江西省中考数学试题精析

合集下载

2020年江西省中考数学试题评析及2021年中考数学备考策略

2020年江西省中考数学试题评析及2021年中考数学备考策略

2020年江西省中考数学试题评析及2021年中考数学备考策略一、2020年江西中考数学试题整体情况分析1.关注四基体现基础2.根植课本着眼提高以教材上的素材(或题)设计考题,是有利于平时课堂教学,有利于增强广大师生重视教材,以教材为本的意识;有利于提高学生对教材的分析、理解能力。

今年中考试题中除12道小题外,大题T16,T17,T18,T21,T23均有课本题影子。

例如,试卷中的T16与人教版九年级上册P62第4题有着高度相似,只是把绕O逆时针旋转180°改为“作△ABC关于O点对称的△A'B'C'”,把△ABC绕O逆时针旋转90°改为“作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△A'B'C'”。

试卷中的T17与人教版七年级下册P102第8题有着异曲同工之处,两题的思维过程基本一致,所考查的数学内容也基本相同。

试卷中的T18来源于___版九年级上册P156“读一读”,在课本的基础上,作了特殊化处理,设置相关条件,获得特殊情况下的相同结论。

这种设计方式不仅有利于平时的课堂教学,还有助于提高学生对教材的分析、理解能力。

总之,中考数学试题的设计应该注重思维拓展、实践应用和与实际生活的联系。

试题来源于教材,但要站在更高的角度,注重多角度思考问题,展示学生自我。

同时,在试题设计中,要注意题目的质量和难度适宜性,让学生能够在有限的时间内完成答题。

这样,才能真正发挥中考数学试题的作用,帮助学生掌握数学知识,提高数学思维能力,为未来的研究和生活打下坚实的基础。

另外,最引人注目的地方是最后三个大题。

今年第22题是二次函数综合问题,通过观察表格,可以发现对称轴方程;由对称轴发现抛物线与x轴的另一共同点,由此求出抛物线的解析式,进而求出m和n的值。

这种考查形式虽然在课本或辅导书上都有,但在江西省中考试卷上并不多见,用这个角度去考查二次函数最本质的东西,一是增加试题思维度,二是揭示表中x与y的对应值就是图象上点的坐标的内涵。

2021江西中考数学试题分析

2021江西中考数学试题分析

2021年江西中考数学试题分析2021年江西省初中学业水平考试数学试题围绕初中数学基础知识、基本技能、基本思想方法和基本活动经验进行设计,突出数学核心内容和核心素养的考查,体现了立足课标、源于教材、稳中有进、适度创新的思路,全面精准地对考生的数学学习能力和基本数学素养进行考查。

试题还落实了立德树人的根本任务,给不同认知特点、不同数学发展程度的学生提供了公平、广阔的思维空间,较好的体现了“两考合一”的考查功能。

1.注重基础,辐射不同层面数学的基础知识、基本技能、基本思想、基本活动经验是学生继续学习和未来发展的基础,试题在这一点上立意明确,把握到位,贯穿于始终。

(1)基础知识试题在考查数学基础内容方面,做到了根植于教材,“活”于教材,但不难于教材,其内容直接考查了数学的核心知识,以下试题,如T1、T3、T5、T7,T8、T9、T13。

T23(1)等源自课本,起点低,试题基础,绝大多数考生都能顺利解答,其中T3、T13(1)、T8、T9考查基本运算能力,T5体现了核心知识与识图能力的有机结合,T13(2)解法多样,思维发散。

(2)基本技能任何数学问题的解决都离不开基本技能的支撑,技能是形成相应能力的基础。

虽然所有试题都包含着各自不同的技能要求,但还是明显有突出、侧重之分。

本次试题十分重视、侧重对核心技能的考查,如:上述基本运算题突出了计算技能,T4、T5、T19、T22突出了识图或读图或制图技能,T4、T19突出了对数据整理、描述、分析的技能,T23突出了方法、思路的模仿技能……(3)基本思想数学基本思想是数学的生命和灵魂,是数学知识的精髓,是把知识转化为能力的桥梁,本次试题也比较注重基本思想方法的考查。

如:T14、T17、T22等需用数形结合思想,其中T14表现在将不等式解集表示在数轴上,这是借“形”去表示“数”,便于人们对数的理解,T17、T22具体表现在垂直于坐标轴的线段长与点的坐标之间的转化;T12、T22等需用分类讨论思想,体现在解答时要按符合题意的标准分类,再在各类情况下逐一解决,不过T12的分类讨论意识不够明显。

2020年江西省中考数学试卷(解析版)

2020年江西省中考数学试卷(解析版)



【解析】依题意可得,有两个尖头表示 2 10 20 ,有 5 个丁头表示 51,故这个两位数为 25
10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后 7 位,这是祖冲之最重要
2
的数学贡献,胡老师对圆周率的小数点后 100 位数字进行了如下统计:
数字
0
1
2
3
4
5
6
7
8
9
频数
8
8
12
11
10
8
9
8
12
14
那么,圆周率的小数点后 100 位数字的众数为

【解析】由于 9 出现的次数为 14 次,频数最多,∴众数为 9,故答案为 9
11.如图, AC 平分 DCB , CB CD , DA 的延长线交 BC 于点 E ,若 EAC 49 ,则 BAE 的度数


【解析】CD=CB,∠ACD=∠ACB,CA=CA,∴△CAD≌△CAB,∴∠B=∠D,设∠ACB= ,∠B= ,则∠ACD=
∵ x 2 ,∴原式= 1 1 2 x 22
15.某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员,小贤、小晴、小艺、小志
四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级,现对这四名同学采
取随机抽取的方式进行线上面试.
(1)若随机抽取一名同学,恰好抽到小艺同学的概率为
【解析】(1)14.
(2)对比前一次测试优秀学生的比例大幅提升;
对比前一次测试学生的平均成绩有较大提高;
对比前一次测试学生成绩的众数、中位数增大.
(3)20,34
(4) 800 14 6 320 50

