黑龙江省大兴安岭市漠河县一中高中数学第三章直线与方程3.1.1直线的倾斜角与斜率学案新人教A版必修2
(word完整版)直线与方程知识点归纳,推荐文档

第三章 直线与方程3.1直线的倾斜角和斜率3.1倾斜角和斜率1、直线的倾斜角的概念:当直线l 与x 轴相交时, 取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.特别地,当直线l 与x 轴平行或重合时, 规定α= 0°.2、 倾斜角α的取值范围:0°≤α<180°. 当直线l 与x 轴垂直时, α= 90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,也就是 k = tan α⑴当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l 与x 轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l 的倾斜角α一定存在,但是斜率k 不一定存在.4、 直线的斜率公式:给定两点P 1(x 1,y 1),P 2(x 2,y 2),x 1≠x 2,用两点的坐标来表示直线P 1P 2的斜率: 斜率公式: k=y 2-y 1/x 2-x 1 3.1.2两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即(充要条件)注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k 1=k 2, 那么一定有l 1∥l 22、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即12121k k l l =-⇔⊥(充要条件) 3.2.1 直线的点斜式方程1、 直线的点斜式方程:直线l 经过点),(000y x P ,且斜率为k )(00x x k y y -=-2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(b b kx y +=3.2.2 直线的两点式方程1、直线的两点式方程:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠ y -y 1/y -y 2=x -x 1/x -x 22、直线的截距式方程:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a 3.2.3 直线的一般式方程1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)2、各种直线方程之间的互化。
高中数学 第三章 直线与方程 3.1 直线的倾斜角与斜率 3.1.1 直线的倾斜角与斜率教学设计 新

高中数学第三章直线与方程3.1 直线的倾斜角与斜率3.1.1 直线的倾斜角与斜率教学设计新人教A版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章直线与方程3.1 直线的倾斜角与斜率3.1.1 直线的倾斜角与斜率教学设计新人教A版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章直线与方程3.1 直线的倾斜角与斜率3.1.1 直线的倾斜角与斜率教学设计新人教A版必修2的全部内容。
3.1.1 倾斜角与斜率一、内容及其解析“直线的倾斜角与斜率"是人教版数学必修2第三章第一节的内容,是高中解析几何内容的开始。
这节课学习的内容是直线在平面直角坐标系下的倾斜角和斜率。
其核心内容是直线倾斜角的概念和斜率的求法,理解它的关键是在平面直角坐标系中直线向上的方向与X 轴正方向所成的角和角的正切值.之前学生已经学过一次函数的图像和平面中两点可以确定一条直线,这节内容就是刻画直线倾斜程度的几何要素与代数表示,是平面直角坐标系内以坐标法(解析法)的方式来研究直线及其几何性质(如直线位置关系、交点坐标、点到直线距离等)的基础.通过该内容的学习,帮助学生初步了解直角坐标平面内几何要素代数化的过程,渗透解析几何的基本思想和基本研究方法。
