2.7 正多边形与圆
《正多边形与圆》数学教学PPT课件(3篇)

定义讲解
什么叫正多边形? 各边相等,各角相等的多边形. 什么是正多形的边心距、半径? 正多边形内切圆的半径叫做边心距. 正多边形外接圆的半径叫做正多边形的半径.
1.正多边形与圆 如果将圆n等分,依次连接各分点得到一个n边形,这个n边 形一定是_正__n边__形___. 2.正多边形的有关概念 (1)中心:正多边形的___外__接_圆_的_圆_心____. (2)半径:正多边形__外_接_圆___的半径. (3)中心角:正多边形每一边所对的___圆_心_角__. (4)边心距:正多边形的__中_心__到正多边形的一边的__距_离__.
【方法一点通】
正多边形的判定方法 1.定义判定:证明多边形的各边相等,各角相等. 2.正多边形与圆的关系判定:多边形为圆内接多边形时,判 断该多边形的顶点将圆等分即可.
【想一想】 正六边形的边长和半径有怎样的数量关系?为什么? 提示:相等,正六边形的中心角为60°,边和半径构成等边 三角形.
正多边形有关的计算
..O
R
D C
a
AG B
3.7正多边形与圆
第2课时
分别说出下列正多边形的性质.
正多边形在日常生产、生活中有广泛的应用性,会 用尺规画正多边形是必备能力之一。
阅读教材第112页,“交流与发现”内容.
想一想:怎样画一个正三角形?
你会用同样的方法画正四边形、正五边形、正 六边形吗?
A
A
D
F
E
O ·
为
.
5.圆内接正六边形的边长是8 cm用么该正六边形的半径为 ________;边心距为________.
1.正多边和圆的有关概念: 正多边形的中心,正多边形的半径, 正多边形的中心角,正多边形的边心距.
正多边形与圆的联系

正多边形与圆的联系正多边形与圆之间有着紧密的联系。
在几何学中,正多边形是指所有边长和内角都相等的多边形,而圆则是一个连续的曲线,由任意一点到另一点的距离都相等。
尽管它们看起来截然不同,但实际上它们之间存在着一些有趣的关系和应用。
本文将探讨正多边形与圆的联系以及它们在数学和几何学中的应用。
首先,正多边形和圆在构造和特性上存在着一些相似之处。
正多边形可以通过在圆上连接等长的弦而构建。
例如,一个正三角形可以通过在圆上连接三个等长的弦来形成,而一个正五边形可以通过连接五个等长的弦来形成。
此外,一个正多边形的顶点也可以视作是圆的切点,这种关系在解决几何问题时非常有用。
其次,正多边形和圆在面积和周长方面也有着密切的联系。
一个正多边形的面积可以通过将其分割成等边三角形,并使用三角形的公式来计算。
而一个圆的面积可以通过应用πr²的公式来计算,其中r是圆的半径。
然而,一个有趣的事实是,当正多边形的边数越来越多时,它的面积逐渐接近于圆的面积。
这意味着,当正多边形的边数无限增加时,它将无限接近于一个圆。
此外,正多边形和圆的联系还可以扩展到三角函数和复数的领域。
在三角函数中,我们可以使用正多边形的顶点来解释正弦和余弦函数。
当我们在单位圆上绘制一个正多边形,并对应地观察顶点的纵坐标,我们会发现这些纵坐标形成了正弦曲线。
同样地,我们可以观察顶点的横坐标,发现它们形成了余弦曲线。
这个发现为我们理解三角函数的特性提供了一种直观的方式。
此外,在复数的领域,正多边形和圆也有一些有趣的应用。
复数可以表示为实部和虚部的和,可以用复平面上的点表示。
当我们在复平面上绘制一个正多边形,以原点为中心,并且把每个顶点都与原点相连,我们会发现这个多边形的顶点实际上形成了一个圆。
这个圆被称为“单位圆”,它的半径等于1。
这个联系不仅在数学上有着重要的应用,还在物理学、工程学和计算机图形学等领域中发挥着重要的作用。
综上所述,正多边形与圆之间存在着广泛而丰富的联系。
正多边形与圆的关系