2020年江西省中考数学试卷和答案解析

2020年江西省中考数学试卷和答案解析

2020年江西省中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.(3分)﹣3的倒数是()A.3B.﹣3C.﹣D.解析:根据倒数的定义即可得出答案.【解答】解:﹣3的倒数是﹣.故选:C.点拨:此题主要考查了倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a 解析:根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.故选:D.点拨:本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.3.(3分)教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A.5.0175×1011B.5.0175×1012C.0.50175×1013D.0.50175×1014解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:50175亿=5017500000000=5.0175×1012.故选:B.点拨:此题考查科学记数法的表示方法,表示时关键要正确确定a 的值以及n的值.4.(3分)如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A.AB∥CD B.∠B=30°C.∠C+∠2=∠EFC D.CG>FG解析:依据平行线的判定与性质,以及三角形外角性质,即可得出结论.【解答】解:∵∠1=∠2=65°,∴AB∥CD,故A选项正确,又∵∠3=35°,∴∠C=65°﹣35°=30°,∴∠B=∠C=30°,故B选项正确,∵∠EFC是△CGF的外角,∴∠EFC=∠C+∠3,故C选项错误,∵∠3>∠C,∴CG>FG,故D选项正确,故选:C.点拨:本题主要考查了平行线的判定与性质,以及三角形外角性质,解题时注意:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.5.(3分)如图所示,正方体的展开图为()A.B.C.D.解析:根据正方体的展开与折叠,正方体展开图的形状进行判断即可.【解答】解:根据“相间、Z端是对面”可得选项B不符合题意;再根据“上面∧”符号开口,可以判断选项A符合题意;选项C、D不符合题意;故选:A.点拨:本题考查正方体的展开与折叠,掌握正方体展开图的特征是正确判断的前提.6.(3分)在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt △OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1C.y=x+D.y=x+2解析:求得A、B的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n+3),把B′(4,n+3)代入抛物线解析式求得n,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A'B'的表达式.【解答】解:如图,∵抛物线y=x2﹣2x﹣3与y轴交于点A,与x 轴正半轴交于点B,令y=0,解得x=﹣1或3,令x=0,求得y=﹣3,∴B(3,0),A(0,﹣3),∵抛物线y=x2﹣2x﹣3的对称轴为直线x=﹣=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n+3),∵点B'落在抛物线上,∴n+3=16﹣8﹣3,解得n=2,∴A′(1,2),B′(4,5),设直线A'B'的表达式为y=kx+b,∴,解得∴直线A'B'的表达式为y=x+1,故选:B.点拨:本题考查了抛物线与x轴的交点,坐标和图形变换﹣平移,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据题意表示出A′、B′的坐标是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)计算:(a﹣1)2=a2﹣2a+1.解析:直接利用完全平方公式计算即可解答.【解答】解:(a﹣1)2=a2﹣2a+1.点拨:本题考查了完全平方公式,熟记公式是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.8.(3分)若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为﹣2.解析:利用根与系数的关系可得出方程的两根之积为﹣2,结合方程的一个根为1,可求出方程的另一个根,此题得解.【解答】解:∵a=1,b=﹣k,c=﹣2,∴x1•x2==﹣2.∵关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,∴另一个根为﹣2÷1=﹣2.故答案为:﹣2.点拨:本题考查了根与系数的关系以及一元二次方程的解,牢记两根之积等于是解题的关键.9.(3分)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是25.解析:根据题意可知,这个两位数的个位上的数是5,十位上的数是2,故这个两位数我25.【解答】解:由题意可得,表示25.故答案为:25.点拨:本题主要考查了用数字表示事件,理清题目中的符号表示的意义是解答本题的关键.10.(3分)祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0123456789频数881211108981214那么,圆周率的小数点后100位数字的众数为9.解析:直接根据众数的定义可得答案.【解答】解:圆周率的小数点后100位数字的众数为9,故答案为:9.点拨:本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.11.(3分)如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为82°.解析:证明△ABC≌△ADC得∠D+∠ACD=∠B+∠ACB=49°,进而根据三角形内角和定理得结果.【解答】解:∵AC平分∠DCB,∴∠BCA=∠DCA,∵CB=CD,∵AC=AC,∴△ABC≌△ADC(SAS),∴∠B=∠D,∴∠B+∠ACB=∠D+∠ACD,∵∠CAE=∠D+∠ACD=49°,∴∠B+∠ACB=49°,∴∠BAE=180°﹣∠B﹣∠ACB﹣∠CAE=82°,故答案为:82°.点拨:本题主要考查了角平分线的定义,全等三角形的性质与判定,三角形的内角和定理,三角形的外角定理,关键是证明三角形全等,求得∠B+∠ACB=49°.12.(3分)矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段.当图中存在30°角时,AE的长为厘米或4厘米或厘米.解析:根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE =30°时或当∠AEB=30°时或当∠ABA′=30°时求AE的长.【解答】解:①当∠ABE=30°时,AE=AB×tan30°=;②当∠AEB=30°时,AE===4;③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=,∵AF=AE+EF=ABtan30°=,∴x+=,∴x=8﹣4,∴AE=8﹣4.故答案为:厘米或4厘米或8﹣4厘米.点拨:本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:(1﹣)0﹣|﹣2|+()﹣2;(2)解不等式组:解析:(1)先计算零指数幂、绝对值和负整数指数幂,再计算加减可得答案;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原式=1﹣2+4=﹣1+4=3;(2)解不等式3x﹣2≥1,得:x≥1,解不等式5﹣x>2,得:x<3,则不等式组的解集为1≤x<3.点拨:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(6分)先化简,再求值:(﹣)÷,其中x=.解析:先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=[﹣]÷=•=,当x=时,原式==.点拨:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.15.(6分)某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.解析:(1)共有4种可能出现的结果,抽到小艺的只有1种,可求出抽到小艺的概率;(2)用列表法表示所有可能出现的结果,进而求出两个同学均来自八年级的概率.【解答】解:(1)共有4种可能出现的结果,抽到小艺的只有1种,因此恰好抽到小艺的概率为,故答案为:;(2)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中都是八年级,即抽到小志、小晴的有2种,∴P(小志、小晴)==.点拨:本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.16.(6分)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.解析:(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)根据AB=2,BC=,AC=5,利用数形结合的思想解决问题即可.【解答】解:(1)如图1中,△A'B'C'即为所求.(2)如图2中,△AB'C'即为所求.点拨:本题考查作图﹣旋转变换,解题的关键是理解题意,学会利用数形结合的思想解决问题,属于中考常考题型.17.(6分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.解析:(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y 元,根据“小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)先求两人带的总钱数,再求出两人合在一起买文具所需费用,由二者的差大于2个小工艺品所需钱数,可找出:他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【解答】解:(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元,依题意,得:,解得:.答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)小贤和小艺带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为5×(2+1)+(3﹣0.5)×10=40(元).∵47﹣40=7(元),3×2=6(元),7>6,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.点拨:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.解析:(1)根据题意求得A(2,2),然后代入y=(x>0),求得k的值,即可求得反比例函数的解析式;(2)根据AB=2OA时,点E恰为AB的中点,得出OA=AE=BE,根据直角三角形斜边中线的性质得出CE=AE=BE,根据等腰三角形的性质以及三角形外角的性质即可得出∠AOE=2∠EOD,从而求得∠EOD=15°.【解答】解:(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,∴△AOD是等腰直角三角形,∵OA=2,∴OD=AD=2,∴A(2,2),∵顶点A在反比例函数y=(x>0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y=;(2)∵AB=2OA,点E恰为AB的中点,∴OA=AE,∵Rt△ABC中,∠ACB=90°,∴CE=AE=BE,∴∠AOE=∠AEO,∠ECB=∠EBC,∵∠AEO=∠ECB+∠EBC=2∠EBC,∵BC∥x轴,∴∠EOD=∠ECB,∴∠AOE=2∠EOD,∵∠AOD=45°,∴∠EOD=15°.点拨:本题考查了待定系数法求反比例函数的解析式,直角三角形斜边中线的性质,三角形外角的性质,等腰三角形的性质,证得∠AOE=2∠EOD,是解题的关键.19.(8分)为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<4040≤x<5050≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100人数133815m6根据以上图表信息,完成下列问题:(1)m=14;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有20人,至多有34人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80解析:(1)根据前后两次抽取的人数一样多,可以计算出m的值;(2)根据直方图中的数据和表格中的数据,可以将图2中的图补充完整,然后即可写出成绩的变化情况;(3)根据表格中的数据,可以得到分数高于78分的至少有多少人,至多有多少人;(4)根据表格中的数据,可以计算出复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.【解答】解:(1)m=(2+8+10+15+10+4+1)﹣(1+3+3+8+15+6)=14,故答案为:14;(2)折线图如下图所示,复学后,学生的成绩总体上有了明显的提升;(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有14+6=20(人),至多有14+6+(15﹣1)=34(人),故答案为:20,34;(4)800×=320(人),答:复学一个月后该校800名八年级学生数学成绩优秀(80分及点拨:本题考查频数分布直方图、折线统计图、统计表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.(8分)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)解析:(1)通过作垂线,构造直角三角形,利用直角三角形的边角关系,求出CB、AF,即可求出点A到直线DE的距离;(2)画出旋转后的图形,结合图形,明确图形中的已知的边角,再利用直角三角形的边角关系求出相应的角度即可.【解答】解:(1)如图2,过A作AM⊥DE,交ED的延长线于点M,过点C作CF⊥AM,垂足为F,过点C作CN⊥DE,垂足为N,由题意可知,AC=80,CD=80,∠DCB=80°,∠CDE=60°,在Rt△CDN中,CN=CD•sin∠CDE=80×=40(mm)=FM,∠DCN=90°﹣60°=30°,又∵∠DCB=80°,∴∠BCN=80°﹣30°=50°,∵AM⊥DE,CN⊥DE,∴AM∥CN,∴∠A=∠BCN=50°,∴∠ACF=90°﹣50°=40°,在Rt△AFC中,AF=AC•sin40°=80×0.643≈51.44,∴AM=AF+FM=51.44+40≈120.7(mm),答:点A到直线DE的距离约为120.7mm;(2)旋转后,如图3所示,根据题意可知∠DCB=80°+10°=90°,在Rt△BCD中,CD=80,BC=40,∴tan∠D===0.500,∴∠D=26.6°,因此旋转的角度为:60°﹣26.6°=33.4°,答:CD旋转的角度约为33.4°.点拨:本题考查直角三角形的边角关系,锐角三角函数的意义,通过作辅助线构造直角三角形是常用的方法,也是基本的方法.五、(本大题共2小题,每小题9分,共18分)21.(9分)已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC 为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).解析:(1)连接OA,OB,由切线的性质可求∠PAO=∠PBO=90°,由四边形内角和可求解;(2)当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由切线长定理可得PA=PB,∠APC=∠BPC=30°,由“SAS”可证△APC≌△BPC,可得∠ACP=∠BCP=30°,AC=BC,可证AP=AC =PB=BC,可得四边形APBC是菱形;(3)分别求出AP,PD的长,由弧长公式可求,即可求解.【解答】解:(1)如图1,连接OA,OB,∵PA,PB为⊙O的切线,∴∠PAO=∠PBO=90°,∵∠APB+∠PAO+∠PBO+∠AOB=360°,∴∠APB+∠AOB=180°,∵∠APB=80°,∴∠AOB=100°,∴∠ACB=50°;(2)如图2,当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由(1)可知,∠AOB+∠APB=180°,∵∠APB=60°,∴∠AOB=120°,∴∠ACB=60°=∠APB,∵点C运动到PC距离最大,∴PC经过圆心,∵PA,PB为⊙O的切线,∴PA=PB,∠APC=∠BPC=30°,又∵PC=PC,∴△APC≌△BPC(SAS),∴∠ACP=∠BCP=30°,AC=BC,∴∠APC=∠ACP=30°,∴AP=AC,∴AP=AC=PB=BC,∴四边形APBC是菱形;(3)∵⊙O的半径为r,∴OA=r,OP=2r,∴AP=r,PD=r,∵∠AOP=90°﹣∠APO=60°,∴==,∴阴影部分的周长=PA+PD+=r+r+r=(+1+)r.点拨:本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,弧长公式,菱形的判定等知识,灵活运用这些性质解决问题是本题的关键.22.(9分)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…﹣2﹣1012…y…m0﹣3n﹣3…(1)根据以上信息,可知抛物线开口向上,对称轴为直线x=1;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P',描出相应的点P',再把相应的点P'用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>﹣2)与抛物线及(3)中的点P'所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系A3A4﹣A1A2=1.解析:(1)观察表格中的数据,得到x=0和x=2时,y值相等都为﹣3,且其他y的值比﹣3大,可得出抛物线开口方向及对称轴;(2)把三点坐标代入抛物线解析式求出a,b,c的值确定出解析式,进而求出m与n的值即可;(3)画出抛物线图象,确定出点P'运动的轨迹即可;(4)根据(3)中图象可得答案.【解答】解:(1)根据表格信息,可知抛物线开口向上,对称轴为直线x=1;故答案为:上,直线x=1;(2)把(﹣1,0),(0,﹣3),(2,﹣3)代入y=ax2+bx+c,得:,解得:,∴抛物线解析式为y=x2﹣2x﹣3,当x=﹣2时,m=4+4﹣3=5;当x=1时,n=1﹣2﹣3=﹣4;(3)画出抛物线图象,如图1所示,描出P'的轨迹,是一条抛物线,如备用图所示,(4)根据题意及(3)中图象可得:A3A4﹣A1A2=1.故答案为:A3A4﹣A1A2=1.点拨:本题考查了待定系数法求二次函数的解析式及二次函数的图象与性质,数形结合并熟练掌握二次函数的相关性质是解题的关键.六、(本大题共12分)23.(12分)某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC 为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为S1+S2=S3;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC 为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC =90°,AB=2,DE=2,点P在AE上,∠ABP=30°,PE=,求五边形ABCDE的面积.解析:类比探究(1)通过证明△ADB∽△BFC,可得=()2,同理可得=()2,由勾股定理可得AB2+AC2=BC2,可得结论;推广验证(2)通过证明△ADB∽△BFC,可得=()2,同理可得=()2,由勾股定理可得AB2+AC2=BC2,可得结论;拓展应用(3)过点A作AH⊥BP于H,连接PD,BD,由直角三角形的性质可求AP=,BP=BH+PH=3+,可求S△ABP=,通过证明△ABP∽△EDP,可得∠EPD=∠APB=45°,,S△PDE=,可得∠BPD=90°,PD=1+,可求S△BPD=2+3,由(2)的结论可求S△BCD=S△ABP+S△DPE=+=2+2,即可求解.【解答】解:类比探究(1)∵∠1=∠3,∠D=∠F=90°,∴△ADB∽△BFC,∴=()2,同理可得:=()2,∵AB2+AC2=BC2,∴=()2+()2==1,∴S1+S2=S3,故答案为:S1+S2=S3.(2)结论仍然成立,理由如下:∵∠1=∠3,∠D=∠F,∴△ADB∽△BFC,∴=()2,同理可得:=()2,∵AB2+AC2=BC2,∴=()2+()2==1,∴S1+S2=S3,(3)过点A作AH⊥BP于H,连接PD,BD,∵∠ABH=30°,AB=2,∴AH=,BH=3,∠BAH=60°,∵∠BAP=105°,∴∠HAP=45°,∵AH⊥BP,∴∠HAP=∠APH=45°,∴PH=AH=,∴AP=,BP=BH+PH=3+,∴S△ABP===,∵PE=,ED=2,AP=,AB=2,∴=,=,∴,且∠E=∠BAP=105°,∴△ABP∽△EDP,∴∠EPD=∠APB=45°,,∴∠BPD=90°,PD=1+,∴S△BPD===2+3,∵△ABP∽△EDP,∴=()2=,∴S△PDE=×=∵tan∠PBD=,∴∠PBD=30°,∴∠CBD=∠ABC﹣∠ABP﹣∠CBD=30°,∴∠ABP=∠PDE=∠CBD,又∵∠A=∠E=∠C=105°,∴△ABP∽△EDP∽△CBD,由(2)的结论可得:S△BCD=S△ABP+S△DPE=+=2+2,∴五边形ABCDE的面积=++2+2+2+3=6+7.点拨:本题是四边形综合题,考查了相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,利用相似三角形的性质求三角形的面积是本题的关键.。

