天津市河西区2014届高三总复习质量检测(二)理科数学 扫描版含答案

合集下载

2014年天津市高考数学试卷(理科)(附参考答案+详细解析Word打印版)

2014年天津市高考数学试卷(理科)(附参考答案+详细解析Word打印版)

2014年天津市普通高等学校招生统一考试数学试卷(理科)一、选择题(共8小题,每小题5分)1.(5分)i是虚数单位,复数=()A.1﹣i B.﹣1+i C.+i D.﹣+i2.(5分)设变量x,y满足约束条件,则目标函数z=x+2y的最小值为()A.2 B.3 C.4 D.53.(5分)阅读如图的程序框图,运行相应的程序,输出S的值为()A.15 B.105 C.245 D.9454.(5分)函数f(x)=log(x2﹣4)的单调递增区间为()A.(0,+∞)B.(﹣∞,0)C.(2,+∞)D.(﹣∞,﹣2)5.(5分)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=16.(5分)如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC 于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD•FA;③AE•CE=BE•DE;④A F•BD=AB•BF.所有正确结论的序号是()A.①②B.③④C.①②③D.①②④7.(5分)设a,b∈R,则“a>b”是“a|a|>b|b|”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件8.(5分)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC 上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.二、填空题(共6小题,每小题5分,共30分)9.(5分)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取名学生.10.(5分)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.11.(5分)设{a n}是首项为a1,公差为﹣1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1的值为.12.(5分)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b﹣c=a,2sinB=3sinC,则cosA的值为.13.(5分)在以O为极点的极坐标系中,圆ρ=4sinθ和直线ρsinθ=a相交于A、B两点,若△AOB是等边三角形,则a的值为.14.(5分)已知函数f(x)=|x2+3x|,x∈R,若方程f(x)﹣a|x﹣1|=0恰有4个互异的实数根,则实数a的取值范围为.三、解答题(共6小题,共80分)15.(13分)已知函数f(x)=cosx•sin(x+)﹣cos2x+,x∈R.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在闭区间[﹣,]上的最大值和最小值.16.(13分)某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.17.(13分)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.18.(13分)设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=|F1F2|.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.19.(14分)已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q﹣1},集合A={x|x=x1+x2q+…+x n q n﹣1,x i∈M,i=1,2,…n}.(Ⅰ)当q=2,n=3时,用列举法表示集合A;(Ⅱ)设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.20.(14分)设f(x)=x﹣ae x(a∈R),x∈R,已知函数y=f(x)有两个零点x1,x2,且x1<x2.(Ⅰ)求a的取值范围;(Ⅱ)证明:随着a的减小而增大;(Ⅲ)证明x1+x2随着a的减小而增大.2014年天津市高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分)1.(5分)i是虚数单位,复数=()A.1﹣i B.﹣1+i C.+i D.﹣+i【分析】将复数的分子与分母同时乘以分母的共轭复数3﹣4i,即求出值.【解答】解:复数==,故选:A.【点评】本题考查了复数的运算法则和共轭复数的意义,属于基础题.2.(5分)设变量x,y满足约束条件,则目标函数z=x+2y的最小值为()A.2 B.3 C.4 D.5【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【解答】解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点B(1,1)时,直线y=﹣的截距最小,此时z最小.此时z的最小值为z=1+2×1=3,故选:B.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.3.(5分)阅读如图的程序框图,运行相应的程序,输出S的值为()A.15 B.105 C.245 D.945【分析】算法的功能是求S=1×3×5×…×(2i+1)的值,根据条件确定跳出循环的i值,计算输出S的值.【解答】解:由程序框图知:算法的功能是求S=1×3×5×…×(2i+1)的值,∵跳出循环的i值为4,∴输出S=1×3×5×7=105.故选:B.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.4.(5分)函数f(x)=log(x2﹣4)的单调递增区间为()A.(0,+∞)B.(﹣∞,0)C.(2,+∞)D.(﹣∞,﹣2)【分析】令t=x2﹣4>0,求得函数f(x)的定义域为(﹣∞,﹣2)∪(2,+∞),且函数f(x)=g(t)=log t.根据复合函数的单调性,本题即求函数t在(﹣∞,﹣2)∪(2,+∞)上的减区间.再利用二次函数的性质可得,函数t在(﹣∞,﹣2)∪(2,+∞)上的减区间.【解答】解:令t=x2﹣4>0,可得x>2,或x<﹣2,故函数f(x)的定义域为(﹣∞,﹣2)∪(2,+∞),当x∈(﹣∞,﹣2)时,t随x的增大而减小,y=log t随t的减小而增大,所以y=log(x2﹣4)随x的增大而增大,即f(x)在(﹣∞,﹣2)上单调递增.故选:D.【点评】本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于中档题.5.(5分)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【分析】先求出焦点坐标,利用双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,可得=2,结合c2=a2+b2,求出a,b,即可求出双曲线的方程.【解答】解:∵双曲线的一个焦点在直线l上,令y=0,可得x=﹣5,即焦点坐标为(﹣5,0),∴c=5,∵双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,∴=2,∵c2=a2+b2,∴a2=5,b2=20,∴双曲线的方程为﹣=1.故选:A.【点评】本题考查双曲线的方程与性质,考查学生的计算能力,属于中档题.6.(5分)如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC 于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD•FA;③AE•CE=BE•DE;④AF•BD=AB•BF.所有正确结论的序号是()A.①②B.③④C.①②③D.①②④【分析】本题利用角与弧的关系,得到角相等,再利用角相等推导出三角形相似,得到边成比例,即可选出本题的选项.【解答】解:∵圆周角∠DBC对应劣弧CD,圆周角∠DAC对应劣弧CD,∴∠DBC=∠DAC.∵弦切角∠FBD对应劣弧BD,圆周角∠BAD对应劣弧BD,∴∠FBD=∠BAF.∵AD是∠BAC的平分线,∴∠BAF=∠DAC.∴∠DBC=∠FBD.即BD平分∠CBF.即结论①正确.又由∠FBD=∠FAB,∠BFD=∠AFB,得△FBD~△FAB.由,FB2=FD•FA.即结论②成立.由,得AF•BD=AB•BF.即结论④成立.正确结论有①②④.故选:D.【点评】本题考查了弦切角、圆周角与弧的关系,还考查了三角形相似的知识,本题总体难度不大,属于基础题.7.(5分)设a,b∈R,则“a>b”是“a|a|>b|b|”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件【分析】根据不等式的性质,结合充分条件和必要条件的定义进行判断即可得到结论.【解答】解:若a>b,①a>b≥0,不等式a|a|>b|b|等价为a•a>b•b,此时成立.②0>a>b,不等式a|a|>b|b|等价为﹣a•a>﹣b•b,即a2<b2,此时成立.③a≥0>b,不等式a|a|>b|b|等价为a•a>﹣b•b,即a2>﹣b2,此时成立,即充分性成立.若a|a|>b|b|,①当a>0,b>0时,a|a|>b|b|去掉绝对值得,(a﹣b)(a+b)>0,因为a+b >0,所以a﹣b>0,即a>b.②当a>0,b<0时,a>b.③当a<0,b<0时,a|a|>b|b|去掉绝对值得,(a﹣b)(a+b)<0,因为a+b <0,所以a﹣b>0,即a>b.即必要性成立,综上“a>b”是“a|a|>b|b|”的充要条件,故选:C.【点评】本题主要考查充分条件和必要条件的判断,利用不等式的性质结合分类讨论是解决本题的关键.8.(5分)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC 上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.【分析】利用两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义由•=1,求得4λ+4μ﹣2λμ=3 ①;再由•=﹣,求得﹣λ﹣μ+λμ=﹣②.结合①②求得λ+μ的值.【解答】解:由题意可得若•=(+)•(+)=+++=2×2×cos120°++λ•+λ•μ=﹣2+4μ+4λ+λμ×2×2×cos120°=4λ+4μ﹣2λμ﹣2=1,∴4λ+4μ﹣2λμ=3 ①.•=﹣•(﹣)==(1﹣λ)•(1﹣μ)=(1﹣λ)•(1﹣μ)=(1﹣λ)(1﹣μ)×2×2×cos120°=(1﹣λ﹣μ+λμ)(﹣2)=﹣,即﹣λ﹣μ+λμ=﹣②.由①②求得λ+μ=,故选:C.【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义,属于中档题.二、填空题(共6小题,每小题5分,共30分)9.(5分)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取60名学生.【分析】先求出一年级本科生人数所占总本科生人数的比例,再用样本容量乘以该比列,即为所求.【解答】解:根据分层抽样的定义和方法,一年级本科生人数所占的比例为=,故应从一年级本科生中抽取名学生数为300×=60,故答案为:60.【点评】本题主要考查分层抽样的定义和方法,利用了总体中各层的个体数之比等于样本中对应各层的样本数之比,属于基础题.10.(5分)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.【分析】几何体是圆锥与圆柱的组合体,判断圆柱与圆锥的高及底面半径,代入圆锥与圆柱的体积公式计算.【解答】解:由三视图知:几何体是圆锥与圆柱的组合体,其中圆柱的高为4,底面直径为2,圆锥的高为2,底面直径为4,∴几何体的体积V=π×12×4+×π×22×2=4π+π=π.故答案为:.【点评】本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.11.(5分)设{a n}是首项为a1,公差为﹣1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1的值为﹣.【分析】由条件求得,S n=,再根据S1,S2,S4成等比数列,可得=S1•S4,由此求得a1的值.【解答】解:由题意可得,a n=a1+(n﹣1)(﹣1)=a1+1﹣n,S n==,再根据若S1,S2,S4成等比数列,可得=S1•S4,即=a1•(4a1﹣6),解得a1=﹣,故答案为:﹣.【点评】本题主要考查等差数列的前n项和公式,等比数列的定义和性质,属于中档题.12.(5分)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b﹣c=a,2sinB=3sinC,则cosA的值为﹣.【分析】由条件利用正弦定理求得a=2c,b=,再由余弦定理求得cosA=的值.【解答】解:在△ABC中,∵b﹣c= a ①,2sinB=3sinC,∴2b=3c ②,∴由①②可得a=2c,b=.再由余弦定理可得cosA===﹣,故答案为:﹣.【点评】本题主要考查正弦定理、余弦定理的应用,属于中档题.13.