直线的斜率是后继内容展开的主线,无论是建立直线的方程,还是研究两条直线的位置关系,以及讨论直线与二次曲线的位置关系,直线的斜率都发挥着重要作用。
二、目标及其解析目标定位:1、正确理解直线的倾斜角和斜率的概念。
2、会求出直线的倾斜角和直线的斜率3、掌握过两点的直线的斜率公式.目标解析:1、正确理解直线的倾斜角是指理解平面直角坐标系中以X 轴为基准,直线与X 轴相交时,X 轴正方向与直线向上的方向的角;理解斜率概念是指直线的斜率就是直线倾斜角的正切值。
高中数学第三章直线与方程3.1.1倾斜角与斜率练习含解析新人教A版必修208192187

对应学生用书P57知识点一直线的倾斜角高中数学第三章直线与方程3.1.1倾斜角与斜率练习含解析新人教A 版必修2081921871.给出下列命题:①任意一条直线有唯一的倾斜角;②一条直线的倾斜角可以为-30°;③倾斜角为0°的直线只有一条,即x 轴;④若直线的倾斜角为α,则sinα∈(0,1);⑤若α是直线l 的倾斜角,且sinα=22,则α=45°. 其中正确命题的个数是( ) A .1 B .2 C .3 D .4 答案 A解析 任意一条直线有唯一的倾斜角,倾斜角不可能为负,倾斜角为0°的直线有无数条,它们都垂直于y 轴,因此①正确,②③错误. ④中α=0°时sinα=0,故④错误.⑤中α有可能为135°,故⑤错误.2.已知直线l 过点(m ,1),(m +1,1-tanα),则( ) A .α一定是直线l 的倾斜角 B .α一定不是直线l 的倾斜角 C .180°-α不一定是直线l 的倾斜角 D .180°-α一定是直线l 的倾斜角 答案 C解析 设θ为直线l 的倾斜角,则tanθ=1-tanα-1m +1-m =-tanα.当α=0°时,tanθ=0,此时θ=0°;当α=30°时,tanθ=-33,此时θ=150°.比较各选项可知选C .知识点二直线的斜率3.下列叙述不正确的是( )A.若直线的斜率存在,则必有倾斜角与之对应B.若直线的倾斜角为α,则必有斜率与之对应C.与y轴垂直的直线的斜率为0D.与x轴垂直的直线的斜率不存在答案 B解析每一条直线都有倾斜角且倾斜角唯一,但并不是每一条直线都有斜率;垂直于y 轴的直线的倾斜角为0°,其斜率为0;垂直于x轴的直线的倾斜角为90°,其斜率不存在,故A,C,D正确.4.如图,在平面直角坐标系中有三条直线l1,l2,l3,其对应的斜率分别为k1,k2,k3,则下列选项中正确的是( )A.k3>k1>k2B.k1-k2>0C.k1·k2<0D.k3>k2>k1答案 D解析由图可知,k1<0,k2<0,k3>0,且k2>k1,故选D.知识点三斜率公式的应用①A(-2,0),B(-5,3);②A(3,2),B(5,2);③A(3,-1),B(3,3);(2)已知直线l过点A(2,1),B(m,3),求直线l的斜率及倾斜角的范围.解(1)①∵A(-2,0),B(-5,3),∴k AB=3-0-5--2=3-3=-1,直线AB的倾斜角为135°.②∵A(3,2),B(5,2),∴k AB =2-25-3=0.直线AB 的倾斜角为0°.③∵A(3,-1),B(3,3);∴直线AB 的倾斜角为90°,斜率不存在. (2)设直线l 的斜率为k ,倾斜角为α, 当m =2时,A(2,1),B(2,3).直线AB 的倾斜角为90°,斜率k 不存在; 当m >2时,k =3-1m -2=2m -2>0,此时,直线l 的倾斜角为锐角,即α∈(0°,90°); 当m <2时,k =3-1m -2=2m -2<0,此时,直线l 的倾斜角为钝角,即α∈(90°,180°).知识点四三点共线问题6.若A(a ,0),B(0,b),C(-2,-2)三点共线,则a +b =________.答案 -12解析 由题意得b +22=2a +2,ab +2(a +b)=0,1a +1b =-12.对应学生用书P58一、选择题1.已知直线l 的倾斜角为β-15°,则下列结论中正确的是( ) A .0°≤β<180° B.15°<β<180° C .15°≤β<180° D.15°≤β<195° 答案 D解析 因为直线l 的倾斜角为β-15°,所以0°≤β-15°<180°,即15°≤β<2.在平面直角坐标系中,正三角形ABC 的BC 边所在直线的斜率是0,则AC ,AB 边所在直线的斜率之和为( )A .