2020江西省中考数学试卷分析

2020江西省中考数学试卷分析

2020江西省中考数学试卷分析本次数学试题整体分析概要本次测试数学试题满分120,考试形式:闭卷;考试时间120分钟。

试题综合性强,分为选择题、填空题、解答题三大板块。

选择题共6道,共计18分;解答题共6道,共计18分;解答题共11题,共计84分。

试题考查范围覆盖初中数学教学大纲中所要求掌握知识点的全部内容,考试知识点全部都是学生已经学过的知识点和考点,题目考察的知识点不难,但形式较灵活,整体还是较往年的中考卷容易。

选择题除第六题外,都是直接考察对基础知识的掌握情况,简单明了无需计算;第六题不仅考察了学生对基础知识的掌握,还考察了学生对知识点的应用和变通理解能力及数形结合思想的运用。

此次选择题计算量较小,这就需要更加细心的解题,以免大意失分。

非选择题包括两种题型,分别是填空题和计算题,本试卷非选择题包括两种题型,分别是填空题和计算题,其中填空题的7、8、10都是简单考察学生对基础知识的掌握情况,第9题是一个简单的推理题,但是较容易理解错误从而失分,11题灵活运用了外角和的概念,12题有三个答案,需要仔细分析出所有的情况。

解答题中有实数的综合运算、解不等式组、概率、尺规作图,数据统计等知识的考察,要求学生掌握其中相关知识点和解题方法,比如13、14、15、16、17、19题。

第18题视反比例函数和三角形结合的证明题,考察的知识点主要是“反比例函数解析式”“勾股定理”“等边对等角”及“三角形外角的概念”的灵活运用,解决本题要求学生熟悉以上概念;第20是实际情境中的三角函数的问题,需要仔细勾股定理的运算;21是与圆相关的问题,结合考察四边形的相关知识;22题是简单的二次函数问题,主要考察学生对二次函数解析式及其图像的掌握情况;压轴23是由直角三角形向外侧作多边形的问题,着重考察学生对相似三角形面积比的掌握情况,考察形式新颖,比较综合,对学生要求较高。