(5分)在以O为极点的极坐标系中,圆ρ=4sinθ和直线ρsinθ=a相交于A、B两点,若△AOB是等边三角形,则a的值为3.【分析】把极坐标方程化为直角坐标方程,求出B的坐标的值,代入x2+(y﹣2)2=4,可得a的值.【解答】解:直线ρsinθ=a即y=a,(a>0),曲线ρ=4sinθ,即ρ2=4ρsinθ,即x2+(y﹣2)2=4,表示以C(0,2)为圆心,以2为半径的圆,∵△AOB是等边三角形,∴B(a,a),代入x2+(y﹣2)2=4,可得(a)2+(a﹣2)2=4,∵a>0,∴a=3.故答案为:3.【点评】本题考查把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,求出B的坐标是解题的关键,属于基础题.14.(5分)已知函数f(x)=|x2+3x|,x∈R,若方程f(x)﹣a|x﹣1|=0恰有4个互异的实数根,则实数a的取值范围为(0,1)∪(9,+∞).【分析】由y=f(x)﹣a|x﹣1|=0得f(x)=a|x﹣1|,作出函数y=f(x),y=a|x ﹣1|的图象利用数形结合即可得到结论.【解答】解:由y=f(x)﹣a|x﹣1|=0得f(x)=a|x﹣1|,作出函数y=f(x),y=g(x)=a|x﹣1|的图象,当a≤0,两个函数的图象不可能有4个交点,不满足条件,则a>0,此时g(x)=a|x﹣1|=,当﹣3<x<0时,f(x)=﹣x2﹣3x,g(x)=﹣a(x﹣1),当直线和抛物线相切时,有三个零点,此时﹣x2﹣3x=﹣a(x﹣1),即x2+(3﹣a)x+a=0,则由△=(3﹣a)2﹣4a=0,即a2﹣10a+9=0,解得a=1或a=9,当a=9时,g(x)=﹣9(x﹣1),g(0)=9,此时不成立,∴此时a=1,要使两个函数有四个零点,则此时0<a<1,若a>1,此时g(x)=﹣a(x﹣1)与f(x),有两个交点,此时只需要当x>1时,f(x)=g(x)有两个不同的零点即可,即x2+3x=a(x﹣1),整理得x2+(3﹣a)x+a=0,则由△=(3﹣a)2﹣4a>0,即a2﹣10a+9>0,解得a<1(舍去)或a>9,综上a的取值范围是(0,1)∪(9,+∞),方法2:由f(x)﹣a|x﹣1|=0得f(x)=a|x﹣1|,若x=1,则4=0不成立,故x≠1,则方程等价为a===||=|x﹣1++5|,设g(x)=x﹣1++5,当x>1时,g(x)=x﹣1++5≥,当且仅当x﹣1=,即x=3时取等号,当x<1时,g(x)=x﹣1++5=5﹣4=1,当且仅当﹣(x ﹣1)=﹣,即x=﹣1时取等号,则|g(x)|的图象如图:若方程f(x)﹣a|x﹣1|=0恰有4个互异的实数根,则满足a>9或0<a<1,故答案为:(0,1)∪(9,+∞)【点评】本题主要考查函数零点个数的应用,利用数形结合是解决本题的关键,综合性较强,难度较大.三、解答题(共6小题,共80分)15.(13分)已知函数f(x)=cosx•sin(x+)﹣cos2x+,x∈R.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在闭区间[﹣,]上的最大值和最小值.【分析】(Ⅰ)根据两角和差的正弦公式、倍角公式对解析式进行化简,再由复合三角函数的周期公式求出此函数的最小正周期;(Ⅱ)由(Ⅰ)化简的函数解析式和条件中x的范围,求出的范围,再利用正弦函数的性质求出再已知区间上的最大值和最小值.【解答】解:(Ⅰ)由题意得,f(x)=cosx•(sinx cosx)====所以,f(x)的最小正周期=π.(Ⅱ)由(Ⅰ)得f(x)=,由x∈[﹣,]得,2x∈[﹣,],则∈[,],∴当=﹣时,即=﹣1时,函数f(x)取到最小值是:,当=时,即=时,f(x)取到最大值是:,所以,所求的最大值为,最小值为.【点评】本题考查了两角和差的正弦公式、倍角公式,正弦函数的性质,以及复合三角函数的周期公式应用,考查了整体思想和化简计算能力,属于中档题.16.(13分)某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.【分析】(Ⅰ)利用排列组合求出所有基本事件个数及选出的3名同学是来自互不相同学院的基本事件个数,代入古典概型概率公式求出值;(Ⅱ)随机变量X的所有可能值为0,1,2,3,(k=0,1,2,3)列出随机变量X的分布列求出期望值.【解答】(Ⅰ)解:设“选出的3名同学是来自互不相同学院”为事件A,则,所以选出的3名同学是来自互不相同学院的概率为.(Ⅱ)解:随机变量X的所有可能值为0,1,2,3,(k=0,1,2,3)所以随机变量X的分布列是随机变量X的数学期望.【点评】本题考查古典概型及其概率公式,互斥事件,离散型随机变量的分布列与数学期望,考查应用概率解决实际问题的能力.17.(13分)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.【分析】(I)以A为坐标原点,建立如图所示的空间直角坐标系,求出BE,DC 的方向向量,根据•=0,可得BE⊥DC;(II)求出平面PBD的一个法向量,代入向量夹角公式,可得直线BE与平面PBD 所成角的正弦值;(Ⅲ)根据BF⊥AC,求出向量的坐标,进而求出平面FAB和平面ABP的法向量,代入向量夹角公式,可得二面角F﹣AB﹣P的余弦值.【解答】证明:(I)∵PA⊥底面ABCD,AD⊥AB,以A为坐标原点,建立如图所示的空间直角坐标系,∵AD=DC=AP=2,AB=1,点E为棱PC的中点.∴B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(1,1,1)∴=(0,1,1),=(2,0,0)∵•=0,∴BE⊥DC;(Ⅱ)∵=(﹣1,2,0),=(1,0,﹣2),设平面PBD的法向量=(x,y,z),由,得,令y=1,则=(2,1,1),则直线BE与平面PBD所成角θ满足:sinθ===,故直线BE与平面PBD所成角的正弦值为.(Ⅲ)∵=(1,2,0),=(﹣2,﹣2,2),=(2,2,0),由F点在棱PC上,设=λ=(﹣2λ,﹣2λ,2λ)(0≤λ≤1),故=+=(1﹣2λ,2﹣2λ,2λ)(0≤λ≤1),由BF⊥AC,得•=2(1﹣2λ)+2(2﹣2λ)=0,解得λ=,即=(﹣,,),设平面FBA的法向量为=(a,b,c),由,得令c=1,则=(0,﹣3,1),取平面ABP的法向量=(0,1,0),则二面角F﹣AB﹣P的平面角α满足:cosα===,故二面角F﹣AB﹣P的余弦值为:【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.18.(13分)设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=|F1F2|.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.【分析】(Ⅰ)设椭圆的右焦点为F2(c,0),由|AB|=|F1F2|.可得,再利用b2=a2﹣c2,e=即可得出.(Ⅱ)由(Ⅰ)可得b2=c2.可设椭圆方程为,设P(x0,y0),由F1(﹣c,0),B(0,c),可得,.利用圆的性质可得,于是=0,得到x0+y0+c=0,由于点P在椭圆上,可得.联立可得=0,解得P.设圆心为T(x1,y1),利用中点坐标公式可得T,利用两点间的距离公式可得圆的半径r.设直线l的方程为:y=kx.利用直线与圆相切的性质即可得出.【解答】解:(Ⅰ)设椭圆的右焦点为F2(c,0),由|AB|=|F1F2|,可得,化为a2+b2=3c2.又b2=a2﹣c2,∴a2=2c2.∴e=.(Ⅱ)由(Ⅰ)可得b2=c2.因此椭圆方程为.设P(x0,y0),由F1(﹣c,0),B(0,c),可得=(x0+c,y0),=(c,c).∵,∴=c(x0+c)+cy0=0,∴x0+y0+c=0,∵点P在椭圆上,∴.联立,化为=0,∵x0≠0,∴,代入x0+y0+c=0,可得.∴P.设圆心为T(x1,y1),则=﹣,=.∴T,∴圆的半径r==.设直线l的斜率为k,则直线l的方程为:y=kx.∵直线l与圆相切,∴,整理得k2﹣8k+1=0,解得.∴直线l的斜率为.【点评】本题中考查了椭圆与圆的标准方程及其性质、点与椭圆的位置关系、直线与圆相切问题、点到直线的距离公式、中点坐标公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.19.(14分)已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q﹣1},集合A={x|x=x1+x2q+…+x n q n﹣1,x i∈M,i=1,2,…n}.(Ⅰ)当q=2,n=3时,用列举法表示集合A;(Ⅱ)设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.【分析】(Ⅰ)当q=2,n=3时,M={0,1},A={x|x=x1+x2•2+x3•22,x i∈M,i=1,2,3}.即可得到集合A.(Ⅱ)由于a i,b i∈M,i=1,2,…,n.a n<b n,可得a n﹣b n≤﹣1.由题意可得s﹣t=(a1﹣b1)+(a2﹣b2)q+…+(a n﹣1﹣b n﹣1)q n﹣2+(a n﹣b n)q n﹣1≤(q﹣1)+(q﹣1)q+…+(q﹣1)q n﹣2﹣q n﹣1再利用等比数列的前n项和公式即可得出.【解答】(Ⅰ)解:当q=2,n=3时,M={0,1},A={x|x=x1+x2•2+x3•22,x i∈M,i=1,2,3}.可得A={0,1,2,3,4,5,6,7}.(Ⅱ)证明:由设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.a n<b n,∴s﹣t=(a1﹣b1)+(a2﹣b2)q+…+(a n﹣1﹣b n﹣1)q n﹣2+(a n﹣b n)q n﹣1≤(q﹣1)+(q﹣1)q+…+(q﹣1)q n﹣2﹣q n﹣1=(q﹣1)(1+q+…+q n﹣2)﹣q n﹣1=﹣q n﹣1=﹣1<0.∴s<t.【点评】本题考查了考查了集合的运算及其性质、等比数列的前n项和公式、不等式的基本性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.20.(14分)设f(x)=x﹣ae x(a∈R),x∈R,已知函数y=f(x)有两个零点x1,x2,且x1<x2.(Ⅰ)求a的取值范围;(Ⅱ)证明:随着a的减小而增大;(Ⅲ)证明x1+x2随着a的减小而增大.【分析】(Ⅰ)对f(x)求导,讨论f′(x)的正负以及对应f(x)的单调性,得出函数y=f(x)有两个零点的等价条件,从而求出a的取值范围;(Ⅱ)由f(x)=0,得a=,设g(x)=,判定g(x)的单调性即得证;(Ⅲ)由于x1=a,x2=a,则x2﹣x1=lnx2﹣lnx1=ln,令=t,整理得到x1+x2=,令h(x)=,x∈(1,+∞),得到h(x)在(1,+∞)上是增函数,故得到x1+x2随着t的减小而增大.再由(Ⅱ)知,t随着a的减小而增大,即得证.【解答】解:(Ⅰ)∵f (x )=x ﹣ae x ,∴f′(x )=1﹣ae x ;下面分两种情况讨论:①a ≤0时,f′(x )>0在R 上恒成立,∴f (x )在R 上是增函数,不合题意; ②a >0时,由f′(x )=0,得x=﹣lna ,当x 变化时,f′(x )、f (x )的变化情况如下表:∴f (x )的单调增区间是(﹣∞,﹣lna ),减区间是(﹣lna ,+∞);∴函数y=f (x )有两个零点等价于如下条件同时成立:①f (﹣lna )>0;②存在s 1∈(﹣∞,﹣lna ),满足f (s 1)<0;③存在s 2∈(﹣lna ,+∞),满足f (s 2)<0;由f (﹣lna )>0,即﹣lna ﹣1>0,解得0<a <e ﹣1;取s 1=0,满足s 1∈(﹣∞,﹣lna ),且f (s 1)=﹣a <0,取s 2=+ln ,满足s 2∈(﹣lna ,+∞),且f (s 2)=(﹣)+(ln ﹣)<0;∴a 的取值范围是(0,e ﹣1).(Ⅱ)证明:由f (x )=x ﹣ae x =0,得a=, 设g (x )=,由g′(x )=,得g (x )在(﹣∞,1)上单调递增,在(1,+∞)上单调递减,并且当x ∈(﹣∞,0)时,g (x )≤0,当x ∈(0,+∞)时,g (x )≥0,x1、x2满足a=g(x1),a=g(x2),a∈(0,e﹣1)及g(x)的单调性,可得x1∈(0,1),x2∈(1,+∞);对于任意的a1、a2∈(0,e﹣1),设a1>a2,g(X1)=g(X2)=a1,其中0<X1<1<X2;g(Y1)=g(Y2)=a2,其中0<Y1<1<Y2;∵g(x)在(0,1)上是增函数,∴由a1>a2,得g(X i)>g(Y i),可得X1>Y1;类似可得X2<Y2;又由X、Y>0,得<<;∴随着a的减小而增大;(Ⅲ)证明:∵x1=a,x2=a,∴lnx1=lna+x1,lnx2=lna+x2;∴x2﹣x1=lnx2﹣lnx1=ln,设=t,则t>1,∴,解得x1=,x2=,∴x1+x2=…①;令h(x)=,x∈(1,+∞),则h′(x)=;令u(x)=﹣2lnx+x﹣,得u′(x)=,当x∈(1,+∞)时,u′(x)>0,∴u(x)在(1,+∞)上是增函数,∴对任意的x∈(1,+∞),u(x)>u(1)=0,∴h′(x)>0,∴h(x)在(1,+∞)上是增函数;∴由①得x1+x2随着t的增大而增大.由(Ⅱ)知,t随着a的减小而增大,∴x1+x2随着a的减小而增大.【点评】本题考查了导数的运算以及利用导数研究函数的单调性与极值问题,也考查了函数思想、化归思想、抽象概括能力和分析问题、解决问题的能力,是综合型题目.。