-2 3B .0C . 3D .2 3 答案 B解析 由BC 边所在直线的斜率是0,知直线BC 与x 轴平行,所以直线AC ,AB 的倾斜角互为补角,根据直线斜率的定义,知直线AC ,AB 的斜率之和为0.故选B .3.若直线l 的斜率为k ,且二次函数y =x 2-2kx +1的图象与x 轴没有交点,则直线l 的倾斜角的取值范围是( )A .(0°,90°) B.(135°,180°)C .[0°,45°)∪(135°,180°) D.[0°,180°) 答案 C解析 由抛物线y =x 2-2kx +1与x 轴没有交点,得(-2k)2-4<0,解得-1<k<1,所以直线l 的倾斜角的取值范围是[0°,45°)∪(135°,180°),故选C .4.如果直线l 先沿x 轴负方向平移2个单位长度,再沿y 轴正方向平移2个单位长度后,又回到原来的位置,那么直线l 的斜率是( )A .-2B .-1C .1D .2 答案 B解析 设A(a ,b)是直线l 上任意一点,则平移后得点A′(a-2,b +2),于是直线l 的斜率k =k AA′=b +2-b a -2-a=-1.故选B .5.已知点A(2,-3),B(-3,-2),直线l 过点P(1,1),且与线段AB 相交,则直线l 的斜率k 满足( )A .k≥34或k≤-4B .k≥34或k≤-14C .-4≤k≤34D .34≤k≤4答案 A解析 如图所示,过点P 作直线PC⊥x 轴交线段AB 于点C ,作出直线PA ,PB .①直线l 与线段AB 的交点在线段AC(除去点C)上时,直线l 的倾斜角为钝角,斜率的范围是k≤k PA .②直线l 与线段AB 的交点在线段BC(除去点C)上时,直线l 的倾斜角为锐角,斜率的范围是因为k PA =-3-12-1=-4,k PB =-2-1-3-1=34,所以直线l 的斜率k 满足k≥34或k≤-4.二、填空题6.已知M(2m ,m +1),N(m -2,1),则当m =________时,直线MN 的倾斜角为直角. 答案 -2解析 由题意得,直线MN 的倾斜角为直角,则2m =m -2,解得m =-2.7.已知点M(5,3)和点N(-3,2),若直线PM 和PN 的斜率分别为2和-74,则点P 的坐标为________.答案 (1,-5)解析 设P 点坐标为(x ,y),则⎩⎪⎨⎪⎧y -3x -5=2,y -2x +3=-74,解得⎩⎪⎨⎪⎧x =1,y =-5,即P 点坐标为(1,-5).8.若经过点P(1-a ,1)和Q(2a ,3)的直线的倾斜角为钝角,则实数a 的取值范围是________.答案 ⎝⎛⎭⎪⎫-∞,13解析 ∵直线PQ 的斜率k =3-12a -1-a =23a -1,且直线的倾斜角为钝角,∴23a -1<0,解得a<13.三、解答题9.已知点A(1,2),在坐标轴上有一点P ,使得直线PA 的倾斜角为60 °,求点P 的坐标.解 ①当点P 在x 轴上时,设点P(a ,0). ∵A(1,2),∴k PA =0-2a -1=-2a -1.又直线PA 的倾斜角为60 °, ∴-2a -1=3,解得a =1-233, ∴点P 的坐标为⎝ ⎛⎭⎪⎫1-233,0.②当点P 在y 轴上时,设点P(0,b). 同理可得b =2-3, ∴点P 的坐标为(0,2-3).综上,点P 的坐标为⎝ ⎛⎭⎪⎫1-233,0或(0,2-3).10.已知实数x ,y 满足关系式x +2y =6,当1≤x≤3且x≠2时,求y -1x -2的取值范围.解y -1x -2的几何意义是过M(x ,y),N(2,1)两点的直线的斜率.因为点M 在y =3-12x 的图象上,且1≤x≤3,所以可设该线段为AB ,其中A1,52,B3,32.由于k NA =-32,k NB =12,所以y -1x -2的取值范围是-∞,-32∪12,+∞.。
黑龙江省大兴安岭市漠河县一中高中数学第三章直线与方程3.2.1直线的点斜式方程学案新人教A版必修2

黑龙江省大兴安岭市漠河县一中高中数学第三章直线与方程3.2.1直线的点斜式方程学案新人教A版必修2一、学习目标1、知识与技能:(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;(2)能正确利用直线的点斜式、斜截式公式求直线方程。
