施方法

高分子化学 缩聚反应的实施方法

两种互不相溶的溶剂中,再将这两种 溶液倒在一起,在两液相的界面上进 行缩聚反应,聚合产物不溶于溶剂, 在界面析出。 己二酰氯与己二 胺之界面缩聚
界面缩聚能否顺利进行的影响因素
为使聚合反应持续进行,要求聚合物具有足够的力学强度;
水相中需加入适量无机碱,以避免反应生成的HCl与二元胺
反应生成低活性的二元胺盐酸盐; 要求单体反应活性高,界面缩聚不适合与活性相对较低 的酰氯和醇; 有机溶剂的选择对控制聚合产物的分子量很重要。
双酚A的钠盐溶于水相,光气溶于二氯甲烷,常温常 压下快速搅拌可以制得高分子量的聚碳酸酯 缺点是光气为高毒性气体,难操作 。
(4) 乳液缩聚
乳液缩聚是指将单体溶于有机溶剂中,并以乳液 状分散在水中进行缩聚的一种实施方法。
体系组成: (1)分散介质,通常为水 (2)单体,通常为高活性单体 (3)分散相,能溶解单体的有机溶剂 (4)乳化剂或表面活性剂
▲ 溶剂沸点应高于设定的聚合反应温度;
▲ 有利于移除小分子副产物:高沸点溶剂;溶剂
可以与小分子形成共沸物。
优点: ▲ 反应温度低,副反应少;
▲ 传热性好,反应可平稳进行;
▲ 无需高真空,反应设备较简单;
▲ 可合成热稳定性低的产品。
缺点:
▲ 反应影响因素增多,工艺复杂;
▲ 若需除去溶剂时,后处理复杂:溶剂回收,聚合 物的析出,残留溶剂对产品性能的影响等。
实例:聚醚醚酮
O F C O C F
+ HO
OH
O C
O C O O
n
溶剂
O S O
均聚物
共缩聚 (30/70) 共缩聚(50/50) (氟酮/联苯型氟酮)(氟酮/联苯型氟酮)
0.65 1.03

高分子化学02自由基聚合

高分子化学02自由基聚合

自由基聚合是最重要的高分子合成反应之一
4
2.2 连锁聚合的单体
连锁聚合的单体包括单烯类、共轭二烯类、炔类、羰基 和环状化合物。 不同单体对聚合机理的选择性受共价键断裂后的电子结 构控制。 醛、酮中羰基双键上C和O的电负性差别较大,断裂后具 有离子的特性,因此只能由阴离子或阳离子引发聚合,不能 进行自由基聚合。环状单体一般也按阴离子或阳离子机理进 行聚合。
21
(2)以头—尾方式结合时,空间位阻要比头—头方式结合 时的小,故有利于头尾结合。 虽然电子效应和空间位阻效应都有利于生成头尾结构聚 合物,但还不能做到序列结构上的绝对规整。从立体结构来 看,自由基聚合物分子链上取代基在空间的排布是无规的, 因此聚合物往往是无定型的。
22
3)链终止反应 链自由基失去活性形成稳定聚合物的反应。可以 分为偶合终止和歧化终止。 偶合终止:两个链自由基头部的独电子相互结合 成共价键,生成饱和高分子的反应。生成的高分 子两端都有引发剂碎片,聚合度为链自由基重复 单元数的两倍。
δ
CH2
CH
Y
例如丙烯腈中的腈基能使负电荷在碳—氮两个原 子上离域共振而稳定。
H CH2 C C N CH2 H C C N
9
卤素原子既有诱导效应(吸电子),又有共轭效应(推 电子),但两者均较弱,因此既不能进行阴离子聚合,也不 能进行阳离子聚合,只能进行自由基聚合。如氯乙烯、氟乙 烯、四氟乙烯均只能按自由基聚合机理进行。 除了少数含有很强吸电子基团的单体(如偏二腈乙烯、 硝基乙烯)只能进行阴离子聚合外,大部分含吸电子基团的 单体均可进行自由基聚合。 含有共轭双键的烯类单体,如苯乙烯、α-苯乙烯、丁二 烯、异戊二烯等,因电子云流动性大,容易诱导极化,因此 既可进行自由基聚合,也可进行阴、阳离子聚合。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档