2014年天津市高考数学试卷(理科)答案与解析

2014年天津市高考数学试卷(理科)答案与解析

2014年天津市高考数学试卷(理科)参考答案与试题解析一、选择题(共 8小题,每小题5分)1.( 5分)(2014 ?天津)i 是虚数单位,复数 -------- =( )3+41 A . 1-i B . - 1+iC .丄+」D_ +_i25 2^77考点:复数代数形式的乘除运算. 专题:数系的扩充和复数.分析:将复数的分子与分母同时乘以分母的共轭复数3 -4i ,即求出值.解答:解:复数 7+1. (7+1) (3-41)|25 - 25! “.34-41 (3+蚯)(3-4i)=251故选A .点评:本题考查了复数的运算法则和共轭复数的意义,属于基础题.最小值为( )A . 2B . 3考点:简单线性规划. 专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求 解答:解:作出不等式对应的平面区域,由 z=x+2y ,得 y=-丄-*盂4违的截距最小,此时z 最小. 此时z 的最小值为z=1+2 xi=3, 故选:B .平移直线y=- ,由图象可知当直线 y=- 经过点B (1, 1)时,直线y=2. ( 5分)(2014?天津)设变量 z=x+2y 的z 的最大值. x ,则目标函数ic/Il-1-1■J/\点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.3.(5分)(2014?天津)阅读如图的程序框图,运行相应的程序,输出S的值为()A . 15 B. 105 C. 245 D. 945考点:程序框图.专题:算法和程序框图.分析:算法的功能是求S=1 >3>5X-(2i+1 )的值,根据条件确定跳出循环的i值,计算输出S的值.解答:解:由程序框图知:算法的功能是求S=1 X3>5X->>2i+1 )的值,•/跳出循环的i值为4,•••输出S=1 X3X5XM05 .故选:B.点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.4. > 5分)> 2014?天津)函数f >x)=log >x2_4)的单调递增区间为> )~2A . > 0, +7 B. (— a, 0)C. > 2, +呵D. > — a,—2)考点:复合函数的单调性.专题:函数的性质及应用.分析:令t=x2- 4 >0,求得函数f (x)的定义域为(-汽-2) U (2, + 8),且函数f ( x) =g (t) =log ]t.根据复合函数的单调性,本题即求函数t在(-8, - 2) U (2, + ^) 2上的减区间•再利用二次函数的性质可得,函数t在(-8,- 2) U (2, + 8)上的减区间.解答:解:令t=x2- 4 > 0,可得x > 2,或X V- 2,故函数f (x)的定义域为(- 8,- 2) U (2, + 8),当x€(-8,- 2)时,t随x的增大而减小,y=log 11随t的减小而增大,~2所以y=log ] (x2- 4)随x的增大而增大,即f (乂)在(-8,- 2)上单调递增.故选:D.点评:本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于中档题.2 2岂-耳=1 (a>0, b>0)的一条渐近线平行于直线a2b23• • 2 2 .2-c =a +b ,2 2--a =5, b =20,5. ( 5分)(2014?天津)已知双曲线y=2x+10,双曲线的一个焦点在直线I上,则双曲线的方程为(=1[Too考点:双曲线的标准方程.专题:圆锥曲线的定义、性质与方程.分析:先求出焦点坐标,利用双曲线£-£=1 (a>0, b>0)的一条渐近线平行于直线a21/, 2 2 2y=2x+10,可得=2,结合c =a +b,求出aa, b,即可求出双曲线的方程.解答:解:•••双曲线的一个焦点在直线I 上,令y=0,可得x= - 5,即焦点坐标为(-5, 0), ••• c=5,-=1 (a> 0, b > 0)的一条渐近线平行于直线I: y=2x+10 ,C.=1故选:A .点评:本题考查双曲线的方程与性质,考查学生的计算能力,属于中档题.6. (5分)(2014?天津)如图,△ ABC是圆的内接三角形,/ BAC的平分线交圆于点D ,交BC于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:①BD平分/ CBF;②FB2=FD?FA;③AE?CE=BE ?DE;④AF?BD=AB ?BF .所有正确结论的序号是()A .①②B .③④C .①②③D .①②④考点:与圆有关的比例线段;命题的真假判断与应用.专题:直线与圆.分析:本题利用角与弧的关系,得到角相等,再利用角相等推导出三角形相似,得到边成比例,即可选出本题的选项.解答:解:•••圆周角/ DBC对应劣弧CD,圆周角/ DAC对应劣弧CD,••• / DBC= / DAC .•••弦切角/ FBD对应劣弧BD,圆周角/ BAD对应劣弧BD ,•/ FBD= / BAF .•/ AD是/ BAC的平分线,•/ BAF= / DAC .•/ DBC= / FBD .即BD平分/ CBF .即结论①正确. 又由 / FBD= / FAB , / BFD= /AFB,得△ FBD 〜△ FAB .由,FB2=FD?FA .即结论②成立.r A rb由—-得AF?BD=AB ?BF .即结论④成立.AF _AB正确结论有①②④ .故答案为D点评:本题考查了弦切角、圆周角与弧的关系,还考查了三角形相似的知识,本题总体难度 不大,属于基础题.7. ( 5 分)(2014?天津)设 a , b€R ,贝U a >b”是 a|a|>b|b|”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 考点:必要条件、充分条件与充要条件的判断. 专题:简易逻辑.分析:根据不等式的性质,结合充分条件和必要条件的定义进行判断即可得到结论. 解答:解:若a >b ,① a > b%,不等式a|a|> b|b 等价为a?a > b?b ,此时成立.② 0>a > b ,不等式a|a >b|b|等价为-a?a >- b?b , 即卩a 2< b 2,此时成立.③ a^0 > b ,不等式a|a|> b|b 等价为a?a >- b?b ,即a >- b ,此时成立,即充分性 成立. 若 a|a|> b|b|,① 当 a >0, b > 0 时,a|a |>b|b|去掉绝对值得,(a - b ) (a+b )> 0,因为 a+b >0,所 以 a -b >0,即 a >b .② 当 a > 0, b < 0 时,a > b .③ 当 a < 0, b < 0 时,a|a |>b|b|去掉绝对值得,(a - b ) (a+b )< 0,因为 a+b < 0,所 以a -b >0,即a >b .即必要性成立,综上a >b"是a|a |>b|b|”的充要条件, 故选:C .点评:本题主要考查充分条件和必要条件的判断,利用不等式的性质结合分类讨论是解决本题的关键.& ( 5分)(2014?天津)已知菱形 ABCD 的边长为2, / BAD=120 °点 _ _.=入L-, I =』:’,若(_-?,* =1,-'上?-.1 =考点: 专题: 分析: 平面向量数量积的运算. 平面向量及应用.利用两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义由AL ? AF 1,求得4 A+4卩-2入=:3①;再由JE ?L,F --;,求得-入-入甘-下②.纟口 合①②求得入+卩的值.解答:解:由题意可得若 AE ?AT = ( A5+BE ) ?(应5+DF )=阴存 AD +址■ AD +BI!・ DFE 、F 分别在边BC 、DC 上, 1B. 2C. 5D . 2 36?12A .=4 V4 p- 2 入—2=1 ,4 V+4 p- 2 入=3 ①.西?斎-EC ?(-氏)版呢=(1 -入)厩?(1 - P)瓦=(1- V)而? (1 -2=(1 - V (1-p) »>DOS120 = (1 -入—p+ 入)(-2)=-二,即-V p+ V =,-二②.3由①②求得V+尸二,6点评:本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义, 属于中档题.二、填空题(共6小题,每小题5分,共30分)9. (5分)(2014?天津)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4: 5: 5: 6,则应从一年级本科生中抽取60 名学生.考点:分层抽样方法. 专题:概率与统计.分析:先求出一年级本科生人数所占总本科生人数的比例,再用样本容量乘以该比列,即为所求.解答:解:根据分层抽样的定义和方法,一年级本科生人数所占的比例为丄4+5+B+6 5故应从一年级本科生中抽取名学生数为300 >=60,故答案为:60.=2 >2 >Cos120°【-■ i' '■+ 入「,i?「i+ V I?『,'= -2+4 p+4 廿入卩2滋Xdos120°点评:本题主要考查分层抽样的定义和方法, 应各层的样本数之比,属于基础题.利用了总体中各层的个体数之比等于样本中对故答案为:上.10.(5分)(2014?天津)一个几何体的三视图如图所示(单位:m ),则该几何体的体积为侧视图考点:由三视图求面积、体积. 专题:立体几何.分析:几何体是圆锥与圆柱的组合体,判断圆柱与圆锥的高及底面半径,代入圆锥与圆柱的 体积公式计算. 解答:解:由三视图知:几何体是圆锥与圆柱的组合体,其中圆柱的高为4,底面直径为2,圆锥的高为2,底面直径为4,几何体的体积V n点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.11. (5分)(2014?天津)设{a n }是首项为a i ,公差为-1的等差数列,S n 为其前n 项和,若 S i , S 2, S 4成等比数列,则 a 1的值为 -丄.考点:等比数列的性质. 专题:等差数列与等比数列. 分析:n ( 2ai+l - n )由条件求得,S n = -------------- ----------- ,再根据S 1,S 2, S 4成等比数列,可得% Z=S 1?S 4, 由此求得a 1的值.m .正视图 傭观圏兀.故答案为:再根据若S i, S2, S4成等比数列,可得S 2 2=S1?S4,即(施]-1) 2=a i? (4a i -6),解得a i=-—,1故答案为:-一.2点评:本题主要考查等差数列的前n项和公式,等比数列的定义和性质,属于中档题.12. (5分)(2014?天津)在△ ABC中,内角A, B, C所对的边分别是a, b, c,已知b-c4a,2sinB=3sinC,则cosA的值为一丄—考点:余弦定理;正弦定理.专题:解三角形.分析:由条件利用正弦定理求得a=2c, ,再由余弦定理求得cosA= * 的值.2 2bc解答:解:在△ ABC中,故答案为:-一.4点评:本题主要考查正弦定理、余弦定理的应用,属于中档题.13. (5分)(2014?天津)在以0为极点的极坐标系中,圆p=4sin B和直线p in 9=a相交于A、B两点,若△ AOB是等边三角形,则a的值为3 .考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:把极坐标方程化为直角坐标方程,求出B的坐标的值,代入x2+ (y- 2) 2=4,可得a 的值.解答:解:直线psin 0=a 即y=a, (a>0),曲线p=4sin 0,2 2 2即p =4 psin0,即x + (y - 2) =4,表示以C (0, 2)为圆心,以2为半径的圆,解答:解:由题意可得, a n=a i+( n —1)( —1 )=a i+1 -■/ b- c」a ①,2sinB=3sinC ,4••• 2b=3c ②,•/ △ AOB 是等边三角形,••• B (二a , a ),3直线和圆的位置关系, 求出B 的坐214. ( 5 分)(2014?天津)已知函数 f ( x ) =|x +3x|, 个互异的实数根,则实数 a 的取值范围为 (0, 1)考点:专题:分析:根的存在性及根的个数判断. 函数的性质及应用. 由 y=f (x )- a|x - 1|=0 得 f (x ) =a|x - 1|,作出函数 y=f (x ), y=a|x - 1|的图象利用 数形结合即可得到结论.解答:解:由 y=f (x ) - a|x — 1|=0 得 f (x ) =a|x - 1|, 作出函数y=f (x ), y=g (x ) =a|x - 1|的图象, 当a 切,不满足条件,f a ts - 1)玄>1则 a > 0,此时 g (x ) =a|x - 1|=, _ ,L _ a (i _ PY 1当—3v x v 0 时,f (x ) = - x 2- 3x , g (x ) = - a (x - 1), 当直线和抛物线相切时,有三个零点, 此时-x 2 - 3x= - a (x - 1),即 x + (3 - a ) x+a=0, 则由△ = (3- a ) 2 - 4a=0,即 a 2- 10a+9=0,解得 a=1 或 a=9, 当a=9 时,g (x ) = - 9 (x - 1), g (0) =9,此时不成立,•此时 a=1,要使两个函数有四个零点,则此时0v a v 1,若a > 1,此时g (x ) = - a (x - 1 )与f (x ),有两个交点, 此时只需要当x > 1时,f (x ) =g (x )有两个不同的零点即可, 即 x +3x=a (x - 1),整理得 x + ( 3 - a ) x+a=0 ,则由△ = (3- a ) 2 - 4a > 0, 即卩 a 2 - 10a+9>0,解得 a v 1 (舍去)或 a > 9, 综上a 的取值范围是(0, 1) U (9, + s),方法 2:由 f (x )- a|x - 1|=0 得 f (x ) =a|x - 1|,x €R ,若方程 f (x )- a|x- 1|=0 恰有 4 U (9, +s).代入 x 2+ ( y - 2)2=4,可得(2+ (a -2) 2 =4,a > 0, - - a=3.点评:本题考查把极坐标方程化为直角坐标方程的方法, 标是解题的关键,属于基础题.若x=1,则4=0不成立, 故x 力,f (J=1x 沖1 =1、丘 - 1 ) 2+5 (K- 1)|K -I || lx-11x-1+5|, 设 g (x ) =x — 1+'!当 x > 1 时,g (x ) =x — 1+,:Z-1+5 ■1—-— - ■■ I ",当且仅当 X _ 1口 号,+5,则方程等价为|=|x - 1+1X-1仁1,即x=3时取等当X V 1时,=5 — 4=1,当且仅当—(x — 1)=—」L ,即卩x= — 1时取等号,Z- 1则|g ( X )I 的图象如图:若方程f (x )— a|x — 1|=0恰有4个互异的实数根, 则满足a > 9或0 V a v 1,故答案为:点评:本题主要考查函数零点个数的应用,利用数形结合是解决本题的关键,综合性较强, 难度较大.三、解答题(共6小题,共80分)I 7115. (13 分)(2014?天津)已知函数 f (x ) =cosx?sin (x+—)(I )求f (x )的最小正周期;jr| jr(n )求f (x )在闭区间[-——,——]上的最大值和最小值.4 4考点:三角函数中的恒等变换应用;三角函数的周期性及其求法. 专题:三角函数的图像与性质. 分析:(i )根据两角和差的正弦公式、倍角公式对解析式进行化简,再由复合三角函数的,x €R .(n )由(i )化简的函数解析式和条件中x 的范围,求出2x- —的范围,再利用3正弦函数的性质求出再已知区间上的最大值和最小值.解答: 解答解:(i )由题意得,1 . . V3 2=-=.i ;■: ' ■ ■q q=*「」「.I-:.」.(2工-中Vs qL ・2Sin所以, 由(I )得 f (x )|一 ,周期公式 求出此函数的最小正周期;cosx )f (x ) =cosx? (—sinx2f (x )的最小正周期=n.16. ( 13分)(2014?天津)某大学志愿者协会有 6名男同学,4名女同学,在这10名同学中, 3名同学来自数学学院,其余 7名同学来自物理、化学等其他互不相同的七个学院,现从这 10名同学中随机选取 3名同学,到希望小学进行支教活动 (每位同学被选到的可能性相同) (I )求选出的3名同学是来自互不相同学院的概率;f n )设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望.考点:古典概型及其概率计算公式;离散型随机变量及其分布列. 专题:概率与统计. (I )利用排列组合求出所有基本事件个数及选出的 基本事件个数,代入古典概型概率公式求出值;兀 口],则 2疋一 "€[— 5717T ? -------------2 23 6 6,即吕口(2丈一芈)=- 乂时,_ 1~2f ( x ) 函数f (x )取到最小值是:取到最大值是:丄,最小值为4点评:本题考查了两角和差的正弦公式、倍角公式,正弦函数的性质,以及复合三角函数的应用,考查了整体思想和化简计算能力,属于中档题.分析: 3名同学是来自互不相同学院的(n )随机变量X 的所有可能值为0, 1, 2,3, P (X=k)3-k---- --- (k=0 , 1, 2,解答:3)列出随机变量 X 的分布列求出期望值.f I )解:设 选出的3名同学是来自互不相同学院”为事件A ,点评: _C 扣*弼49c10,=60所以选出的3名同学是来自互不相同学院的概率为(n )解:随机变量X 的所有可能值为2, 3)所以随机变量的分布列是2 3 lb随机变量0, 1, 2,4960(k=0, 1,31] 30 X 的数学期望 E47+3X7^^.5210 30 5本题考查古典概型及其概率公式,互斥事件,离散型随机变量的分布列与数学期望,考查应用概率解决实际问题的能力. 由 x€[- 所以,所求的最大值为丄,_]得,2x €[-sin 〔2蛊 - ¥ 1时, ],周期公式17. ( 13 分)(2014?天津)如图,在四棱锥 P- ABCD 中,PA 丄底面 ABCD ,AD 丄 AB ,AB // DC , AD=DC=AP=2 , AB=1,点 E 为棱 PC 的中点.(I )证明:BE 丄DC ;(II )求直线BE 与平面PBD 所成角的正弦值;(川)若F 为棱PC 上一点,满足 BF 丄AC ,求二面角F -AB - P 的余弦值.考点: 专题: 分析: 与二面角有关的立体几何综合题;直线与平面所成的角. 空间位置关系与距离;空间角;空间向量及应用;立体几何.(1)以A 为坐标原点,建立如图所示的空间直角坐标系, 求出BE , DC 的方向向量,根据二了? |-0 ,可得BE 丄DC ;(II )求出平面PBD 的一个法向量,代入向量夹角公式,可得直线 BE 与平面PBD所成角的正弦值;(川)根据BF 丄AC ,求出向量IT 的坐标,进而求出平面 FAB 和平面ABP 的法向量, 代入向量夹角公式,可得二面角 F - AB - P 的余弦值. 解答: 证明:(1) •/ PA 丄底面ABCD , AD 丄AB ,以A 为坐标原点,建立如图所示的空间直角坐标系,••• AD=DC=AP=2 , AB=1,点 E 为棱 PC 的中点.••• B ( 1, 0 , 0), C (2 , 2 , 0), D ( 0 , 2 , 0),P(0 , 0 , 2), E (1 , 1 , 1)-- ■- - N=(0 , 1 , 1), 1'= (2 , 0 , 0) I '=0 ,• BE 丄 DC ;(n ) v | i= ( - 1, 2, 0),可;=(1, 0, - 2),设平面PBD 的法向量| = (x , y , z ),令 y=1,则 >■= ( 2, 1, 1), 则直线BE 与平面PBD 所成角B 满足:(出)V|,■-= (1 , 2, 0),心(-2,- 2, 2), i= (2, 2, 0),由F 点在棱PC 上,设CF =疋P = (- 2入,-2入2 X) (0三入1) 故E?=^+EF = (1 - 2 人 2 - 2X, 2X (0W 入1 炙, 由 BF 丄 AC ,得 BF ?AC =2 (1 - 2 X +2 (2- 2 X =0,设平面FBA 的法向量为ii= (a , b , c ),令 c=1,则「i= ( 0,- 3, 1), 取平面ABP 的法向量| i = (0, 1, 0), 则二面角F - AB - P 的平面角 a 满足:故二面角F - AB - P 的余弦值为:— 10点评:本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向 量夹角问题,是解答的关键.ID 尸 BD-m*PB=0,得-s+2y=0 x - 2 z=0sin 0=in故直线BE 与平面PBD 所成角的正弦值为Vsn * AB = 0 n*BF=0COS a == 3I i | ■|n | 7103v'TC i10 即芋=(-,得18. (13分)(2oi4?天津)设椭圆亠+ 二=1 (a > b > o )的左、右焦点分别为 F i 、F 2,右顶a 2b 2点为A ,上顶点为B ,已知|AB|=丄丄|F i F 2|.2(I )求椭圆的离心率;(n )设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点 F 1,经过原点O 的直线I 与该圆相切,求直线I 的斜率.考点:直线与圆锥曲线的综合问题. 专题:圆锥曲线的定义、性质与方程.分析:(I )设椭圆的右焦点为F 2 ( c , o ),由|AB|=V3|F 1F 2|.可得Qj + b 巫容x 2c , 再利用b 2=a 2 - c 2, e=即可得出.aj - ] ■ 1 . - =c (x o +c ) +cy o =0,(n )由(i )可得b 2=c 2 •可设椭圆方程为? 2亠;亡二1 ,设 P (x o , y o ),由 F i (-c , o ) , B( o , c ),可^得卩利用圆的性质可得-,于是I卜=。