(3)体会直线的斜截式方程与一次函数的关系.2、过程与方法:在已知直角坐标系内确定一条直线的几何要素----直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区别。
3、情感态度与价值观:通过让体会直线的斜截式方程与一次函数的关系,进一步培养数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。
二、学习重点、难点:(1)重点:直线的点斜式方程和斜截式方程。
(2)难点:直线的点斜式方程和斜截式方程的应用。
三、使用说明及学法指导:1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。
2、牢记直线的点斜式方程形式,注意适用条件。
3、要求小班、重点班学生全部完成,平行班学生完成A、B类问题。
四、知识链接:1.直线倾斜角的概念2. 直线的斜率两条直线中有一条直线没有斜率, (1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.五、学习过程:A问题1、在直角坐标系内确定一条直线,应知道哪些条件?B 问题2、直线l 经过点),(000y x P ,且斜率为k 。
设点),(y x P 是直线l 上的任意一点,请建立y x ,与00,,y x k 之间的关系。
A 问题3、(1)过点),(000y x P ,斜率是k 的直线l 上的点,其坐标都满足方程(1) (2)坐标满足方程(1)的点都在经过),(000y x P ,斜率为k 的直线l 上吗?B 问题4、直线的点斜式方程能否表示坐标平面上的所有直线呢?B 问题5、(1)x 轴所在直线的方程是什么?y 轴所在直线的方程是什么?(2)经过点),(000y x P 且平行于x 轴(即垂直于y 轴) (3)经过点),(000y x P 且平行于y 轴(即垂直于x 轴).l l l α︒A 例1直线经过点P(-3,2),且倾斜角为=45,求直线的点斜式方程,并画出直线A 问题7、已知直线l 的斜率为k ,且与y 轴的交点为),0(b ,求直线l 的方程。
高中数学第三章直线与方程3.1直线的倾斜角与斜率3.1.2

4.已知△ABC 中,A(0,3)、B(2,-1)、E、F 分别 为 AC、BC 的中点,则直线 EF 的斜率为________. 解析:因为 E、F 分别为 AC、BC 的中点, 所以 EF∥AB. 所以 kEF=kAB 答案:-2 -1-3 = =-2. 2-0
5.已知直线 l1 的倾斜角为 45°,直线 l2∥l1,且 l2 过点 A(-2,-1)和 B(3,a),则 a 的值为________. 解析:因为 l2∥l1,且 l1 的倾斜角为 45°, 所以 kl2=kl1=tan 45°=1, a-(-1) 即 =1,所以 a=4. 3-(-2) 答案:4
2.应用两条直线平行求参数值时,应分斜率存在与 不存在两种情况求解.
[变式训练] 根据下列给定的条件,判断直线 l1 与直 线 l2 是否平行. (1)l1 经过点 A(2,1),B(-3,5),l2 经过点 C(3,- 3),D(8,-7); (2)l1 平行于 y 轴,l2 经过点 P(0,-2),Q(0,5); (3)l1 经过点 E(0,1),F(-2,-1),l2 经过点 G(3, 4),H(2,3). 5- 1 -7+3 4 解:(1)由题意知,k1= =- ,k2= = 5 -3-2 8-3 -3-1 4 - ,kAC= =-4, 5 3-2
③l1 经过点 A(-1,2),B(-3,1),l2 经过点 M(-1, 4),N(1,5). (1)解析:由题意知,k1=tan 60°= 3, k2 = -2 3- 3 -2-1 = 3,
k1=k2,所以直线 l1 与直线 l2 平行或重合. 答案:平行或重合
1- 2 5-4 1 (2)解: ①kl1= =-1, kl2= =- , kl1≠kl2, 4 2- 1 -1-3 所以 l1 与 l2 不平行. ②直线 l1 与 l2 均与 x 轴垂直,且横坐标不同,所以 l1 与 l2 平行.
