低温余热发电技术简介共42页文档

合集下载

纯低温水泥窑余热发电技术

纯低温水泥窑余热发电技术

纯低温水泥窑余热发电技术是直接利用水泥窑窑头窑尾排放的中低温废气进行余热回收发电,无需消耗燃料,发电过程不产生任何污染,是一种经济效益可观、清洁环保、符合国家清洁节能产业政策的绿色发电技术,具有十分广阔的发展空间与前景。

工艺流程: 凝汽器热水井内的凝结水经凝结水泵泵入No.2闪蒸器出水集箱,与出水汇合,然后通过锅炉给水泵升压泵入AQC锅炉省煤器进行加热,经省煤器加热后的水(223℃)分三路分别送到AQC炉汽包,PH炉汽包和No.1闪蒸器内。

进入两炉汽包内的水在锅炉内循环受热,最终产生一定压力下的过热蒸汽作为主蒸汽送入汽轮机做功.进入No.1闪蒸器内的高温水通过闪蒸技术产生一定压力下的饱和蒸汽送入汽轮机第三级后做功,而№.1闪蒸器的出水作为№.2闪蒸器闪蒸饱和蒸汽的热源,№.2闪蒸器闪蒸出的饱和蒸汽送入汽轮机第五级后做功,做过功后的乏汽经过凝汽器冷凝后形成凝结水重新参与热力循环。

生产过程中消耗掉的水由纯水装置制取出的纯水经补给水泵打入热水井。

主机设备性能特点:一、余热锅炉: AQC炉和PH炉AQC锅炉的设计特点如下: 锅炉型式为立式,锅炉由省煤器、蒸发器、过热器、汽包及热力管道等构成。

锅炉前设置一预除尘器(沉降室),降低入炉粉尘。

废气流动方向为自上而下,换热管采用螺旋翅片管,以增大换热面积、减少粉尘磨损的作用。

锅炉内不易积灰,由烟气带走,故未设置除灰装置,工质循环方式为自然循环方式。

过热器作用:将饱和蒸汽变成过热蒸汽的加热设备,通过对蒸汽的再加热,提高其过热度(温度之差),提高其单位工质的做功能力。

蒸发器作用:通过与烟气的热交换,产生饱和蒸汽。

省煤器作用:设置这样一组受热面,对锅炉给水进行预热,提高给水温度,避免给水进入汽包,冷热温差过大,产生过大热应力对汽包安全形成威胁,同时也避免汽包水位波动过大,造成自动控制困难。

一方面最大限度地利用余热,降低排烟温度,另一方面,给水预热后形成高温高压水,作为闪蒸器产生饱和蒸汽的热源。

低温余热发电技术

低温余热发电技术

纯低温水泥余热发电技术介绍宁国水泥厂余热发电处前言新型干法水泥生产技术在我国经历了一个逐步完善提升的发展过程。

近年来,新型干法水泥生产技术在应用中不断提升,尤其是海螺集团,在工艺系统优化、自动控制、投资成本、生产规模、劳动生产率和环境保护等生产技术和装备方面,已赶上甚至领先国际先进水平,只是在可燃废料替代率和生产用电自供率方面,与发达国家相比,还存在一定的差距。

近两年来,我国经济发展水平持续高扬,电力需求增长迅猛,电能供应紧张,国家对工业企业节能提出了更高的要求,尤其是对高耗能产业,要求最大限度地回收利用余热,降低能耗,节约能源,实现经济可持续发展战略。

因此,随着水泥市场竞争的日益激烈与残酷,充分利用窑系统排放废气进行余热发电,提高工厂生产用电自供率,降低水泥生产成本,提高产品的性价比,从而占领和扩大水泥市场份额,保持企业可持续发展,是大型水泥企业当前及今后可供选择的技术之一。

一、水泥窑余热发电技术的发展历程简介:水泥窑余热发电技术的发展大致经历了中空水泥窑余热发电技术、带补燃炉的预分解窑余热发电技术和当前的纯低温水泥窑余热发电技术三个阶段,每个阶段的发展都与同时期的水泥发展技术、企业需求、国家产业政策、环境要求等因素息息相关,密不可分。

1、中空水泥窑余热发电技术中空水泥窑余热发电技术已有80多年的历史,我国水泥窑余热发电技术起源于二十世纪三十年代东北及华北地区建设的若干条中空窑配套的高温余热发电系统,很长一段时间内随着小水泥在全国范围的“遍地开花”,中空水泥窑余热发电技术也随之“扎根落户”,得到了较快的发展。