2014级高三二诊数学(理)参考答案及评分意见

2014级高三二诊数学(理)参考答案及评分意见
数学 ( 理科 ) 参考答案及评分标准
( 一㊁ 选择题 : 每小题 5 分 , 共6 0 分) 1. D; 2. A; 3. B; 4. A; 5. D; ; ; ; ; 7. B 8. C 9. D 1 0. C 1 1. D; ) 第 Ⅱ 卷( 非选择题 , 共9 分 0 ( 二㊁ 填空题 : 每小题 5 分 , 共2 0 分) 2 n 1 3. ㊀㊀1 4. 3 2. 8; ㊀㊀1 5. 4; ㊀㊀1 6. . -2; n +1 ( 三㊁ 解答题 : 共7 0 分) B E C E ( 解: 在 әB 据正弦定理 , 有 1 7. Ⅰ) E C 中, . = s i n øB C E s i n B 2 π , ȵ øB = B E =1, C E= 7, 3 3 B E ������s i n B 2 2 1 ʑ s i n øB C E= . = = C E 1 4 7 ( 由平面几何知识 , 可知 øD Ⅱ) E A = øB C E. π 在R t әA E D中, ȵ øA = , A E =5, 2 3 57 2 ʑc o s øD E A = 1-s i n øD E A = 1- = . 2 8 1 4 第 Ⅰ 卷( 选择题 , 共6 0 分) 6. C; 1 2. A.
ɡ ɡ ɡ
C D2 = C E2 +D E2 -2 C E������D E������ c o s øC E D = 7+2 8-2ˑ 7 ˑ2 7 ˑ ( -
当 x =5 7 0时, 3ˑ5 7 0+4 3 3. 2=6 0 4. 2. y =0.
������������������������1 0分
高三数学 ( 理科 ) 二诊测试参考答案第 ㊀ 共 5页) 1 页(
������������������������1 特征量 y 的估计值为 6 ʑ 当 x =5 7 0时, 0 4. 2. 2分 ( 解: 如图 , 作 GM ʊ C 交B 连接 MF . 1 9. Ⅰ) D, C 于点 M , 作 BH ʊ AD , 交 GM 于 N , 交D C 于H. ȵE F ʊC D ,ʑGM ʊ E F. ʑGN =A B =3, HC =9. ȵA B ʊ GM ʊ D C, NM BM A G 2 ʑ = = = . HC B C AD 3 ʑNM =6. ʑGM =GN + NM =9. ������������������������4 分 ʑGM ������E F. ʑ 四边形 GMF E 为平行四边形 . ʑG E ʊ MF . 又 MF ⊂ 平面 B C F, G E ⊄ 平面 B C F, ������������������������6 分 ʑG E ʊ 平面 B C F. ( Ⅱ )ȵ 平面 AD E ʅ 平面 C D E F, AD ʅ D E, AD ⊂ 平面 AD E, ʑAD ʅ 平面 C D E F. 以 D 为坐标原点 , D C 为x 轴 , D E 为y 轴 , DA 为z 轴建立如图所示的空间直角坐标 系D x z. y ʑ E (0, 4, 0) , F (9, 4, 0) , C (1 2, 0, 0) , B (3, 0, 4 3) . ң ң , , , ( ) ʑE F = 900 E B = (3, 4 3) . -4, 设平面 E B F 的法向量n1 = (x1 , z1 ) . y1 , ң x1 =0 n ������E F =0, 9 由 1 得 . ң 3 x1 -4 z1 =0 ������ y1 +4 3 n1 E B =0 ������������������������8 分 取 y1 = 3 , 得 n1 = (0,3, 1) . ң ң 同理 , F C = (3, 0) , F B = ( -6, -4, 4 3) . -4, , ) 设平面 B C F 的法向量n2 = ( x2 , z . y2 2 ң 3 x 4 ������ - =0 2 2 y n F C =0, 由 2 得 . ң x2 -4 z2 =0 -6 y2 +4 3 n2 ������F B =0 ������������������������1 取 x2 =4, 得 n2 = (4, 0分 3, 3 3) . n1 ������ n2 0ˑ4+ 3 ˑ3+1ˑ3 3 63 3 3 9 ʑ c o s< n1 , n2 >= . = = = n1 | n2 | 2 6 | | 2ˑ 1 6+9+2 7 2ˑ2 1 3 ������������������������1 1分 ȵ 二面角 E -B F -C 为钝二面角 ,