高中数学 第三章 直线与方程 3.1 直线的倾斜角与斜率

直线的倾斜角与斜率一、考纲要求1、学习目标:知识与技能:正确理解直线的倾斜角和斜率的概念.理解直线的倾斜角的唯一性.掌握直线的倾斜角与斜率的关系.过程与方法:理解直线的斜率的存在性.斜率公式的推导过程,掌握过两点的直线的斜率公式.情感态度与价值观:通过直线的倾斜角概念的引入学习和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力.通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.2、学习重、难点学习重点: 直线的倾斜角、斜率的概念和斜率公式的应用.学习难点: 直线的倾斜角、斜率的对应关系,求直线的倾斜角和斜率的范围.学习重点: 直线的倾斜角、斜率的概念和斜率公式的应用.学习难点: 直线的倾斜角、斜率的对应关系,求直线的倾斜角和斜率的范围.二、自主学习阅读教材P82-86完成下面问题并填空知识点一:直线的倾斜角【提出问题】在平面直角坐标系中,直线l经过点P.问题1: 直线l的位置能够确定吗?问题2: 过点P可以作与l相交的直线多少条?问题3:上述问题中的所有直线有什么区别?【导入新知】1.定义:当直线l与x轴相交时,我们取x轴作为基准,叫做直线l的倾斜角....特别地,当直线l与x轴平行或重合时, 规定α=.2.范围:倾斜角α的取值范围是 .特别:当时,称直线l与x 轴垂直.知识点二:直线的斜率【提出问题】日常生活中,常用坡度(=升高量坡度前进量)表示倾斜程度,例如,“进2升3”与“进2升2”比较,前者更陡一些,因为坡度3222>问题1:对于直线可利用倾斜角描述倾斜程度,可否借助于坡度来描述直线的倾斜程度?问题2: 如材料里描述的坡度为升高量与水平前进量的比值,那么对于平面直角坐标系中直线的倾斜程度能否如此度量?问题3:通过坐标比,你会发现它与倾斜角有何关系?【导入新知】1.定义:一条直线的倾斜角α (α≠90°)的值叫做这条直线的斜率,斜率常用小写字母k 表示,即k = . ①当直线l 与x 轴平行或重合时, α= , k = ; ②当直线l 与x 轴垂直时, α= , k . 2. 直线的斜率公式:①已知直线的倾斜角α,则k=②经过两个定点 P 1(x 1,y 1) , P 2(x 2,y 2) 的直线:若x 1≠x 2,则直线P 1P 2 的斜率存在,k= 若x 1=x 2,则直线P 1P 2的斜率3. 斜率作用:用实数反映了平面直角坐标系内的直线的 . 三、考点突破例1⑴若直线l 的向上方向与y 轴的正方向成030角,则直线的倾斜角为( ) A. 030 B. 060 C. 0030或150 D. 0060或120⑵下列说法中,正确的是( )A.直线的倾斜角为α,则此直线的斜率为αtanB. 直线的斜率为αtan ,则此直线的倾斜角为αC.若直线的倾斜角为α,则sin 0α>D.任意直线都有倾斜角α,且090α≠时,斜率为αtan 变式训练1. 直线l 经过第二、四象限,则此直线l 的倾斜角范围是( )A. 00[0,90)B. 0[90,180) C. 0(90,180) D. 00(0,180)2.设直线l 过原点,其倾斜角为α,将直线l 绕坐标原点沿逆时针方向旋转045,得到直线1l ,则直线1l 的倾斜角为( )A. 045α+B. 0135α-C. 0135α-D.当000135α≤<时为045α+,当00135180α≤<时为0135α-例2 ⑴已知过两点(4,),(2,3)A y B -的直线的倾斜角为0135,则y = ⑵已知过(3,1),(,2)A B m -的直线的斜率为1,则m 的值为 ⑶过点(2,),(,4)P m Q m -的直线的斜率为1,则m 的值为 变式训练3.若直线过点(1,2),(4,2+,则此直线的倾斜角是( ) A. 030 B. 045 C. 060 D. 090例3 已知实数,x y 满足28y x =-+,且23x ≤≤,求yx的最大值与最小值.变式训练4.点(,)M x y 在函数28y x =-+的图像上,当[2,5]x ∈时,求11y x ++的取值范围.四、考点巩固1.关于直线的倾斜角和斜率,下列说法正确的是( ) A.任一直线都有倾斜角,都存在斜率。