其水泥窑废气温度为800℃~900℃、熟料热耗为6700KJ~8400KJ/kg,所配套的高温余热发电系统的发电能力为每吨熟料100kW~130kW。

二十世纪八十年代后期,由于新型干法水泥技术的迅猛发展,中空窑等落后生产工艺的高能耗、低产量等劣势凸显,已逐步被淘汰,其中空水泥窑余热发电技术同样也少有发展的空间与意义。

低温余热发电技术简介

低温余热发电技术简介

-1,000
Time / min
Steam Flow Rate Steam For Generation Steam in/from Accumulator
蒸汽负荷平衡图
低温余热的基本概念

Consideration

EAF
低温余热发电技术简介
余热发电原理
余热发电原理

Rankine Cycle

烧结厂5MW低温余热电站

余热资源基础条件
序号 名称 低温热源成分 N2 空气组成 1 O2 H2O 成分 灰分 含量 平均粒径 烟气流量 烟气进口温度 符号 / / / / / / / Vg tgi / g/Nm3 μm Nm3/h ℃ Vol.% 单位 / 数 据 空气 78 21 1 铁矿石烧结熟料 3 100 150,000 368
650
HT

MT 350~650℃ LT <350℃
350
MT

LT
低温余热的基本概念

Location


烧结生产线 在烧结生产过程中,烧制好的成品温度在500~800℃ ,为了便于运输需将其冷却至常温。烧制好的成品的显热 ,在冷却的过程中随热空气(300~350℃)排放到大 气中,此热空气的流量很大,极具回收价值,是低温余热 发电良好的余热资源。 炼铁 炼铁高炉产生温度高于80℃冲渣循环热水,利用热水的 热量,通过复合闪蒸补汽式纯低温余热发电技术也可以进 行低温余热发电 。

Consideration

350 300 250 200 150 100 50 0 1 3 5 137 122
EAF
304.234 264.941 188.640 153.052 84.121 133

低温余热发电的利用技术

低温余热发电的利用技术

低温余热发电的利用技术作者:郑杰来源:《科学与技术》 2019年第1期摘要:余热资源来源丰富,按温度等级被分为(>400度)高温余热、(250-~400度)中温余热、(<250度)低温余热。

其中,高温、中温余热的热源品质较高,可选择余热利用方法较多,可选择各种型式的换热设备、拖动设备、发电设备。

低温余热的利用方法选择相对较少,低温余热只能产生热水或者低参数的蒸汽,应用领域相对较少。

所以,有时只能希望用来发电,接下来举例详细分析利用低温余热资源发电的方法。

关键词:低温余热;螺杆膨胀机;ORC发电1.低温余热发电利用的技术路线1.1 低温余热利用简介低温余热是指热源温低于250度,而常规汽轮机发电需要的蒸汽参数最低为1.27Mpa,温度为340度,即使补汽凝汽式机组的补汽,参数也在0.25MPa,温度200度。

余热用于发电的应用需要将热源换热成热水或者蒸汽,考虑换热器的换热效率、换热面积等因素,换热器最低要保证20度左右的端差,而温度140度蒸汽对应的饱和压力0.36Mpa(a),已不适用于常规汽轮发电机组。

因此,当余热热源温度在低于160度的热源就很难利用。

1.2 低温余热发电利用方式烧结厂全厂的热平衡,已没有能与之匹配简洁有效的直接利用方式,只能用来发电。

如果用来发电,可采用两种方式:1)将烟气换热成压力0.36MPa(a)、温度140度或者更低参数的饱和蒸汽,选用低品位热能汽轮机或者螺杆膨胀机进行发电;2)将烟气换热成热水,通过热水-制冷剂换热连接ORC发电系统直接发电。

2 低品位热能汽轮机或者螺杆膨胀机发电2.1 螺杆膨胀机工作原理:1)进气过程:介质经进气口进入转子的齿间容积后,将推动转子旋转,并使齿间容积不断扩大。

2)膨胀过程:随着齿间容积继续增大,介质体积膨胀温度降低,同时输出动力到转子的伸出轴处。

3)排气过程:当齿间容积排气口相通时,便开始排气过程,直至齿间容积减少为零,完成一个工作循环为止。

低温余热发电循环技术

低温余热发电循环技术

低温余热发电循环技术一、低温余热发电低温余热发电技术是通过回收低于300~400℃的中低温的废蒸汽、烟气所含的低品位的热量来发电,它将低品位的或废弃的热能转化为高级能源——电能。