2014年天津高考理科数学试题含答案(Word版)

2014年天津高考理科数学试题含答案(Word版)

则该几何体的体积 _______ m . 其前 n 和.若 S1 , S 2 , S 4 成等比数列 则 a1 的
3
11 设 { an }是首 值 __________.
a1 公差 -1 的等差数列 Sn
12 在 D ABC 中 内角 A, B, C 所对的边 别是 a, b, c . 知 b - c = 的值 _______. 13 在
数 a 的取值范围 __________. 解答题 15 本题共 6 道大题 13 满 80 .解答 写出文 说明 证明过程或演算 骤.
本小题满
知函数 f ( x ) = cos x ⋅ sin x + 求 f ( x ) 的最小 周期 求 f ( x) 在 16 本小题满 区间 − 13 男
0,1,2,L, q - 1} 集合 知 q 和 n 均 给定的大于 1 的自然数.设集合 M = {
D
-
17 25 + i 7 7
2 设变
x y 满足 束条
x + y − 2 ≥ 0, x − y − 2 ≤ 0, 则目标函数 z = x + 2 y 的最小值 y ≥ 1,
C 4 D 5
A 2
B
3
3 阅读右边的程序框
行相 的程序 输出的 S 的值
A 15
B 105
1
C 245

π
3 2 − 3 cos x + 3 4
x∈R .
π π , 4 4
学 4
的最大值和最小值.
某大学志愿者协会有 6
女 学. 在这 10
学中 3
学来自数学学院 其余 7 学 到希望小学
学来自物理 化学等其他互 相 的七个学院. 现从这 10 进行支教活动 求选出的 3 设X 17 如 位 学被选到的可能性相 .

天津市河西区高三数学下学期总复习质量调查试题(二)文

天津市河西区高三数学下学期总复习质量调查试题(二)文

河西区2014—2015学年度第二学期高三年级总复习质量调查(二)数学试卷(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至8页。

答卷前,考生务必将自己的学校、姓名、准考号填写密封线内相应位置。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,将答案填在题后的括号内。

3.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件A,B互斥,那么)()()(BPAPBAP+=·如果事件A,B相互独立,那么)()()(BPAPABP⋅=·柱体的体积公式ShV=·锥体的体积公式ShV31=其中S表示柱(锥)体的底面面积h表示柱(锥)体的高一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)a为正实数,i是虚数单位,2a ii-=,则a=()(A) 2(B)(C) (D) 1(2)设变量x,y满足约束条件1124x yx yx y+≥⎧⎪-≥⎨⎪-≥⎩,则目标函数3z x y=+的最小值为()(A) 11(B) 3(C) 2(D) 13 3(3)某程序框图如右图所示,若该程序运行后输出的值是59,则( ) ( )(A)4a = (B) 5a = (C)6a = (D) 7a = (4)函数()242ln 5f x x x x =--+的零点个数为( )(A) 3(B) 2(C) 1 (D) 0已知双曲线22221x y a b -=(0,0)a b >>的两条渐近线与抛物线22y px =(0)p >的准线分别交于A ,B 两点, O 为坐标原点. 若双曲线的离心率为2,ABO ∆的则p 的值为( )(A) 1 (B) 32 (C) 2 (D) 3(6)函数()2sin()f x x ωϕ=+(0,)22ππωϕ>-<<的部分图象如图所示,则,ωϕ的值分别是( )(A)2,3π-(B)2,6π-(C)4,6π-(D)4,3π(7)下列四个命题中1p :()0,x ∃∈+∞,1123xx⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭;2p :()0,1x ∃∈,1123log log x x >;3p :()0,x ∀∈+∞,1123xx⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭;4p :10,3x ⎛⎫∀∈ ⎪⎝⎭,131log 2xx ⎛⎫< ⎪⎝⎭.其中真命题是( )(A)1p ,3p(B)1p ,4p(C)2p ,3p(D)2p ,4p设函数()f x 满足()()22x e x f x xf x x '+=,()228e f =,则0x >时()f x ( ) (A) 有极大值,无极小值 (B) 有极小值,无极大值(C) 既有极大值又有极小值 (D) 既无极大值也无极小值 河西区2014—2015学年度第二学期高三年级总复习质量调查(二) 数 学 试 卷(文史类) 第Ⅱ卷 注意事项:1.用黑色墨水的钢笔或签字笔将答案写在试卷上。

2014年高考天津理科数学试题及答案(word解析版)

2014年高考天津理科数学试题及答案(word解析版)