黑龙江省大兴安岭市漠河县一中2019_2020学年高中数学第三章直线与方程3.2.3直线的一般式方程学案

3.2.3直线的一般式方程一、学习目标:1、知识与技能:(1)明确直线方程一般式的形式特征;(2)会把直线方程的一般式化为斜截式,进而求斜率和截距;(3)会把直线方程的点斜式、两点式化为一般式。
2、过程与方法: 学会用分类讨论的思想方法解决问题。
3、情感态度与价值观:(1)认识事物之间的普遍联系与相互转化;(2)用联系的观点看问题。
二、学习重点、难点: 1、重点:直线方程的一般式。
2、难点:对直线方程一般式的理解与应用。
三、使用说明及学法指导:注意逐字逐句仔细审题,认真思考、独立规范作答。
牢记直线方程常见的几种形式,比较各种直线方程的形式特点和适用范围,多复习记忆。
平行班完成学案的AB 类题目. 四、知识链接:点斜式方程:)(00x x k y y -=-斜截式方程:b kx y += 两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--五、学习过程:B 问题1(1)平面直角坐标系中的每一条直线都可以用一个关于y x ,的二元一次方程表示吗?(2)每一个关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)都表示一条直线吗?我们把关于关于y x ,的二元一次方程0=++C By Ax (A ,B不同时为0)叫做直线的一般式方程,简称一般式B 问题2、直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?C 问题3、在方程0=++C By Ax 中,A ,B ,C 为何值时,方程表示的直线(1)平行于x 轴;(2)平行于y 轴;(3)与x 轴重合;(4)与y 重合。
A 例1已知直线经过点A (6,-4),斜率为34-,求直线的点斜式和一般式方程。
A 例2把直线l 的一般式方程062=+-y x 化成斜截式,求出直线l 的斜率以及它在x 轴与y 轴上的截距,并画出图形。
C 问题4、二元一次方程的每一个解与坐标平面中点的有什么关系?直线与二元一次方程的解之间有什么关系?六、达标检测:第99页A练习第1,2,3习题3.2A组1,10.小结(1)请学生写出直线方程常见的几种形式,并说明它们之间的关系。
人教A版高中数学必修2《三章 直线与方程 3.1直线的倾斜角与斜率 3.1直线的倾斜角与斜率》优质课教案_2

3.1.1直线的倾斜角与斜率教学设计一、教学目标(1)知识与技能:正确理解直线倾斜角和斜率的概念。
理解直线倾斜角的唯一性。
理解直线斜率的存在性。
斜率公式的推导过程,掌握过两点的直线的斜率公式。
(2)过程与方法:经历用代数方法刻画直线斜率的过程,初步掌握过已知两点的直线的斜率计算公式,渗透几何问题代数化的解析几何研究思想和数形结合思想。
(3)情感态度与价值观:通过教学,使学生从生活中的坡度,自然迁移到数学中直线的斜率,感受数学概念来源于实际生活,数学概念的形成是自然的,从而渗透辩证唯物主义思想。
二、教学重点与难点重点:直线倾斜角和斜率的概念及斜率与倾斜角的关系。
难点:倾斜角与斜率的关系的探究。
三、教学方法计算机辅助教学与发现法相结合。
即在多媒体课件支持下,让学生在教师引导下,积极探索,亲身经历概念的发现与形成过程,体验公式的推导过程,主动建构自己的认知结构。