总体来说,本套试题偏容易,但题型灵活,新颖,较容易丢分。

2021年江西省初中毕业生统一考试(中考)数学试卷及解析

2021年江西省初中毕业生统一考试(中考)数学试卷及解析

2021年江西省初中毕业生统一考试(中考)数学试卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.(3分)2-的相反数是( ) A .2B .2-C .12D .12-2.(3分)如图,几何体的主视图是( )A .B .C .D .3.(3分)计算11a a a+-的结果为( ) A .1B .1-C .2a a+ D .2a a- 4.(3分)如图是2020年中国新能源汽车购买用户地区分布图,由图可知下列说法错误的是( )A .一线城市购买新能源汽车的用户最多B .二线城市购买新能源汽车用户达37%C .三四线城市购买新能源汽车用户达到11万D .四线城市以下购买新能源汽车用户最少5.(3分)在同一平面直角坐标系中,二次函数2y ax =与一次函数y bx c =+的图象如图所示,则二次函数2y ax bx c =++的图象可能是( )A .B .C .D .6.(3分)如图是用七巧板拼接成的一个轴对称图形(忽略拼接线)小亮改变①的位置,将①分别摆放在图中左,下,右的位置(摆放时无缝隙不重叠),还能拼接成不同轴对称图形的个数为( )A .2B .3C .4D .5二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)国务院第七次全国人口普查领导小组办公室5月11日发布,江西人口数约为45100000人,将45100000用科学记数法表示为 . 8.(3分)因式分解:224x y -= .9.(3分)已知1x ,2x 是一元二次方程2430x x -+=的两根,则1112x x x x +-= .10.(3分)如表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全表第四行空缺的数字是 .11.(3分)如图,将ABCD 沿对角线AC 翻折,点B 落在点E 处,CE 交AD 于点F ,若80B ∠=︒,2ACE ECD ∠=∠,FC a =,FD b =,则ABCD 的周长为 .12.(3分)如图,在边长为63的正六边形ABCDEF 中,连接BE ,CF ,其中点M ,N 分别为BE 和CF 上的动点.若以M ,N ,D 为顶点的三角形是等边三角形,且边长为整数,则该等边三角形的边长为 .三、(本大题共5小题,每小题6分,共30分) 13.(6分)(1)计算:201(1)(2021)||2π---+-;(2)如图,在ABC ∆中,40A ∠=︒,80ABC ∠=︒,BE 平分ABC ∠交AC 于点E ,ED AB ⊥于点D ,求证:AD BD =.14.(6分)解不等式组:231113xx-⎧⎪+⎨>-⎪⎩并将解集在数轴上表示出来.15.(6分)为庆祝建党100周年,某大学组织志愿者周末到社区进行党史学习宣讲,决定从A,B,C,D四名志愿者中通过抽签的方式确定两名志愿者参加.抽签规则:将四名志愿者的名字分别写在四张完全相同不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.(1)“A志愿者被选中”是事件(填“随机”或“不可能”或“必然”);(2)请你用列表法或画树状图法表示出这次抽签所有可能的结果,并求出A,B两名志愿者被选中的概率.16.(6分)已知正方形ABCD的边长为4个单位长度,点E是CD的中点,请仅用无刻度直尺按下列要求作图(保留作图痕迹).(1)在图1中,将直线AC绕着正方形ABCD的中心顺时针旋转45︒;(2)在图2中,将直线AC向上平移1个单位长度.17.(6分)如图,正比例函数y x =的图象与反比例函数(0)ky x x =>的图象交于点(1,)A a 在ABC ∆中,90ACB ∠=︒,CA CB =,点C 坐标为(2,0)-.(1)求k 的值;(2)求AB 所在直线的解析式.四、(本大题共3小题,每小题8分,共24分)18.(8分)甲,乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件. (1)求这种商品的单价;(2)甲,乙两人第二次再去采购该商品时,单价比上次少了20元/件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是 元/件,乙两次购买这种商品的平均单价是 元/件.(3)生活中,无论油价如何变化,有人总按相同金额加油,有人总按相同油量加油,结合(2)的计算结果,建议按相同 加油更合算(填“金额”或“油量” ).19.(8分)为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分.某外贸公司要出口一批规格为75g 的鸡腿,现有两个厂家提供货源,它们的价格相同,鸡腿的品质相近质检员分别从两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:)g 如下:甲厂:76,74,74,76,73,76,76,77,78,74,76,70,76,76,73,70,77,79,78,71; 乙厂:75,76,77,77,78,77,76,71,74,75,79,71,72,74,73,74,70,79,75,77. 甲厂鸡腿质量频数统计表 质量()x g频数 频率 6871x <20.17174x <30.15x<10a7477x<50.257780合计201分析上述数据,得到下表:平均数中位数众数方差统计量厂家甲厂7576b 6.3乙厂757577 6.6请你根据图表中的信息完成下列问题:(1)a=,b=;(2)补全频数分布直方图;(3)如果只考虑出口鸡腿规格,请结合表中的某个统计量,为外贸公司选购鸡腿提供参考建议;x<的鸡腿加工成优等品,请(4)某外贸公司从甲厂采购了20000只鸡腿,并将质量(单位:)g在7177估计可以加工成优等品的鸡腿有多少只?20.(8分)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄=,肘关MB cm=,42BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直.量得胳膊28MN cm节M与枪身端点A之间的水平宽度为25.3cm(即MP的长度),枪身8.5=.BA cm(1)求ABC∠的度数;(2)测温时规定枪身端点A与额头距离范围为3~5cm.在图2中,若测得68.6BMN∠=︒,小红与测温员之间距离为50cm.问此时枪身端点A与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据:sin66.40.92≈︒≈,2 1.414)︒≈,sin23.60.40︒≈,cos66.40.40五、(本大题共2小题,每小题9分,共18分)21.(9分)如图1,四边形ABCD内接于O,AD为直径,点C作CE AB⊥于点E,连接AC.(1)求证:CAD ECB∠=∠;(2)若CE是O的切线,30∠=︒,连接OC,如图2.CAD①请判断四边形ABCO的形状,并说明理由;②当2AB=时,求AD,AC与CD围成阴影部分的面积.22.(9分)二次函数22y x mx =-的图象交x 轴于原点O 及点A . 感知特例(1)当1m =时,如图1,抛物线2:2L y x x =-上的点B ,O ,C ,A ,D 分别关于点A 中心对称的点为B ',O ',C ',A ',D ',如表:⋯ (1,3)B - (0,0)O (1,1)C - (A , )(3,3)D ⋯ ⋯(5,3)B '-(4,0)O '(3,1)C '(2,0)A '(1,3)D '- ⋯①补全表格;②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为L '.形成概念我们发现形如(1)中的图象L '上的点和抛物线L 上的点关于点A 中心对称,则称L '是L 的“孔像抛物线”.例如,当2m =-时,图2中的抛物线L '是抛物线L 的“孔像抛物线”.探究问题(2)①当1m =-时,若抛物线L 与它的“孔像抛物线” L '的函数值都随着x 的增大而减小,则x 的取值范围为 ;②在同一平面直角坐标系中,当m 取不同值时,通过画图发现存在一条抛物线与二次函数22y x mx =-的所有“孔像抛物线” L '都有唯一交点,这条抛物线的解析式可能是 (填“2y ax bx c =++”或“2y ax bx =+”或“2y ax c =+”或“2y ax =”,其中0)abc ≠;③若二次函数22y x mx =-及它的“孔像抛物线”与直线y m =有且只有三个交点,求m 的值.六、(本大题共12分) 23.