xy2O-221FEDCBA 2014年普通高等学校招生全国统一考试(天津卷)数学(理科)第Ⅰ卷(共40分)一、选择题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2014年天津,理1,5分】i是虚数单位,复数7i34i()(A)1i(B)1i(C)1731i2525(D)1725i77【答案】A【解析】7i34i7i2525i1i34i34i34i25,故选A.【点评】本题考查了复数的运算法则和共轭复数的意义,属于基础题.(2)【2014年天津,理2,5分】设变量x,y满足约束条件2012xyx yy≥--≤+≥-⎧⎪⎨⎪⎩,则目标函数2z x y=+的最小值为()(A)2 (B)3 (C)4 (D)5【答案】B【解析】作出可行域,如图结合图象可知,当目标函数通过点1,1时,z取得最小值3,故选B.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.(3)【2014年天津,理3,5分】阅读右边的程序框图,运行相应的程序,输出的S的值为()(A)15 (B)105 (C)245 (D)945【答案】B【解析】1i时,3T,3S;2i时,5T,15S;3i时,7T,105S,4i输出105S,故选B.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.(4)【2014年天津,理4,5分】函数212log4f x x的单调递增区间是()(A)0,(B),0(C)2,(D),2【答案】D【解析】240x,解得2x或2x.由复合函数的单调性知f x的单调递增区间为,2,故选D.【点评】本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于中档题.(5)【2014年天津,理5,5分】已知双曲线22221x ya b0,0a b的一条渐近线平行于直线l:210y x,双曲线的一个焦点在直线l上,则双曲线的方程为()(A)221520x y(B)221205x y(C)2233125100x y(D)2233110025x y【答案】A【解析】依题意得22225b acc a b,所以25a,220b,双曲线的方程为221520x y,故选A.【点评】本题考查双曲线的方程与性质,考查学生的计算能力,属于中档题.(6)【2014年天津,理6,5分】如图,ABC是圆的内接三角形,BAC的平分线交圆于点D,交BC于点E,过点B的圆的切线与AD的延长线交于点F.在上述条件下,给出下列四个结论:①BD 平分CBF ;②2FB FD FA ;③AE CE BE DE ;④AF BD AB BF .则所有正确 结论的序号是( )(A )①② (B )③④ (C )①②③ (D )①②④ 【答案】D 【解析】∵圆周角DBC ∠对应劣弧CD ,圆周角DAC ∠对应劣弧CD ,∴DBC DAC ∠=∠.∵弦切角FBD∠对应劣弧BD ,圆周角BAD ∠对应劣弧BD ,∴FBD BAF ∠=∠.∵BD 是BAC ∠的平分线,∴BAF DAC ∠=∠. ∴DBC FBD ∠=∠.即BD 平分CBF ∠.即结论①正确.又由FBD FAB ∠=∠,BFD AFB ∠=∠,得FBD FAB ∆∆.由FB FD FA FB =,2FB FD FA =⋅.即结论②成立.由BF BDAF AB=,得AF BD AB BF ⋅=⋅.即结论④成立.正确结论有①②④,故选D .【点评】本题考查了弦切角、圆周角与弧的关系,还考查了三角形相似的知识,本题总体难度不大,属于基础题.(7)【2014年天津,理7,5分】设,a b R ,则|“a b ”是“a a b b ”的( ) (A )充要不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充要也不必要条件 【答案】C【解析】解法一:设f x x x ,则220,0,x x x x f x ,所以f x 是R 上的增函数,“a b ”是“a a b b ”的充要条件,故选C . 解法二:若0a b >≥,则不等式a ab b 等价为a a b b 此时成立.若0a b >>,则不等式a ab b等价为a a b b -⋅>-⋅,即22a b <,此时成立.若0a b ≥>,不等式a a b b 等价为a a b b ⋅>-⋅,即22a b >-,此时成立,综上则“ab ”是“a ab b ”的充要条件,故选C .【点评】本题主要考查充分条件和必要条件的判断,利用不等式的性质 结合分类讨论是解决本题的关键.(8)【2014年天津,理8,5分】已知菱形ABCD 的边长为2,120BAD ,点,E F 分别在边,BC DC 上,BE BC ,DFDC .若1AE AF ,23CE CF ,则( ) (A )12 (B )23 (C )56 (D )712【答案】C 【解析】因为120BAD,所以cos1202AB ADAB AD .因为BE BC ,所以AEABAD ,AFAB AD .因为1AE AF ,所以1ABADABAD,即3222① 同理可得23 ②,①+②得56,故选C . 【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义,属于中档题.第II 卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分. (9)【2014年天津,理9,5分】某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取 名学生. 【答案】60【解析】应从一年级抽取4604556300名.【点评】本题主要考查分层抽样的定义和方法,利用了总体中各层的个体数之比等于样本中对应俯视图侧视图正视图各层的样本数之比,属于基础题.(10)【2014年天津,理10,5分】已知一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m . 【答案】203【解析】由三视图知:几何体是圆锥与圆柱的组合体,其中圆柱的高为4,底面直径为2,圆锥的高为2,底面直径为4,∴几何体的体积22182014224333V πππππ=⨯⨯+⨯⨯⨯=+=.【点评】本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.(11)【2014年天津,理11,5分】设n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a 的值为 .【答案】12【解析】依题意得2214S S S ,所以21112146a a a ,解得112a . 【点评】本题主要考查等差数列的前n 项和公式,等比数列的定义和性质,属于中档题. (12)【2014年天津,理12,5分】在ABC 中,内角,,A B C 所对的边分别是,,abc .已知14b ca ,2sin 3sin B C ,则cos A 的值为 .【答案】14【解析】因为2sin 3sin B C ,所以23b c ,解得32cb ,2ac .所以2221cos 24b c a A bc .【点评】本题主要考查正弦定理、余弦定理的应用,属于中档题. (13)【2014年天津,理13,5分】在以O 为极点的极坐标系中,圆4sin 和直线sin a 相交于,A B两点.若AOB 是等边三角形,则a 的值为 . 【答案】3【解析】圆的方程为2224x y ,直线为y a .因为AOB一个交点坐标为,3aa ,代入圆的方程可得3a .【点评】本题考查把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,求出B 坐标是解题的关键,属于基础题.(14)【2014年天津,理14,5分】已知函数23f x x x ,x R .若方程1f x a x 个互异的实数根,则实数a 的取值范围为 . 【答案】()()0,19,+∞ 【解析】解法一:(ⅰ)当1y a x 与23y x x 相切时,1a ,此时10f x a x 恰有3个互异的实数根. (ⅱ)当直线1y a x 与函数23yxx 相切时,9a ,此时10f x a x 恰有2个互异的实数根. 结合图象可知01a 或9a . 解法二:显然1a ,所以231x xa x .令1tx ,则45at t. 因为,444,tt,所以45,19,tt.结合图象可得01a 或9a .【点评】本题主要考查函数零点个数的应用,利用数形结合是解决本题的关键,综合性较强,难度较大. 三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤.(15)【2014年天津,理15,13分】已知函数()23cos sin 3cos 34f x x x x π⎛⎫=⋅+-+ ⎪⎝⎭,x R ∈.(1)求()f x 的最小正周期;(2)求()f x 在闭区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.解:(1)由已知,有2133cos sin cos 3cos 224f x xx x x2133sin cos cos 224x x x133sin 21cos2444x x13sin 2cos 244x x 1sin 223x .所以,f x 的最小正周期22T .(2)因为f x 在区间,412上是减函数,在区间,124上是增函数.144f,1122f, 144f.所以,函数f x 在闭区间,44上的最大值为14,最小值为12.【点评】本题考查了两角和差的正弦公式、倍角公式,正弦函数的性质,以及复合三角函数的周期公式2T πω=应用,考查了整体思想和化简计算能力,属于中档题.(16)【2014年天津,理16,13分】某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院. 现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同). (1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望.解:(1)设“选出的3名同学来自互不相同的学院”为事件A ,则120337373104960C C C C P A C . 所以,选出的3名同学来自互不相同学院的概率为4960.所以,f x 的最小正周期22T .(2)随机变量X 的所有可能值为0,1,2,3.346310k k C C P xk C 0,1,2,3k . 所以,随机变量X 的分布列是X0 1 2 3 P1612 310 130 随机变量X 的数学期望1131612362103050E X . 【点评】本题考查古典概型及其概率公式,互斥事件,离散型随机变量的分布列与数学期望,考查应用概率解决实际问题的能力.(17)【2014年天津,理17,13分】如图,在四棱锥P ABCD 中,PA 底面ABCD ,AD AB ,//AB DC ,2AD DC AP ,1AB ,点E 为棱PC 的中点. (1)证明 BE DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF AC ,求二面角F AB P 的余弦值. 解:解法一:依题意,以点A 为原点建立空间直角坐标系(如图),可得1,0,0B ,2,2,0C ,0,2,0D , z y xPE DA0,0,2P .由E 为棱PC 的中点,得1,1,1E .(1)向量0,1,1BE ,2,0,0DC ,故0BE DC .所以,BE DC .(2)向量1,2,0BD,1,0,2PB.设,,nx y z 为平面PBD 的法向量,则00n BD n PB,即2020x y x z ,不妨令1y,可得2,1,1n 为平面PBD 的一个法向量,223cos ,36n BE n BEn BE.所以,直线BE 与平面PBD 所成角的正弦值为33. (3)向量1,2,0BC,2,2,2CP,2,2,0AC ,1,0,0AB .由点F 在棱PC 上,设CF CP ,01.故12,22,2BF BCCFBCCP.由BF AC ,得0BF AC ,因此,2122220,解得34.即113,,222BF .设1,,n x y z 为平面FAB 的法向量,则1100n AB n BF,即01130222x x y z .不妨令1z,可得10,3,1n 为平面FAB的一个法向量.取平面ABP 的法向量20,1,0n ,则1212113310cos ,10101n n n n n n . 易知,二面角FAB P 是锐角,所以其余弦值为31010. 解法二:(1)如图,取PD 中点M ,连接EM ,AM .由于,E M 分别为,PC PD 的中点,故//EM DC ,且12EM DC ,又由已知,可得//EM AB 且EM AB ,故四边形ABEM 为平行四边形,所以//BE AM .因为PA 底面ABCD ,故PA CD ,而 CD DA ,从而CD 平面PAD ,因为AM 平面PAD ,于是CD AM ,又 //BE AM ,所以BE CD . (2)连接BM ,由(1)有CD 平面PAD ,得CD PD ,而//EM CD ,故PD EM .又因为AD AP ,M 为PD 的中点,故PD AM ,可得PD BE ,所以PD 平面BEM ,故平面BEM 平面PBD . 直线BE 在平面PBD 内的射影为直线BM ,而BE EM ,可得EBM 为锐角,故EBM 为直线BE 与平面PBD 所成的角.依题意,有22PD,而M 为PD 中点,可得2AM,进而2BE .故在直角三角形BEM 中,tan 12EM AB EBMBEBE,因此3in 3s EMB. 所以,直线BE 与平面PBD 所成角的正弦值为33. (3)如图,在PAC 中,过点F 作//FH PA 交AC 于点H .因为PA 底面ABCD ,故FH 底面ABCD ,从而FH AC .又BF AC ,得AC 平面FHB ,因此AC BH .在底面ABCD 内,可得3CH HA ,从而3CF FP .在平面PDC 内,作//FG DC 交PD 于点G ,于是3DG GP .由于//DC AB ,故//GF AB ,所以,,,A B F G 四点共面.由AB PA , AB AD ,得AB 平面PAD ,故AB AG .所以PAG 为二面角F AB P 的平面角.在PAG 中,2PA ,1242PG PD,45APG ,由余弦定理可得102AG ,3os 10c 1PAG.所以,二面角F AB P. 【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.(18)【2014年天津,理18,13分】设椭圆22221x y a b+=(0a b >>)的左、右焦点为12,F F ,右顶点为A ,上顶点为B .已知1232AB F F .(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点1F ,经过原点的直线l 与该圆相切. 求 直线的斜率.解:(1)设椭圆的右焦点2F 的坐标为,0c .由1232AB F F ,可得2223a b c ,又222b a c ,则2212c a . 所以,椭圆的离心率22e .223b c ,所以22223a c c ,解得2a c ,22e .(2)由(1)知222a c ,22b c .故椭圆方程为222212x y c c .设00,P x y .由1,0F c ,0,B c ,有100,F P x c y ,1,F B c c .由已知,有110F P F B ,即000x c c y c .又0c ,故有00x y c. ① 又因为点P 在椭圆上,故22002212x y c c . ② 由①和②可得200340x cx .而点P 不是椭圆的顶点,故043cx ,代入①得03cy ,即点P 的坐标为4,33c c.设圆的圆心为11,T x y ,则1402323c x c ,12323c cy c ,进而圆的半径221153rx y cc . 设直线l 的斜率为k ,直线l 的方程为ykx .由l 1121y r ,即22233531c c kc k , 整理得2810k k ,解得415k .所以,直线l 的斜率为415或415. 【点评】本题中考查了椭圆与圆的标准方程及其性质、点与椭圆的位置关系、直线与圆相切问题、点到直线的距离公式、中点坐标公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.(19)【2014年天津,理19,14分】已知q 和n 均为给定的大于1的自然数.设集合0,1,2,1,Mq ,集合112,,1,2,,n n iA x xx x x q x M in q.(1)当2q,3n 时,用列举法表示集合A ;(2)设,s t A ,112n n s a a qa q ,112n n tb b qb q ,其中,i ia b M ,1,2,,n i .证明:若n n a b ,则st .解:(1)当2q ,3n 时,0,1M ,12324,,1,2,3iA x xx x x M x i .可得,0,1,2,3,4,5,6,7A .(2)由,s tA ,112n n s a a q a q ,112n n t b b qb q ,,i i a b M ,1,2,,n i 及n n a b ,可得21111122nn n nnn sta b a b q a b q a b q21111n n q q qq qq11111nnq q q q10.所以,s t .【点评】本题考查了考查了集合的运算及其性质、等比数列的前n 项和公式、不等式的基本性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.(20)【2014年天津,理20,14分】已知函数x f xx ae a R ,x R .已知函数y f x 有两个零点12,x x ,且12x x .(1)求a 的取值范围;(2)证明21xx 随着a 的减小而增大;(3)证明12x x 随着a 的减小而增大. 解:(1)由x f xx ae ,可得1x fx ae .下面分两种情况讨论:1)0a 时,0f x 在R 上恒成立,可得f x 在R 上单调递增,不合题意. 2)0a时,由0fx,得ln xa .当x 变化时,fx ,f x 的变化情况如下表:ln axxln 1a↘ x 的单调递增区间是,ln a ;单调递减区间是ln ,a .于是,“函数y f x 有两个零点”等价于如下条件同时成立:(1)ln 0f a ;(2)存在1,ln a s ,满足10f s ;3)存在2ln ,a s ,满足20f s .由ln 0f a,即ln 10a ,解得10a e ,而此时,取10s ,满足1,ln a s ,且10f s a;取222ln s a a,满足2ln ,a s ,且22222ln 0aaf s eeaa.所以,a 的取值范围是10,e .(2)由0xf x x ae ,有x xae .设xxg x e ,由1xxg x e ,知g x 在,1上单调递增,在1,上单调递减. 并且,当,0x 时,0g x;当0,x 时,0g x .由已知,12,x x满足1ag x ,2ag x .由10,ae,及g x 的单调性,可得10,1x ,21,x .对于任意的1120,,a a e,设12a a ,121gga ,其中121;122gga ,其中121.因为g x 在0,1上单调递增,故由12a a ,即11gg,可得11;类似可得22.又由11,0,得222111.所以,21x x 随着a 的减小而增大. (3)由11x x ae ,22x x ae ,可得11ln ln x ax ,22ln ln x ax .故221211ln ln lnx x x x x x . 设21x t x ,则1t ,且2121ln x tx x x t,解得1ln 1tx t ,2ln 1t tx t .所以,121ln 1tt x x t . ①令1ln 1x x h x x ,1,x ,则212ln 1x xx h x x .令12ln u xx xx, 得21x u xx.当1,x 时,0u x.因此,u x 在1,上单调递增,故对于任意的1,x,10u x u ,由此可得0h x ,故h x 在1,上单调递增.因此,由①可得12x x 随着t 的增大而增大.而由(2),t 随着a 的减小而增大,所以12x x 随着a 的减小而增大.【评析】本题考查了导数的运算以及利用导数研究函数的单调性与极值问题,也考查了函数思想、化归思想、抽象概括能力和分析问题、解决问题的能力,是综合型题目.。