四、教学过程(一)创设情境,揭示课题北盘江大桥由云贵两省合作共建,全长1341.4米,桥面到谷底垂直高度565米,相当于200层楼高——这也是世界最高的桥梁:大桥主桥采用主跨720m 钢桁架梁斜拉桥方案,为目前世界最大跨径的钢桁架梁斜拉桥。
于2016年12月29日通车,云南宣威城区至贵州六盘水的车程将从此前的5个小时左右,缩短为1个多小时。
桥梁上斜拉钢丝与桥面形成了之间具有不同的倾斜程度,这就是我们这节课所要研究的内容。
(二)新课探究,形成新知(1)动动手,画出满足条件的直线 1)在平面直角坐标系中画一条直线 2)在平面直角坐标系中画一条过原点的直线3)在平面直角坐标系中画一条与x 轴正方向所成的角为30°的直线4)在平面直角坐标系中画一条过原点且与x 轴正方向所成的角为 30°的直线(2)动动脑,回答下列问题1)在平面直角坐标系中,怎样确定一条直线的位置呢? 2)在平面直角坐标系中,确定直线位置的几何条件: 1.两点可以确定一条直线2. 已知直线上一点和这条直线的方向 (3)直线的方向——倾斜角的概念形成问题:在如图的平面直角坐标系中,以哪个角刻画倾斜程度?倾斜角的定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正方向与直线l 向上方向之间所成的角叫做直线l 的倾斜角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黑龙江省大兴安岭市漠河县一中高中数学第三章直线与方程
3.1.1直线的倾斜角与斜率学案新人教A版必修2
一、学习目标:
知识与技能:正确理解直线的倾斜角和斜率的概念.理解直线的倾斜角的唯一性.掌握直线的倾斜角与斜率的关系.
过程与方法:理解直线的斜率的存在性.斜率公式的推导过程,掌握过两点的直线的斜率公式.
情感态度与价值观:通过直线的倾斜角概念的引入学习和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力.通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.
二、学习重、难点
学习重点: 直线的倾斜角、斜率的概念和斜率公式的应用.
学习难点: 直线的倾斜角、斜率的对应关系,求直线的倾斜角和斜率的范围.
三、学法指导及要求:
1、认真研读教材82---85页,认真思考、独立规范作答,认真完成每一个问题,每一道习题,不会的先绕过,做好记号.
2、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解题本,多复习记忆.(尤其是正切的三角函数值,斜率的计算公式必须牢记)
3、A:自主学习;B:合作探究;C:能力提升
4、小班、重点班完成全部,平行班至少完成A.B类题.平行班的A级学生完成80%以上B完成70%~80%C力争完成60%以上.
四、知识链接:
1:一次函数的图象的形状是---(一条直线)
2:确定一次函数的图象的条件是---(两个点)
3:锐角正切函数的定义--- (对边比邻边)
五、学习过程:问题的导入:
大家想一下当一高一矮两人抬一根圆木,会出现什么现象?(倾斜)本节课我们就重点研究有关直线的倾斜问题.
A问题1:对平面直角坐标系内的一条直线,它的位置由那些条件确定?(两点)
B 问题2:一点能确定一条直线吗?经过一点的直线的位置能够确定吗?它的位置会怎样? (观察可以发现过一点有无数条直线并且它们发生了不同程度的倾斜)直线在倾斜时与那个量有关?怎样描述直线的倾斜程度呢?
A 问题3:什么是直线的倾斜角?它的范围怎样?写出并背熟,记牢倾斜角及范围! 当直线L 与x 轴垂直时, =α
A 问题4:除了倾斜角还有其他确定直线倾斜程度的量吗?什么是直线的斜率?只有倾斜角或斜率能确定一直线的位置吗?若不能还需要加什么条件?