(12分)课本再现(1)在证明“三角形内角和定理”时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与A ∠相等的角是 ;类比迁移(2)如图2,在四边形ABCD 中,ABC ∠与ADC ∠互余,小明发现四边形ABCD 中这对互余的角可类比(1)中思路进行拼合:先作CDF ABC ∠=∠,再过点C 作CE DF ⊥于点E ,连接AE ,发现AD ,DE ,AE 之间的数量关系是 ;方法运用(3)如图3,在四边形ABCD 中,连接AC ,90BAC ∠=︒,点O 是ACD ∆两边垂直平分线的交点,连接OA ,OAC ABC ∠=∠.①求证:90ABC ADC ∠+∠=︒;②连接BD ,如图4,已知AD m =,DC n =,2ABAC=,求BD 的长(用含m ,n 的式子表示).2021年江西省初中毕业生统一考试(中考)数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.(3分)2-的相反数是()A.2B.2-C.12D.12-【分析】根据相反数的意义,只有符号不同的两个数互为相反数.【解答】解:根据相反数的定义,2-的相反数是2.故选:A.2.(3分)如图,几何体的主视图是()A.B.C.D.【分析】根据简单组合体的三视图的画法得出该组合体的主视图即可.【解答】解:从正面看该组合体,长方体的主视图为长方形,圆柱体的主视图是长方形,因此选项C中的图形符合题意,故选:C.3.(3分)计算11aa a+-的结果为()A.1B.1-C.2aa+D.2aa-【分析】根据分式的加减运算法则即可求出答案. 【解答】解:原式11a a+-= a a= 1=,故选:A .4.(3分)如图是2020年中国新能源汽车购买用户地区分布图,由图可知下列说法错误的是( )A .一线城市购买新能源汽车的用户最多B .二线城市购买新能源汽车用户达37%C .三四线城市购买新能源汽车用户达到11万D .四线城市以下购买新能源汽车用户最少 【分析】根据扇形统计图中的数据一一分析即可判断.【解答】解:A 、一线城市购买新能源汽车的用户最多,故本选项正确,不符合题意;B 、二线城市购买新能源汽车用户达37%,故本选项正确,不符合题意;C 、由扇形统计图中的数据不能得出三四线城市购买新能源汽车用户达到11万,故本选项错误,符合题意;D 、四线城市以下购买新能源汽车用户最少,故本选项正确,不符合题意;故选:C .5.(3分)在同一平面直角坐标系中,二次函数2y ax =与一次函数y bx c =+的图象如图所示,则二次函数2y ax bx c =++的图象可能是( )A .B .C .D .【分析】根据二次函数2y ax =与一次函数y bx c =+的图象,即可得出0a >、0b >、0c <,由此即可得出:二次函数y ax bx c =-++的图象开口向上,对称轴02bx a=-<,与y 轴的交点在y 轴负半轴,再对照四个选项中的图象即可得出结论.【解答】解:观察函数图象可知:0a >,0b >,0c <,∴二次函数2y ax bx c =++的图象开口向上,对称轴02bx a=-<,与y 轴的交点在y 轴负半轴. 故选:D .6.(3分)如图是用七巧板拼接成的一个轴对称图形(忽略拼接线)小亮改变①的位置,将①分别摆放在图中左,下,右的位置(摆放时无缝隙不重叠),还能拼接成不同轴对称图形的个数为( )A .2B .3C .4D .5【分析】能拼剪为等腰梯形,等腰直角三角形,矩形,由此即可判断. 【解答】解:观察图象可知,能拼接成不同轴对称图形的个数为3个.故选:B .二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)国务院第七次全国人口普查领导小组办公室5月11日发布,江西人口数约为45100000人,将45100000用科学记数法表示为 74.5110⨯ .【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【解答】解:745100000 4.5110=⨯, 故答案为:74.5110⨯.8.(3分)因式分解:224x y -= (2)(2)x y x y +- . 【分析】直接运用平方差公式进行因式分解. 【解答】解:224(2)(2)x y x y x y -=+-.9.(3分)已知1x ,2x 是一元二次方程2430x x -+=的两根,则1112x x x x +-= 1 . 【分析】直接根据根与系数的关系得出12x x +、12x x 的值,再代入计算即可. 【解答】解:1x ,2x 是一元二次方程2430x x -+=的两根, 124x x ∴+=,123x x =.则1212431x x x x +-=-=.故答案是:1.10.(3分)如表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全表第四行空缺的数字是3.【分析】根据表中的数据和数据的变化特点,可以发现:每一行中间的数字都等于这个数字上一行左上角和右上角的数字之和,然后即可写出第四行空缺的数字.【解答】解:由表可知,每一行中间的数字都等于这个数字上一行左上角和右上角的数字之和,故第四行空缺的数字是123+=,故答案为:3.11.(3分)如图,将ABCD沿对角线AC翻折,点B落在点E处,CE交AD于点F,若80∠=︒,Ba b=,则ABCD的周长为42+.2=,FD bACE ECD∠=∠,FC a【分析】由80∆为等腰三角形.所以B∠=︒,四边形ABCD为平行四边形,折叠的性质可证明AFC∠=,在ADC∆中,由三角形内角和定理可知,ACE x∠=,则2AF FC a==.设ECD x==.故平∆为等腰三角形.所以DC FC ax=︒,由外角定理可证明DFCx x x+++︒=︒,解得202280180行四边形ABCD的周长为2()2()242DC AD a a b a b+=++==+.【解答】解:80∠=︒,四边形ABCD为平行四边形.B80∴∠=︒.D由折叠可知ACB ACE∠=∠,又//AD BC,DAC ACB∴∠=∠,∴∠=∠,ACE DAC∴∆为等腰三角形.AFCAF FC a ∴==.设ECD x ∠=,则2ACE x ∠=, 2DAC x ∴∠=,在ADC ∆中,由三角形内角和定理可知,2280180x x x +++︒=︒, 解得:20x =︒.∴由三角形外角定理可得480DFC x ∠==︒,故DFC ∆为等腰三角形. DC FC a ∴==. AD AF FD a b ∴=+=+,故平行四边形ABCD 的周长为2()2()242DC AD a a b a b +=++==+. 故答案为:42a b +.12.(3分)如图,在边长为63的正六边形ABCDEF 中,连接BE ,CF ,其中点M ,N 分别为BE 和CF 上的动点.若以M ,N ,D 为顶点的三角形是等边三角形,且边长为整数,则该等边三角形的边长为 9或10或18 .【分析】连接DF ,DB ,BF .则DBF ∆是等边三角形.解直角三角形求出DF ,可得结论.当点N 在OC 上,点M 在OE 上时,求出等边三角形的边长的最大值,最小值,可得结论. 【解答】解:连接DF ,DB ,BF .则DBF ∆是等边三角形.设BE 交DF 于J .六边形ABCDEF 是正六边形,∴由对称性可知,DF BE ⊥,60JEF ∠=︒,63EF ED ==,3sin 606392FJ DJ EF ∴==⋅︒=⨯=, 18DF ∴=,∴当点M 与B 重合,点N 与F 重合时,满足条件,DMN ∴∆的边长为18,如图,当点N 在OC 上,点M 在OE 上时,等边DMN ∆的边长的最大值为6310.39≈,最小值为9, DMN ∴∆的边长为整数时,边长为10或9,综上所述,等边DMN ∆的边长为9或10或18. 故答案为:9或10或18.三、(本大题共5小题,每小题6分,共30分) 13.(6分)(1)计算:201(1)(2021)||2π---+-;(2)如图,在ABC ∆中,40A ∠=︒,80ABC ∠=︒,BE 平分ABC ∠交AC 于点E ,ED AB ⊥于点D ,求证:AD BD =.【分析】(1)根据乘方的意义、零指数幂和绝对值的意义计算;(2)先证明A ABE ∠=∠得到ABE ∆为等腰三角形,然后根据等腰三角形的性质得到结论. 【解答】(1)解:原式1112=-+12=;(2)证明:BE 平分ABC ∠交AC 于点E , 11804022ABE ABC ∴∠=∠=⨯︒=︒,40A ∠=︒,A ABE ∴∠=∠, ABE ∴∆为等腰三角形, ED AB ⊥, AD BD ∴=.14.(6分)解不等式组:231113x x -⎧⎪+⎨>-⎪⎩并将解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式231x -,得:2x , 解不等式113x +>-,得:4x >-, 则不等式组的解集为42x -<, 将不等式组的解集表示在数轴上如下:15.