二、低温余热发电循环技术1、朗肯循环朗肯循环一般指蒸汽郎肯循环,适用于烟气高于350℃以上的余热。

在朗肯循环中,水在锅炉(或余热锅炉)中被加热,产生高温和高压蒸汽。

该蒸汽流过汽轮机时急剧膨胀后冷却至低温、低压的尾气,该汽轮机驱动一台发电机发出电力。

从汽轮机排出的尾气被具有环境温度的空气,或被来自冷却水池或冷却塔中的冷却水冷却成水。

凝结水接着被泵入锅炉重复上述过程。

这种简单的朗肯循环框图如图一所示。

朗肯循环电厂的效率较差,即使是容量最大、采用朗肯循环的最新型的燃煤电厂,一般来说其循环效率都超不过35%(目前国内亚临界参数燃煤电厂的循环效率已达38%,超临界和超超临界参数的燃煤电厂的循环效率分别可达40和43%左右),也就是说燃料燃烧产生的总热量中仅有35%被转换成了热能。

这65%的能量损失是由于一系列的原因造成的。

其中约15%的能量损失是由于燃料中的水分、炉墙的热辐射、排烟损失和自耗电所造成的。

朗肯循环是目前槽式太阳能热电站中广泛采用的动力循环模式, 用太阳热加热集热器中的导热油,经过换热产生蒸汽, 驱动汽轮机带动发电机发电代表性的电站有美国的SEGS 系列电站, 西班牙的Andaso l 系列电站等。

2、有机朗肯循环有机朗肯循环采用高分子量有机工质(如正戊烷), 相变温度低, 可以从温度较低的热源吸热, 并转化为电能。

主要优点是运行温度较低, 可以将槽式集热温度由390°降到304°,降低集热损失; 采用有机工质, 电站可以建在缺水的沙漠地区。

有机朗肯循环系统的主要缺点是循环效率低, 气温较高时比蒸汽循环低15% ~ 25% ,同时成本较高。

3、卡琳娜循环卡琳娜循环系统适合中低温余热利用,是实现200℃以下热电转换最有效的途径。

有机朗肯循环低温余热发电系统综述

有机朗肯循环低温余热发电系统综述

有机朗肯循环低温余热发电系统综述引言在工业生产过程中,大量的热能会以余热的形式排放到环境中,造成了能源的浪费。

这些废热也可能对环境造成影响。

利用余热进行发电,不仅可以提高能源利用效率,还可以减少对环境的影响。

有机朗肯循环低温余热发电系统正是一种利用余热发电的新型技术,本文将就有机朗肯循环低温余热发电系统的原理、特点、应用及发展前景进行综述。

一、有机朗肯循环低温余热发电系统的原理有机朗肯循环低温余热发电系统是利用有机朗肯循环技术,将低温余热转化为电能的一种系统。

其原理是利用有机朗肯循环工质和低温热源之间的温差来驱动发电机发电。

有机朗肯循环是将有机工质置于一个封闭的循环系统内,利用热能的输入和排出来驱动涡轮机进行发电的一种循环系统。

当有机工质受热使得蒸汽压升高时,蒸汽压推动涡轮机工作,从而带动发电机发电;而在冷凝器中,有机工质又被冷却再次变成液态,完成循环。

有机朗肯循环低温余热发电系统是通过这样一个闭合的循环系统,将低温余热转化为电能。

二、有机朗肯循环低温余热发电系统的特点1. 低温工作:有机朗肯循环低温余热发电系统的工作温度低,通常在100°C以下。

这使得这种系统可以有效利用那些传统热能利用技术无法利用的低品位热能资源,如煤矿瓦斯、生活污水、工业废热等。

2. 环保高效:有机朗肯循环低温余热发电系统的工作过程无需核心机械设备如大型锅炉或锅炉,排放的废气和废水相对较少,具有较高的环保性。

由于其低温工作特点,利用的低品位热能资源不会与食品、药品等高温生产过程相冲突,环保性较好。

3. 经济效益:有机朗肯循环低温余热发电系统具有投资少、成本低、回收期短等特点,从经济角度来看很有吸引力。

4. 可操作性强:有机朗肯循环低温余热发电系统的操作比较简便,不需要特别复杂的操作程序,管理维护成本低。

三、有机朗肯循环低温余热发电系统的应用有机朗肯循环低温余热发电系统已经在多个领域得到了应用,主要包括以下几个方面:1. 电厂余热利用:在电厂生产过程中,通常会有大量的低温余热排放,有机朗肯循环低温余热发电系统可以有效地利用这些余热进行发电,提高能源利用效率。