2014年天津市高考理科数学试卷含答案

2014年天津市高考理科数学试卷含答案

2014年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2本卷共8小题,每小题5分,共40分。

参考公式:•如果事件A ,B 互斥,那么 •如果事件A ,B 相互独立,那么()()()P A B P A P B =+()()()P AB P A P B =.•圆柱的体积公式V Sh =. •圆锥的体积公式13V Sh =. 其中S 表示圆柱的底面面积, 其中S 表示圆锥的底面面积,h 表示圆柱的高. h 表示圆锥的高.一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.(1)i 是虚数单位,复数734ii+=+( )(A )1i - (B )1i -+ (C )17312525i + (D )172577i -+ (2)设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y =+的最小值为( )(A )2 (B )3 (C )4 (D )5(3)阅读右边的程序框图,运行相应的程序,输出的S 的值为( )(A )15 (B )105 (C )245 (D )945ED CBA (4)函数()()212log 4f x x =-的单调递增区间是( )(A )()0,+¥ (B )(),0-¥ (C )()2,+¥(D )(),2-?(5)已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为( )(A )221520x y -= (B )221205x y -= (C )2233125100x y -= (D )2233110025x y -= (6)如图,ABC D 是圆的内接三角形,BAC Ð的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分CBF Ð;②2FB FD FA = ;③AE CEBE DE ? ;④AF BD AB BF ? .则所有正确结论的序号是( )(A )①② (B )③④ (C )①②③ (D )①②④ (7)设,a b R Î,则|“a b >”是“a a b b >”的( ) (A )充要不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充要也不必要条件 (8)已知菱形ABCD 的边长为2,120BAD?,点,E F 分别在边,BC DC 上,BE BC l =,DF DC m =.若1AE AF?,23CE CF?-,则l m +=( ) (A )12 (B )23 (C )56 (D )712第Ⅱ卷注意事项: 1.用黑色墨水钢笔或签字笔将答案写在答题卡上。