(6分)为庆祝建党100周年,某大学组织志愿者周末到社区进行党史学习宣讲,决定从A ,B ,C ,D 四名志愿者中通过抽签的方式确定两名志愿者参加.抽签规则:将四名志愿者的名字分别写在四张完全相同不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.(1)“A 志愿者被选中”是 随机 事件(填“随机”或“不可能”或“必然” );(2)请你用列表法或画树状图法表示出这次抽签所有可能的结果,并求出A ,B 两名志愿者被选中的概率.【分析】(1)根据随机事件、不可能事件及必然事件的概念求解即可;(2)列表得出所有等可能结果数,再从中找到符合条件的结果数,继而利用概率公式求解即可. 【解答】解:(1)“A 志愿者被选中”是随机事件, 故答案为:随机;(2)列表如下:ABC DA ---(,)B A (,)C A (,)D A B(,)A B ---(,)C B (,)D B C(,)A C (,)B C ---(,)D C D(,)A D(,)B D(,)C D---由表可知,共有12种等可能结果,其中A ,B 两名志愿者被选中的有2种结果, 所以A ,B 两名志愿者被选中的概率为21126=. 16.(6分)已知正方形ABCD 的边长为4个单位长度,点E 是CD 的中点,请仅用无刻度直尺按下列要求作图(保留作图痕迹).(1)在图1中,将直线AC 绕着正方形ABCD 的中心顺时针旋转45︒; (2)在图2中,将直线AC 向上平移1个单位长度.【分析】(1)根据正方形的性质和旋转的性质即可作出图形; (2)根据平移的性质即可作出图形. 【解答】解:(1)如图1,直线l 即为所求;(2)如图2中,直线a 即为所求.17.(6分)如图,正比例函数y x =的图象与反比例函数(0)ky x x =>的图象交于点(1,)A a 在ABC ∆中,90ACB ∠=︒,CA CB =,点C 坐标为(2,0)-.(1)求k 的值;(2)求AB 所在直线的解析式.【分析】(1)先求得A 的坐标,然后根据待定系数法即可求得k 的值;(2)作AD x ⊥轴于D ,BE x ⊥轴于E ,通过证得BCE CAD ∆≅∆,求得(3,3)B -,然后根据待定系数法即可求得直线AB 的解析式.【解答】解:(1)正比例函数y x =的图象经过点(1,)A a , 1a ∴=,(1,1)A ∴,点A 在反比例函数(0)ky x x=>的图象上,111k ∴=⨯=;(2)作AD x ⊥轴于D ,BE x ⊥轴于E , (1,1)A ,(2,0)C -,1AD ∴=,3CD =,90ACB ∠=︒, 90ACD BCE ∴∠+∠=︒,90ACD CAD ∠+∠=︒,BCE CAD ∴∠=∠,在BCE ∆和CAD ∆中,90BCE CAD BEC CDA CB AC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()BCE CAD AAS ∴∆≅∆,1CE AD ∴==,3BE CD ==,(3,3)B ∴-,设直线AB 的解析式为y mx n =+,∴133m n m n +=⎧⎨-+=⎩,解得1232m n ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线AB 的解析式为1322y x =-+.四、(本大题共3小题,每小题8分,共24分)18.(8分)甲,乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件.(1)求这种商品的单价;(2)甲,乙两人第二次再去采购该商品时,单价比上次少了20元/件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是 48 元/件,乙两次购买这种商品的平均单价是 元/件.(3)生活中,无论油价如何变化,有人总按相同金额加油,有人总按相同油量加油,结合(2)的计算结果,建议按相同 加油更合算(填“金额”或“油量” ).【分析】(1)设这种商品的单价为x 元/件.根据“甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件”找到相等关系,列出方程,解出方程即可得出答案;(2)先计算出第二次购买该商品时甲购买的数量和乙购买的总价,再用两次总价和除以两次的数量和即可得出两次的平均单价;(3)通过比较(2)的计算结果即可得出答案.【解答】(1)解:设这种商品的单价为x元/件.由题意得:3000240010 x x-=,解得:60x=,经检验:60x=是原方程的根.答:这种商品的单价为60元/件.(2)解:第二次购买该商品时的单价为:602040-=(元/件),第二次购买该商品时甲购买的件数为:24004060÷=(件),第二次购买该商品时乙购买的总价为:(300060)402000÷⨯=(元),∴甲两次购买这种商品的平均单价是:240024002(60)4860⨯÷+=(元/件),乙两次购买这种商品的平均单价是:3000(30002000)(2)5060+÷⨯=(元/件).故答案为:48;50.(3)解:4850<,∴按相同金额加油更合算.故答案为:金额.19.(8分)为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分.某外贸公司要出口一批规格为75g的鸡腿,现有两个厂家提供货源,它们的价格相同,鸡腿的品质相近质检员分别从两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:)g如下:甲厂:76,74,74,76,73,76,76,77,78,74,76,70,76,76,73,70,77,79,78,71;乙厂:75,76,77,77,78,77,76,71,74,75,79,71,72,74,73,74,70,79,75,77.甲厂鸡腿质量频数统计表6871x<7174x<7477x<7780x <50.25合计201分析上述数据,得到下表:平均数中位数众数方差统计量厂家甲厂7576b 6.3乙厂757577 6.6请你根据图表中的信息完成下列问题:(1)a=0.5,b=;(2)补全频数分布直方图;(3)如果只考虑出口鸡腿规格,请结合表中的某个统计量,为外贸公司选购鸡腿提供参考建议;x<的鸡腿加工成优等品,请(4)某外贸公司从甲厂采购了20000只鸡腿,并将质量(单位:)g在7177估计可以加工成优等品的鸡腿有多少只?【分析】(1)根据频数、频率、总数之间的关系可求出a的值,根据众数的意义可求出b的值;x<的频数,即可补全频数分布直方图;(2)求出乙厂鸡腿质量在7477(3)根据中位数、众数、平均数综合进行判断即可;x<的鸡腿数量所占的百分比即可.(4)求出甲厂鸡腿质量在7177【解答】解:(1)20.120a=÷=,÷=(个),10200.5甲厂鸡腿质量出现次数最多的是76g,因此众数是76,即76b=,故答案为:0.5,76;(2)201478---=(个),补全频数分布直方图如下:(3)两个厂的平均数相同,都是75g,而甲厂的中位数、众数都是76g,接近平均数且方差较小,数据的比较稳定,因此选择甲厂;(4)200000.153000⨯=(只),答:从甲厂采购了20000只鸡腿中,可以加工成优等品的大约有3000只.20.(8分)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄=,肘关MB cmMN cmBC与手臂MC始终在同一直线上,枪身BA与额头保持垂直.量得胳膊28=,42节M与枪身端点A之间的水平宽度为25.3cm(即MP的长度),枪身8.5=.BA cm(1)求ABC∠的度数;(2)测温时规定枪身端点A与额头距离范围为3~5cm.在图2中,若测得68.6∠=︒,小红与测温BMN员之间距离为50cm.问此时枪身端点A与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据:sin66.40.92≈︒≈,2 1.414)︒≈,sin23.60.40︒≈,cos66.40.40【分析】(1)过点B 作BH MP ⊥,垂足为H ,根据解直角三角形16.8cos 0.442MH BMH BM ∠===,即可计算出BMH ∠的度数,再根据平行线的性质即可算出ABC ∠的度数; (2)根据(1)中的结论和已知条件可计算出NMI ∠的度数,根据三角函数即可算出MI 的长度,再根据已知条件即可算出PK 的长度,即可得出答案.