纯低温水泥窑余热发电技术

纯低温水泥窑余热发电技术

纯低温水泥窑余热发电技术随着能源需求的不断增长和环境保护意识的提高,利用工业生产过程中产生的废热进行发电成为了一种重要的节能减排手段。

纯低温水泥窑余热发电技术就是一种利用水泥窑尾烟余热发电的技术,该技术可以有效地回收和利用水泥窑废热,提高能源利用效率,降低环境污染。

纯低温水泥窑余热发电技术的基本原理是通过水泥窑尾烟中的余热来加热工作介质,驱动汽轮机发电。

在水泥生产过程中,水泥窑是一个重要的热能消耗设备,其尾烟中含有大量高温废热。

传统的废热利用方式主要是通过余热锅炉回收烟气中的热能,但是由于烟气温度较高,很难直接回收和利用。

纯低温水泥窑余热发电技术的关键是降低工作介质的汽轮机的进汽温度,以适应水泥窑尾烟的低温特点。

一般来说,水泥窑尾烟的温度在200℃-300℃之间,低于传统发电厂中汽轮机的进汽温度。

为了解决这个问题,纯低温水泥窑余热发电技术采用了一种特殊的工作介质,即有机朗肯循环工质。

有机朗肯循环工质是一种适用于低温热源的工作介质,其蒸汽在较低的温度下就可以达到较高的压力,从而驱动汽轮机发电。

利用有机朗肯循环工质,纯低温水泥窑余热发电技术可以在较低温度下实现高效发电。

同时,有机朗肯循环工质具有较好的工作稳定性和热传导性能,能够适应水泥窑尾烟的特殊工作环境。

纯低温水泥窑余热发电技术的优势主要体现在以下几个方面:1. 节能减排:利用水泥窑废热发电可以有效地回收和利用废热资源,实现能源的高效利用。

同时,该技术可以减少水泥生产过程中的二氧化碳等污染物的排放,降低环境污染。

2. 经济效益:纯低温水泥窑余热发电技术可以将水泥生产过程中的废热转化为电能,实现了能源的自给自足。

通过发电销售,可以带来可观的经济效益。

3. 应用广泛:纯低温水泥窑余热发电技术具有较好的适应性,可以适用于不同规模的水泥生产线。

同时,该技术还可以与其他余热发电技术相结合,实现多能互补发电。

4. 环保可持续:纯低温水泥窑余热发电技术可以有效地降低水泥生产过程中的能耗和污染物排放,为可持续发展做出贡献。

低温余热发电技术简介

低温余热发电技术简介

第一代余热发电技术定义及特征
1.水泥窑第一代纯低温余热发电技术:在不
影响水泥熟料产量、质量,不降低水泥窑运 转率,不改变水泥生产工艺流程、设备,不 增加熟料电耗和热耗的前提下,采用 0.69MPa~1.27MPa——280℃~340℃整齐将 水泥窑窑尾预热器排出的350℃以下废气余热, 窑头熟料冷却机排出的350℃以下废气余热转 化为电能的技术。



(3) 合适的汽包工作压力。考虑在换热过程中,蒸发 受热面内汽水混合物的温度不变,而烟气同汽水混合物 之间传热温差窄点在20℃以上受热面的布置才合理,汽 水混合物的温度直接受压力的影响,所以选择合理的压 力水平为受热面布置创造条件,以防止锅炉造价过高。 (4) 充分降低废气温度。受窑尾废气要用于烘干生料 的工艺限制,一般窑尾废气温度只能降至225℃左右; 窑头余风可以充分降低,但降低过多则造成传热温差小 使得换热面积布置过多,使锅炉造价提高,同时吸收过 多的低品质热量也无法有效提高发电量,所以窑头余风 的降低以满足为窑头和窑尾余热锅炉提供足量的汽包给 水即可。根据热量分配和能量平衡计算,窑头余风降至 96~98℃即可满足要求。 (5) 合理布置受热面。在布置受热面时要考虑窑尾、 窑头的烟气温度特性以及汽轮发电机的特性进行综合考 虑,同时考虑选用合理温差以降低锅炉造价。
第三代系统特点
将窑头冷却机余风进行梯级利用,原中部抽
风口改为两个抽风口,一个为高温480-500℃, 一个为中温330-380℃。高温风将来自窑头窑 尾余热锅炉的低温过热蒸汽进一步提高到 430℃左右,该工艺较第一代系统提高余热发 电量15-20%左右。
中国第二代水泥窑纯低温余热发电技 术与发达国家先进技术的比较
谢谢观赏
WPS Office
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档