2014年天津市高考数学试卷(理科)附送答案

2014年天津市高考数学试卷(理科)附送答案

2014年天津市高考数学试卷(理科)一、选择题(共8小题,每小题5分)1.(5分)i是虚数单位,复数=()A.1﹣i B.﹣1+i C.+i D.﹣+i2.(5分)设变量x,y满足约束条件,则目标函数z=x+2y的最小值为()A.2 B.3 C.4 D.53.(5分)阅读如图的程序框图,运行相应的程序,输出S的值为()A.15 B.105 C.245 D.9454.(5分)函数f(x)=log(x2﹣4)的单调递增区间为()A.(0,+∞)B.(﹣∞,0)C.(2,+∞)D.(﹣∞,﹣2)5.(5分)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=16.(5分)如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC 于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD•FA;③AE•CE=BE•DE;④AF•BD=AB•BF.所有正确结论的序号是()A.①②B.③④C.①②③D.①②④7.(5分)设a,b∈R,则“a>b”是“a|a|>b|b|”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件8.(5分)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC 上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.二、填空题(共6小题,每小题5分,共30分)9.(5分)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取名学生.10.(5分)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.11.(5分)设{a n}是首项为a1,公差为﹣1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1的值为.12.(5分)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b﹣c=a,2sinB=3sinC,则cosA的值为.13.(5分)在以O为极点的极坐标系中,圆ρ=4sinθ和直线ρsinθ=a相交于A、B两点,若△AOB是等边三角形,则a的值为.14.(5分)已知函数f(x)=|x2+3x|,x∈R,若方程f(x)﹣a|x﹣1|=0恰有4个互异的实数根,则实数a的取值范围为.三、解答题(共6小题,共80分)15.(13分)已知函数f(x)=cosx•sin(x+)﹣cos2x+,x∈R.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在闭区间[﹣,]上的最大值和最小值.16.(13分)某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.17.(13分)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.18.(13分)设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=|F1F2|.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.19.(14分)已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q﹣1},集合A={x|x=x1+x2q+…+x n q n﹣1,x i∈M,i=1,2,…n}.(Ⅰ)当q=2,n=3时,用列举法表示集合A;(Ⅱ)设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.20.(14分)设f(x)=x﹣ae x(a∈R),x∈R,已知函数y=f(x)有两个零点x1,x2,且x1<x2.(Ⅰ)求a的取值范围;(Ⅱ)证明:随着a的减小而增大;(Ⅲ)证明x1+x2随着a的减小而增大.2014年天津市高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分)1.(5分)(2014•天津)i是虚数单位,复数=()A.1﹣i B.﹣1+i C.+i D.﹣+i【分析】将复数的分子与分母同时乘以分母的共轭复数3﹣4i,即求出值.【解答】解:复数==,故选A.2.(5分)(2014•天津)设变量x,y满足约束条件,则目标函数z=x+2y的最小值为()A.2 B.3 C.4 D.5【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【解答】解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点B(1,1)时,直线y=﹣的截距最小,此时z最小.此时z的最小值为z=1+2×1=3,故选:B.3.(5分)(2014•天津)阅读如图的程序框图,运行相应的程序,输出S的值为()A.15 B.105 C.245 D.945【分析】算法的功能是求S=1×3×5×…×(2i+1)的值,根据条件确定跳出循环的i值,计算输出S的值.【解答】解:由程序框图知:算法的功能是求S=1×3×5×…×(2i+1)的值,∵跳出循环的i值为4,∴输出S=1×3×5×7=105.故选:B.4.(5分)(2014•天津)函数f(x)=log(x2﹣4)的单调递增区间为()A.(0,+∞)B.(﹣∞,0)C.(2,+∞)D.(﹣∞,﹣2)【分析】令t=x2﹣4>0,求得函数f(x)的定义域为(﹣∞,﹣2)∪(2,+∞),且函数f(x)=g(t)=log t.根据复合函数的单调性,本题即求函数t在(﹣∞,﹣2)∪(2,+∞)上的减区间.再利用二次函数的性质可得,函数t在(﹣∞,﹣2)∪(2,+∞)上的减区间.【解答】解:令t=x2﹣4>0,可得x>2,或x<﹣2,故函数f(x)的定义域为(﹣∞,﹣2)∪(2,+∞),当x∈(﹣∞,﹣2)时,t随x的增大而减小,y=log t随t的减小而增大,所以y=log(x2﹣4)随x的增大而增大,即f(x)在(﹣∞,﹣2)上单调递增.故选:D.5.(5分)(2014•天津)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【分析】先求出焦点坐标,利用双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,可得=2,结合c2=a2+b2,求出a,b,即可求出双曲线的方程.【解答】解:∵双曲线的一个焦点在直线l上,令y=0,可得x=﹣5,即焦点坐标为(﹣5,0),∴c=5,∵双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,∴=2,∵c2=a2+b2,∴a2=5,b2=20,∴双曲线的方程为﹣=1.故选:A.6.(5分)(2014•天津)如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD•FA;③AE•CE=BE•DE;④AF•BD=AB•BF.所有正确结论的序号是()A.①②B.③④C.①②③D.①②④【分析】本题利用角与弧的关系,得到角相等,再利用角相等推导出三角形相似,得到边成比例,即可选出本题的选项.【解答】解:∵圆周角∠DBC对应劣弧CD,圆周角∠DAC对应劣弧CD,∴∠DBC=∠DAC.∵弦切角∠FBD对应劣弧BD,圆周角∠BAD对应劣弧BD,∴∠FBD=∠BAF.∵AD是∠BAC的平分线,∴∠BAF=∠DAC.∴∠DBC=∠FBD.即BD平分∠CBF.即结论①正确.又由∠FBD=∠FAB,∠BFD=∠AFB,得△FBD~△FAB.由,FB2=FD•FA.即结论②成立.由,得AF•BD=AB•BF.即结论④成立.正确结论有①②④.故答案为D7.(5分)(2014•天津)设a,b∈R,则“a>b”是“a|a|>b|b|”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件【分析】根据不等式的性质,结合充分条件和必要条件的定义进行判断即可得到结论.【解答】解:若a>b,①a>b≥0,不等式a|a|>b|b|等价为a•a>b•b,此时成立.②0>a>b,不等式a|a|>b|b|等价为﹣a•a>﹣b•b,即a2<b2,此时成立.③a≥0>b,不等式a|a|>b|b|等价为a•a>﹣b•b,即a2>﹣b2,此时成立,即充分性成立.若a|a|>b|b|,①当a>0,b>0时,a|a|>b|b|去掉绝对值得,(a﹣b)(a+b)>0,因为a+b >0,所以a﹣b>0,即a>b.②当a>0,b<0时,a>b.③当a<0,b<0时,a|a|>b|b|去掉绝对值得,(a﹣b)(a+b)<0,因为a+b <0,所以a﹣b>0,即a>b.即必要性成立,综上“a>b”是“a|a|>b|b|”的充要条件,故选:C.8.(5分)(2014•天津)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.【分析】利用两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义由•=1,求得4λ+4μ﹣2λμ=3 ①;再由•=﹣,求得﹣λ﹣μ+λμ=﹣②.结合①②求得λ+μ的值.【解答】解:由题意可得若•=(+)•(+)=+++=2×2×cos120°++λ•+λ•μ=﹣2+4μ+4λ+λμ×2×2×cos120°=4λ+4μ﹣2λμ﹣2=1,∴4λ+4μ﹣2λμ=3 ①.•=﹣•(﹣)==(1﹣λ)•(1﹣μ)=(1﹣λ)•(1﹣μ)=(1﹣λ)(1﹣μ)×2×2×cos120°=(1﹣λ﹣μ+λμ)(﹣2)=﹣,即﹣λ﹣μ+λμ=﹣②.由①②求得λ+μ=,故答案为:.二、填空题(共6小题,每小题5分,共30分)9.(5分)(2014•天津)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取60名学生.【分析】先求出一年级本科生人数所占总本科生人数的比例,再用样本容量乘以该比列,即为所求.【解答】解:根据分层抽样的定义和方法,一年级本科生人数所占的比例为=,故应从一年级本科生中抽取名学生数为300×=60,故答案为:60.10.(5分)(2014•天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.【分析】几何体是圆锥与圆柱的组合体,判断圆柱与圆锥的高及底面半径,代入圆锥与圆柱的体积公式计算.【解答】解:由三视图知:几何体是圆锥与圆柱的组合体,其中圆柱的高为4,底面直径为2,圆锥的高为2,底面直径为4,∴几何体的体积V=π×12×4+×π×22×2=4π+π=π.故答案为:.11.(5分)(2014•天津)设{a n}是首项为a1,公差为﹣1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1的值为﹣.【分析】由条件求得,S n=,再根据S1,S2,S4成等比数列,可得=S1•S4,由此求得a1的值.【解答】解:由题意可得,a n=a1+(n﹣1)(﹣1)=a1+1﹣n,S n==,再根据若S1,S2,S4成等比数列,可得=S1•S4,即=a1•(4a1﹣6),解得a1=﹣,故答案为:﹣.12.(5分)(2014•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b﹣c=a,2sinB=3sinC,则cosA的值为﹣.【分析】由条件利用正弦定理求得a=2c,b=,再由余弦定理求得cosA=的值.【解答】解:在△ABC中,∵b﹣c= a ①,2sinB=3sinC,∴2b=3c ②,∴由①②可得a=2c,b=.再由余弦定理可得cosA===﹣,故答案为:﹣.13.(5分)(2014•天津)在以O为极点的极坐标系中,圆ρ=4sinθ和直线ρsinθ=a 相交于A、B两点,若△AOB是等边三角形,则a的值为3.【分析】把极坐标方程化为直角坐标方程,求出B的坐标的值,代入x2+(y﹣2)2=4,可得a的值.【解答】解:直线ρsinθ=a即y=a,(a>0),曲线ρ=4sinθ,即ρ2=4ρsinθ,即x2+(y﹣2)2=4,表示以C(0,2)为圆心,以2为半径的圆,∵△AOB是等边三角形,∴B(a,a),代入x2+(y﹣2)2=4,可得(a)2+(a﹣2)2=4,∵a>0,∴a=3.故答案为:3.14.(5分)(2014•天津)已知函数f(x)=|x2+3x|,x∈R,若方程f(x)﹣a|x ﹣1|=0恰有4个互异的实数根,则实数a的取值范围为(0,1)∪(9,+∞).【分析】由y=f(x)﹣a|x﹣1|=0得f(x)=a|x﹣1|,作出函数y=f(x),y=a|x ﹣1|的图象利用数形结合即可得到结论.【解答】解:由y=f(x)﹣a|x﹣1|=0得f(x)=a|x﹣1|,作出函数y=f(x),y=g(x)=a|x﹣1|的图象,当a≤0,两个函数的图象不可能有4个交点,不满足条件,则a>0,此时g(x)=a|x﹣1|=,当﹣3<x<0时,f(x)=﹣x2﹣3x,g(x)=﹣a(x﹣1),当直线和抛物线相切时,有三个零点,此时﹣x2﹣3x=﹣a(x﹣1),即x2+(3﹣a)x+a=0,则由△=(3﹣a)2﹣4a=0,即a2﹣10a+9=0,解得a=1或a=9,当a=9时,g(x)=﹣9(x﹣1),g(0)=9,此时不成立,∴此时a=1,要使两个函数有四个零点,则此时0<a<1,若a>1,此时g(x)=﹣a(x﹣1)与f(x),有两个交点,此时只需要当x>1时,f(x)=g(x)有两个不同的零点即可,即x2+3x=a(x﹣1),整理得x2+(3﹣a)x+a=0,则由△=(3﹣a)2﹣4a>0,即a2﹣10a+9>0,解得a<1(舍去)或a>9,综上a的取值范围是(0,1)∪(9,+∞),方法2:由f(x)﹣a|x﹣1|=0得f(x)=a|x﹣1|,若x=1,则4=0不成立,故x≠1,则方程等价为a===||=|x﹣1++5|,设g(x)=x﹣1++5,当x>1时,g(x)=x﹣1++5≥,当且仅当x﹣1=,即x=3时取等号,当x<1时,g(x)=x﹣1++5=5﹣4=1,当且仅当﹣(x﹣1)=﹣,即x=﹣1时取等号,则|g(x)|的图象如图:若方程f(x)﹣a|x﹣1|=0恰有4个互异的实数根,则满足a>9或0<a<1,故答案为:(0,1)∪(9,+∞)三、解答题(共6小题,共80分)15.(13分)(2014•天津)已知函数f(x)=cosx•sin(x+)﹣cos2x+,x ∈R.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在闭区间[﹣,]上的最大值和最小值.【分析】(Ⅰ)根据两角和差的正弦公式、倍角公式对解析式进行化简,再由复合三角函数的周期公式求出此函数的最小正周期;(Ⅱ)由(Ⅰ)化简的函数解析式和条件中x的范围,求出的范围,再利用正弦函数的性质求出再已知区间上的最大值和最小值.【解答】解:(Ⅰ)由题意得,f(x)=cosx•(sinx cosx)====所以,f(x)的最小正周期=π.(Ⅱ)由(Ⅰ)得f(x)=,由x∈[﹣,]得,2x∈[﹣,],则∈[,],∴当=﹣时,即=﹣1时,函数f(x)取到最小值是:,当=时,即=时,f(x)取到最大值是:,所以,所求的最大值为,最小值为.16.(13分)(2014•天津)某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.【分析】(Ⅰ)利用排列组合求出所有基本事件个数及选出的3名同学是来自互不相同学院的基本事件个数,代入古典概型概率公式求出值;(Ⅱ)随机变量X的所有可能值为0,1,2,3,(k=0,1,2,3)列出随机变量X的分布列求出期望值.【解答】(Ⅰ)解:设“选出的3名同学是来自互不相同学院”为事件A,则,所以选出的3名同学是来自互不相同学院的概率为.(Ⅱ)解:随机变量X的所有可能值为0,1,2,3,(k=0,1,2,3)所以随机变量X的分布列是X0123P随机变量X的数学期望.17.(13分)(2014•天津)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.【分析】(I)以A为坐标原点,建立如图所示的空间直角坐标系,求出BE,DC 的方向向量,根据•=0,可得BE⊥DC;(II)求出平面PBD的一个法向量,代入向量夹角公式,可得直线BE与平面PBD 所成角的正弦值;(Ⅲ)根据BF⊥AC,求出向量的坐标,进而求出平面FAB和平面ABP的法向量,代入向量夹角公式,可得二面角F﹣AB﹣P的余弦值.【解答】证明:(I)∵PA⊥底面ABCD,AD⊥AB,以A为坐标原点,建立如图所示的空间直角坐标系,∵AD=DC=AP=2,AB=1,点E为棱PC的中点.∴B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(1,1,1)∴=(0,1,1),=(2,0,0)∵•=0,∴BE⊥DC;(Ⅱ)∵=(﹣1,2,0),=(1,0,﹣2),设平面PBD的法向量=(x,y,z),由,得,令y=1,则=(2,1,1),则直线BE与平面PBD所成角θ满足:sinθ===,故直线BE与平面PBD所成角的正弦值为.(Ⅲ)∵=(1,2,0),=(﹣2,﹣2,2),=(2,2,0),由F点在棱PC上,设=λ=(﹣2λ,﹣2λ,2λ)(0≤λ≤1),故=+=(1﹣2λ,2﹣2λ,2λ)(0≤λ≤1),由BF⊥AC,得•=2(1﹣2λ)+2(2﹣2λ)=0,解得λ=,即=(﹣,,),设平面FBA的法向量为=(a,b,c),由,得令c=1,则=(0,﹣3,1),取平面ABP的法向量=(0,1,0),则二面角F﹣AB﹣P的平面角α满足:cosα===,故二面角F﹣AB﹣P的余弦值为:18.(13分)(2014•天津)设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=|F1F2|.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.【分析】(Ⅰ)设椭圆的右焦点为F2(c,0),由|AB|=|F1F2|.可得,再利用b2=a2﹣c2,e=即可得出.(Ⅱ)由(Ⅰ)可得b2=c2.可设椭圆方程为,设P(x0,y0),由F1(﹣c,0),B(0,c),可得,.利用圆的性质可得,于是=0,得到x0+y0+c=0,由于点P在椭圆上,可得.联立可得=0,解得P.设圆心为T(x1,y1),利用中点坐标公式可得T,利用两点间的距离公式可得圆的半径r.设直线l的方程为:y=kx.利用直线与圆相切的性质即可得出.【解答】解:(Ⅰ)设椭圆的右焦点为F2(c,0),由|AB|=|F1F2|,可得,化为a2+b2=3c2.又b2=a2﹣c2,∴a2=2c2.∴e=.(Ⅱ)由(Ⅰ)可得b2=c2.因此椭圆方程为.设P(x0,y0),由F1(﹣c,0),B(0,c),可得=(x0+c,y0),=(c,c).∵,∴=c(x0+c)+cy0=0,∴x0+y0+c=0,∵点P在椭圆上,∴.联立,化为=0,∵x0≠0,∴,代入x0+y0+c=0,可得.∴P.设圆心为T(x1,y1),则=﹣,=.∴T,∴圆的半径r==.设直线l的斜率为k,则直线l的方程为:y=kx.∵直线l与圆相切,∴,整理得k2﹣8k+1=0,解得.∴直线l的斜率为.19.(14分)(2014•天津)已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q﹣1},集合A={x|x=x1+x2q+…+x n q n﹣1,x i∈M,i=1,2,…n}.(Ⅰ)当q=2,n=3时,用列举法表示集合A;(Ⅱ)设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.【分析】(Ⅰ)当q=2,n=3时,M={0,1},A={x|,x i∈M,i=1,2,3}.即可得到集合A.(Ⅱ)由于a i,b i∈M,i=1,2,…,n.a n<b n,可得a n﹣b n≤﹣1.由题意可得s﹣t=(a1﹣b1)+(a2﹣b2)q+…++≤﹣[1+q+…+q n﹣2+q n﹣1],再利用等比数列的前n项和公式即可得出.【解答】(Ⅰ)解:当q=2,n=3时,M={0,1},A={x|,x i∈M,i=1,2,3}.可得A={0,1,2,3,4,5,6,7}.(Ⅱ)证明:由设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i ∈M,i=1,2,…,n.a n<b n,∴a n﹣b n≤﹣1.可得s﹣t=(a1﹣b1)+(a2﹣b2)q+…++≤﹣[1+q+…+q n﹣2+q n﹣1]=<0.∴s<t.20.(14分)(2014•天津)设f(x)=x﹣ae x(a∈R),x∈R,已知函数y=f(x)有两个零点x1,x2,且x1<x2.(Ⅰ)求a的取值范围;(Ⅱ)证明:随着a的减小而增大;(Ⅲ)证明x1+x2随着a的减小而增大.【分析】(Ⅰ)对f(x)求导,讨论f′(x)的正负以及对应f(x)的单调性,得出函数y=f(x)有两个零点的等价条件,从而求出a的取值范围;(Ⅱ)由f(x)=0,得a=,设g(x)=,判定g(x)的单调性即得证;(Ⅲ)由于x1=a,x2=a,则x2﹣x1=lnx2﹣lnx1=ln,令=t,整理得到x1+x2=,令h(x)=,x∈(1,+∞),得到h(x)在(1,+∞)上是增函数,故得到x1+x2随着t的减小而增大.再由(Ⅱ)知,t随着a的减小而增大,即得证.【解答】解:(Ⅰ)∵f(x)=x﹣ae x,∴f′(x)=1﹣ae x;下面分两种情况讨论:①a≤0时,f′(x)>0在R上恒成立,∴f(x)在R上是增函数,不合题意;②a>0时,由f′(x)=0,得x=﹣lna,当x变化时,f′(x)、f(x)的变化情况如下表:x(﹣∞,﹣lna)﹣lna(﹣lna,+∞)f′(x)+0﹣f (x)递增极大值﹣lna﹣1递减∴f(x)的单调增区间是(﹣∞,﹣lna),减区间是(﹣lna,+∞);∴函数y=f(x)有两个零点等价于如下条件同时成立:①f(﹣lna)>0;②存在s1∈(﹣∞,﹣lna),满足f(s1)<0;③存在s2∈(﹣lna,+∞),满足f(s2)<0;由f(﹣lna)>0,即﹣lna﹣1>0,解得0<a<e﹣1;取s1=0,满足s1∈(﹣∞,﹣lna),且f(s1)=﹣a<0,取s2=+ln,满足s2∈(﹣lna,+∞),且f(s2)=(﹣)+(ln ﹣)<0;∴a的取值范围是(0,e﹣1).(Ⅱ)证明:由f(x)=x﹣ae x=0,得a=,设g(x)=,由g′(x)=,得g(x)在(﹣∞,1)上单调递增,在(1,+∞)上单调递减,并且当x∈(﹣∞,0)时,g(x)≤0,当x∈(0,+∞)时,g(x)≥0,x1、x2满足a=g(x1),a=g(x2),a∈(0,e﹣1)及g(x)的单调性,可得x1∈(0,1),x2∈(1,+∞);对于任意的a1、a2∈(0,e﹣1),设a1>a2,g(X1)=g(X2)=a1,其中0<X1<1<X2;g(Y1)=g(Y2)=a2,其中0<Y1<1<Y2;∵g(x)在(0,1)上是增函数,∴由a1>a2,得g(X i)>g(Y i),可得X1>Y1;类似可得X2<Y2;又由X、Y>0,得<<;∴随着a的减小而增大;(Ⅲ)证明:∵x1=a,x2=a,∴lnx1=lna+x1,lnx2=lna+x2;∴x2﹣x1=lnx2﹣lnx1=ln,设=t,则t>1,∴,解得x1=,x2=,∴x1+x2=…①;令h(x)=,x∈(1,+∞),则h′(x)=;令u(x)=﹣2lnx+x﹣,得u′(x)=,当x∈(1,+∞)时,u′(x)>0,∴u(x)在(1,+∞)上是增函数,∴对任意的x∈(1,+∞),u(x)>u(1)=0,∴h′(x)>0,∴h(x)在(1,+∞)上是增函数;∴由①得x1+x2随着t的增大而增大.由(Ⅱ)知,t随着a的减小而增大,∴x1+x2随着a的减小而增大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档