【解答】解:(1)过点B 作BH MP ⊥,垂足为H ,过点M 作MI FG ⊥,垂足为I ,过点P 作PK DE ⊥,垂足为K ,25.3MP cm =,8.5BA HP cm ==,25.38.516.8()MH MP HP cm ∴=-=-=,在Rt BMH ∆中,16.8cos 0.442MH BMH BM ∠===, 66.4BMH ∴∠=︒,//AB MP ,180BMH ABC ∴∠+∠=︒,18066.4113.6ABC ∴∠=︒-︒=︒;(2)18018066.4113.6ABC BMH ∴∠=︒-∠=︒-︒=︒.68.6BMN ∠=︒,66.4BMH ∠=︒,18018068.666.445NMI BMN BMH ∴∠=︒-∠-∠=︒-︒-︒=︒,28MN cm =,cos4528MI MI MN ∴︒==, 19.74MI cm ∴≈,50KI cm =,5019.7425.3 4.96 5.0()PK KI MI MP cm ∴=--=--=≈,∴此时枪身端点A 与小红额头的距离是在规定范围内.五、(本大题共2小题,每小题9分,共18分)21.(9分)如图1,四边形ABCD内接于O,AD为直径,点C作CE AB⊥于点E,连接AC.(1)求证:CAD ECB∠=∠;(2)若CE是O的切线,30∠=︒,连接OC,如图2.CAD①请判断四边形ABCO的形状,并说明理由;②当2AB=时,求AD,AC与CD围成阴影部分的面积.【分析】(1)先判断出CBE D∠=∠,再用等角的余角相等,即可得出结论;(2)①先判断出//BC OA,进而得出四边形ABCO是平行四边形,即可得出结论;OC AB,再判断出//②先求出AC,BC,再用面积的和,即可得出结论.【解答】(1)证明:四边形ABCD是O的内接四边形,∴∠=∠,CBE DAD为O的直径,∴∠=︒,ACD90D CAD∴∠+∠=︒,90∴∠+∠=︒,90CBE CADCE AB ⊥,90CBE BCE ∴∠+∠=︒,CAD BCE ∴∠=∠;(2)①四边形ABCO 是菱形,理由:30CAD ∠=︒,260COD CAD ∴∠=∠=︒,9060D CAD ∠=︒-∠=︒, CE 是O 的切线,OC CE ∴⊥,CE AB ∴⊥,//OC AB ∴,60DAB COD ∴∠=∠=︒,由(1)知,90CBE CAD ∠+∠=︒,9060CBE CAD DAB ∴∠=︒-∠=︒=∠,//BC OA ∴,∴四边形ABCO 是平行四边形,OA OC =,ABCO ∴是菱形;②由①知,四边形ABCO 是菱形,2OA OC AB ∴===,24AD OA ∴==,由①知,60COD ∠=︒,在Rt ACD ∆中,30CAD ∠=︒,2CD ∴=,AC =AD ∴,AC 与CD 围成阴影部分的面积为AOC COD S S ∆+扇形12ACD COD S S ∆=+扇形 211602222360π⨯=⨯⨯⨯ 23π=.22.(9分)二次函数22y x mx =-的图象交x 轴于原点O 及点A .感知特例(1)当1m =时,如图1,抛物线2:2L y x x =-上的点B ,O ,C ,A ,D 分别关于点A 中心对称的点为B ',O ',C ',A ',D ',如表:⋯ (1,3)B -(0,0)O (1,1)C - (A 2 , ) (3,3)D ⋯ ⋯(5,3)B '- (4,0)O ' (3,1)C ' (2,0)A ' (1,3)D '- ⋯ ①补全表格;②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为L '.形成概念我们发现形如(1)中的图象L '上的点和抛物线L 上的点关于点A 中心对称,则称L '是L 的“孔像抛物线”.例如,当2m =-时,图2中的抛物线L '是抛物线L 的“孔像抛物线”.探究问题(2)①当1m =-时,若抛物线L 与它的“孔像抛物线” L '的函数值都随着x 的增大而减小,则x 的取值范围为 ;②在同一平面直角坐标系中,当m 取不同值时,通过画图发现存在一条抛物线与二次函数22y x mx =-的所有“孔像抛物线” L '都有唯一交点,这条抛物线的解析式可能是 (填“2y ax bx c =++”或“2y ax bx =+”或“2y ax c =+”或“2y ax =”,其中0)abc ≠;③若二次函数22y x mx =-及它的“孔像抛物线”与直线y m =有且只有三个交点,求m 的值.【分析】(1)①根据中点公式即可求得答案;②根据题意先描点,再用平滑的曲线从左到右依次连接即可;(2)①当1m =-时,抛物线22:2(1)1L y x x x =+=+-,当1x -时,L 的函数值随着x 的增大而减小,抛物线22:68(3)1L y x x x '=---=-++,当3x -时,L '的函数值随着x 的增大而减小,找出公共部分即可; ②先观察图1和图2,可以看出随着m 的变化,二次函数22y x mx =-的所有“孔像抛物线” 22:(3)L y x m m '=--+,顶点坐标为2(3,)N m m ,顶点在抛物线219y x =上,根据这条抛物线与二次函数22y x mx =-的所有“孔像抛物线” L '都有唯一交点,可知这条抛物线顶点为原点,即2y ax =; ③观察图1和图2,可知直线y m =与抛物线22y x mx =-及“孔像抛物线” L '有且只有三个交点,即直线y m =经过抛物线L 的顶点或经过抛物线L '的顶点或经过公共点A ,分别建立方程求解即可.【解答】解:(1)①(1,3)B -、(5,3)B '-关于点A 中心对称,∴点A 为BB '的中点,设点(,)A m n , 1522m -+∴==,3302n -==, 故答案为:(2,0);②所画图象如图1所示,(2)①当1m =-时,抛物线22:2(1)1L y x x x =+=+-,对称轴为直线1x =-,开口向上,当1x -时,L 的函数值随着x 的增大而减小,抛物线22:68(3)1L y x x x '=---=-++,对称轴为直线3x =-,开口向下,当3x -时,L '的函数值随着x 的增大而减小,∴当31x --时,抛物线L 与它的“孔像抛物线” L '的函数值都随着x 的增大而减小,故答案为:31x --;②通过观察图1和图2,抛物线2:2L y x mx =-的“孔像抛物线” 22:(3)L y x m m '=--+,顶点坐标为2(3,)N m m ,顶点在抛物线219y x =上, ∴与二次函数22y x mx =-的所有“孔像抛物线” L '都有唯一交点的抛物线一定满足顶点在原点,开口向上;∴这条抛物线的解析式为2y ax =,故答案为:2y ax =;③抛物线222:2()L y x mx x m m =-=--,顶点坐标为2(,)M m m -,其“孔像抛物线” L '为:22(3)y x m m =--+,顶点坐标为2(3,)N m m ,抛物线L 与其“孔像抛物线” L '有一个公共点(2,0)A m ,∴二次函数22y x mx =-及它的“孔像抛物线”与直线y m =有且只有三个交点时,有三种情况: ①直线y m =经过2(,)M m m -,2m m ∴=-,解得:1m =-或0m =(舍去),②直线y m =经过2(3,)N m m ,2m m ∴=,解得:1m =或0m = (舍去),③直线y m =经过(2,0)A m ,0m ∴=,但当0m =时,2y x =与2y x =-只有一个交点,不符合题意,舍去,综上所述,1m =±.六、(本大题共12分)23.(12分)课本再现(1)在证明“三角形内角和定理”时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与A ∠相等的角是 DCA ∠' ;类比迁移(2)如图2,在四边形ABCD 中,ABC ∠与ADC ∠互余,小明发现四边形ABCD 中这对互余的角可类比(1)中思路进行拼合:先作CDF ABC ∠=∠,再过点C 作CE DF ⊥于点E ,连接AE ,发现AD ,DE ,AE 之间的数量关系是 ;方法运用(3)如图3,在四边形ABCD 中,连接AC ,90BAC ∠=︒,点O 是ACD ∆两边垂直平分线的交点,连接OA ,OAC ABC ∠=∠.①求证:90ABC ADC ∠+∠=︒;②连接BD ,如图4,已知AD m =,DC n =,2AB AC=,求BD 的长(用含m ,n 的式子表示).【分析】(1)根据图形的拼剪可得结论.(2)利用勾股定理解决问题即可.(3)①如图3中,连接OC ,作ADC ∆的外接圆O .利用圆周角定理以及三角形内角和定理,即可解决问题.②如图4中,在射线DC 的下方作CDT ABC ∠=∠,过点C 作CT DT ⊥于T .利用相似三角形的性质证明5BD AT =,求出AT ,可得结论.【解答】(1)解:如图1中,由图形的拼剪可知,A DCA ∠=∠', 故答案为:DCA ∠'.(2)解:如图2中,90ADC ABC ∠+∠=︒,CDE ABC ∠=∠,90ADE ADC CDE ∴∠=∠+∠=︒,222AD DE AE ∴+=.。