B 问题5:直线的倾斜角和斜率有什么关系?它们是一一对应的吗?(牢记公式)
【温馨提示】(1)
时,斜率不存在。
当时,当的增大而减小;
随的增大而增大,但随时,,当的增大而增大;也随的增大而增大,随时,当2;0 0,0)2(,0 )2
,0 (π
ααααππ
αααπα===<∈>∈k k k k k k k (2)平面内任何一条直线都有唯一的倾斜角,但不是每一条直线都有,倾斜角为90°的直线没有斜率,在使用斜率来研究直线时,经常要对直线是否有斜率分情形讨论.
(3)倾斜角和斜率都是反映直线相对于x 轴正方向的倾斜程度的,倾斜角是直接反映这种倾斜程度的,斜率等于倾斜角的正切值,在以后的学习中将体会到,研究直线时,使用斜率常常比使用倾斜角更方便.
B 问题6:阅读教材83---84页探究如何由直线上的两点求直线的斜率呢?计算公式如何?(牢记公式)
典型例题:
A 例1:已知A(3, 2), B(-4, 1), C(0, -1), 求直线A
B 、B
C 、CA 的斜率, 并判断它们的倾
斜角是钝角还是锐角.
B 例2:在平面直角坐标系中, 画出经过原点且斜率分别为1、 -1、2及-3的直线L 1、L 2、
L 3、L 4
六、达标训练:
A1.如图,图中的直线321l l l 、、、的斜率分别为k 1, k 2 ,k 3,则( )
A. k 1< k 2 <k 3
B. k 3< k 1 <k 2
C. k 3< k 2 <k 1
D. k 1< k 3 <k 2
A2、若经过P (-2,m )和Q (m ,4)的直线的斜率为1,则m=( )
A 、1
B 、4
C 、1或3
D 、1或4
A3、若A (3,-2),B (-9,4),C (x ,0)三点共线,则x=( )
A 、1
B 、-1
C 、0
D 、7
B4、直线 经过原点和(-1,1),则它的倾斜角为( )
A 、45°
B 、135°
C 、45°或135°
D 、-45°
C5、△ABC 为正三角形,顶点A 在x 轴上,A 在边BC 的右侧,∠BAC 的平分线在x 轴上,求边AB 与AC 所在直线的斜率.
C6、若经过点P (1-a ,1+a )和Q (3,2a )的直线的倾斜角为钝角,求实数a 的取值范围.
七、小结与反思1,掌握直线的倾斜角、斜率及二者关系,会进行倾斜角、斜率的有关运算.
【励志良言】日出唤醒大地,读书唤醒头脑
直线的倾斜角与斜率
问题3
定义:当直线 l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线 l 向上方向之间所成的角α 叫做直线 l 的倾斜角.[0。
,180。
)
规定 当直线l 与x 轴平行或重合时,
它的倾斜角为 00 .当直线L 与x 轴垂直时, . 倾斜角为900
问题4
一条直线的倾斜角 的正切值叫做这条直线的斜率.
问题5
例1:解:直线AB 的斜率121437AB k -=
=--
直线BC 的斜率11142BC k --=
=-
直线CA 的斜率12103
CA k --==- 由0AB k > 及0CA k > 知,直线AB 与CA 的倾斜角均为锐角;由0BC k <知,直线BC 的倾斜角为钝角.
例2解:取直线上某一点为1A 的坐标是11(,)x y ,根据斜率公式有: 11x y =
设11x =,则11y = ,于是1A 的坐标是(1,1).过原点及1(1,1)A 的直线即为1l
达标训练:1,D 2, A 3, B 4, B 5,K AB = K AC = 6, (-2,1)
前进量升高量坡度(比)=
1212tan x x y y a k --=
= 2l 是过原点及222(,)A x y 的直线,3l 是过原点及333(,)A x y 的直线,4l 过原点及444(,)A x y
的直线. 33-3
3。