正多边形与圆的关系正多边形和圆是几何学中常见的两种图形,它们之间存在着一些特殊的关系。
在本文中,我们将探讨正多边形与圆的关系,并介绍其中的几个重要概念和性质。
一、正多边形的定义和性质正多边形是指所有边相等、所有角度相等的多边形。
以正n边形为例,它共有n条边和n个顶点,每个内角都是360°/n。
由于每个内角相等,所以每个外角也相等,每个外角都是360°/n。
正多边形具有一些重要的性质。
首先,正多边形的内角和外角之和分别为180°和360°。
其次,正多边形可以通过将圆分成若干等分扇形得到。
每个扇形对应正多边形上的一个顶点,而圆心则对应于正多边形的中心。
二、正多边形与圆的内切关系正多边形可以与一个圆内切,即正多边形的每个顶点都在圆上。
以正六边形为例,将其内接于一个圆,使得每个顶点都与圆的周边相切。
这样,正六边形的外接圆和内接圆就是同一个圆。
在正多边形内切圆的情况下,我们可以推导出一些有趣的数学关系。
首先,正多边形的内接圆的半径等于正多边形的边长的一半。
其次,正多边形的外接圆的半径等于正多边形的边长与正多边形的内接圆的半径之和。
三、正多边形与圆的外接关系正多边形还可以与一个圆外接,即正多边形的每条边都与圆相切。
这种情况下,正多边形的外接圆和内接圆不再是同一个圆。
在正多边形外接圆的情况下,我们可以得到与内接圆类似的数学关系。
首先,正多边形的外接圆的半径等于正多边形的边长的一半。
其次,正多边形的内接圆的半径等于正多边形的边长与正多边形的外接圆的半径之和。
四、正多边形与圆的面积关系正多边形的面积可以通过将其划分成若干等边三角形求和得到。
以正n边形为例,其面积可以表示为S=0.5*n*r*l,其中r为内接圆的半径,l为正多边形的边长。
而圆的面积可以表示为S=π*r^2,其中r为圆的半径。
通过比较正多边形的面积公式和圆的面积公式,我们可以发现一个有趣的关系:当n无限增大时,正多边形的面积逐渐接近于圆的面积。
正多边形与圆课件

)
)
)
)
)
)
)
证明 ∵AB=BC=CD=DE=EA ∴AB=BC=CD=DE=EA
BCE=CDA ∴∠A=∠B 同理∠B=∠C=∠D=∠E ∴五边形ABCDE是正五边形,
A
B
E
O
C
D
问题2:如图,点A,B,C,D,E,F把⊙O六等分. (1)在一张透明纸上画与下图形状、大小相同的图形, 并把它们叠合在一起; (2)把所画图形绕点O旋转60°,你发现了什么?再 旋转60°呢?
六边形ABCDEF是正六边形
E
D
E
D
F O
A
CF O
B
A
C B
归纳
定义:一般地,用量角器把一个圆n(n≥3)等分,依
次连接各等分点就得到这个圆的内接正n边形,这个圆是 这个正n边形的外接圆.正多边形的外接圆的圆心叫做正 多边形的中心.
外接圆的半径叫做正多边形的半径.
正多边形的中心到正多边形一边的距 离叫作正多边形的边心距.
矩形是正多边形吗?为什么?菱形是正多边 形吗?为什么?
矩形不是正多边形,因为边不一定相 等.菱形不是正多边形,因为角不一定相 等.
正多边形与圆有什么关系呢?
正三角形与正方形都有内切圆和外接圆,并且为同 心圆. 分析:正三角形三个顶点把圆三等分; 正方形的四个顶点把圆四等分.要将圆五等分,把 等分点顺次连结,可得正五边形.要将圆六等分呢?
2.如图所示,正五边形ABCDE内接于⊙O,
则∠ADE的度数是 ( C)
A.60° B.45° C. 36° D. 30°
B
A E
O·
C
D
3.如图,已知⊙O的内接正六边形ABCDEF的边心距OM=2, 则该圆的内接正三角形ACE的面积为( D )
正多边形与圆

正多边形与圆正多边形和圆是几何学中的基本概念,它们具有独特的性质和特点。
正多边形是指所有边相等且所有内角相等的多边形,而圆是一个平面上所有点到圆心的距离都相等的形状。
本文将详细讨论正多边形和圆的定义、性质以及它们之间的关系。
一、正多边形的定义与性质正多边形是指所有边相等且所有内角相等的多边形。
按照边的数量,我们可以称之为正三边形、正四边形、正五边形等。
下面以正三边形为例,介绍正多边形的一些性质。
1. 正多边形的特点正三边形是最简单的正多边形,它的三条边相等,三个内角也相等。
除了边长和角度相等外,正多边形的对角线长度也相等,对称轴的存在使得正多边形具有额外的对称性。
2. 正多边形的内角和外角正多边形的内角和外角和的关系是一个重要的性质。
以正三边形为例,它的内角和为180度,外角和为360度。
无论正多边形的边数增加到多少,内角和始终是180度,而外角和始终是360度。
二、圆的定义与性质圆是一个平面上所有点到圆心的距离都相等的形状。
以下是圆的一些定义与性质。
1. 圆的定义圆是由平面上到一个给定点(圆心)的距离相等的所有点所组成的集合。
圆的长度单位是周长,面积单位是平方单位。
2. 圆的性质圆具有许多独特的性质,如以下几点:- 圆的直径是圆上任何两点间的最长线段,它等于圆的半径的两倍。
- 圆的周长是圆上任意一点绕圆心一周所经过的长度,用2πr表示,其中r代表圆的半径。
- 圆的面积是圆内所有点所构成的区域的大小,用πr²表示,其中r代表圆的半径。
三、正多边形与圆的关系正多边形与圆之间存在着密切的关系,下面将介绍两者之间的一些关联性。
1. 内接圆和外接圆正多边形与圆的关系可以通过内接圆和外接圆来描述。
内接圆是指一个圆完全位于正多边形内部且与多边形的每一边都相切,而外接圆是指一个圆完全包围住正多边形且与多边形的每一条边都相切。
对于正多边形来说,内接圆和外接圆的圆心都位于正多边形的中心。
2. 正多边形与圆的面积关系正多边形与圆的面积关系可以通过比较它们的面积得出。