2020江西中考数学试题分析

2020江西中考数学试题分析

2020江西中考数学试题分析2020年江西中考数学试题以考查数学思维为核心,同时体现了对基础知识的全面考查,并且对初中数学知识的整体性和知识之间的内在联系的安排布局十分恰当到位。

试题呈现形成巧妙新颖,能有效地呈现考生的思维过程和思维能力,同时关注了数学知识形成与发展过程及灵活运用的考查,关注了数学的本质和思想方法的考查,关注了如何用数学眼光观察世界、分析身边事物的发展与变化。

整卷还易于考生入手,梯度分明,综合适度,给不同层次的学生留有充分发挥的空间,很好地实现了对数学学科核心素养的考查。

整体情况分析1.关注四基体现基础《课程标准(2011版)》指出:“通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。

” 我省今年的试题关注了上述“四基”,充分体现了全面考查基础知识的重要性,真正扭转多年来中考数学试题难度居高不下的局面。

具体体现如下:T1-T11,T13-T17,及T21,就是最后两题入手也比较容易。

当然这些题目的设计体现基础的同时也兼顾了对知识掌握的整体性要求,并没把知识点逐个割裂开来,而是存在知识之间的联系性,能有效地评价考生对“四基”的掌握情况。

2.根植课本着眼提高以教材上的素材(或题)设计考题,是有利于平时课堂教学,有利于增强广大师生重视教材,以教材为本的意识;有利于提高学生对教材的分析、理解能力。

今年中考试题中除12道小题外,大题T16,T17,T18,T21,T23均有课本题影子。

如:①试卷中的T16与人教版九年级上册P62第4题有着高度相似,把绕O逆时针旋转180°,改为“作△ABC关于O点对称的△A'B'C'”,把△ABC绕O逆时针旋转90°,改为“作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△A'B'C'”。

②试卷中的T17与人教版七年级下册P102第8题有着异曲同工之处,两题的思维过程基本一致,所考查的数学内容也基本相同,也就其本质不变,背景或载体进行了切换。

2020年江西省中考数学试题(WORD精校版带标准答案及解析)

2020年江西省中考数学试题(WORD精校版带标准答案及解析)

江西省2020年中等学校招生考试数 学 试 题 卷(全卷满分120分,考试时间120分钟)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.-3的倒数是( ) A .3 B .-3C .-13D .132.下列计算正确的是( ) A .a 3+a 2=a 5 B .a 3-a 2=aC .a 3•a 2=a 6D .a 3÷a 2=a3.教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为( ) A .5.0175×1011 B .5.0175×1012C .0.50175×1013D .0.50175×10144.如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是( )A .AB ∥CD B .∠B =30°C .∠C +∠2=∠EFCD .CG >FG5.如图所示,正方体的展开图为( )A .B .C .D .6.在平面直角坐标系中,点O 为坐标原点,抛物线y =x 2-2x -3与y 轴交于点A ,与x 轴正半轴交于点B ,连接AB ,将Rt △OAB 向右上方平移,得到Rt △O'A'B',且点O',A' 落在抛物线的对称轴上,点B' 落在抛物线上,则直线A'B' 的表达式为( )A .y =xB .y =x +1C .y =x +12 D .y =x +2二、填空题(本大题共6小题,每小题3分,共18分)7.计算:(a-1)2=.8.若关于x的一元二次方程x2-kx-2=0的一个根为x=1,则这个一元二次方程的另一个根为.9.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是.10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0 1 2 3 4 5 6 7 8 9频数8 8 12 11 10 8 9 8 12 14那么,圆周率的小数点后100位数字的众数为.11.如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE 的度数为.12.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A' 处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段.当图中存在30°角时,AE的长为厘米.三、(本大题共5小题,每小题6分,共30分) 13.(本题共2小题,每小题3分)(1)计算:(1-3)0-|-2|+(12)-2;(2)解不等式组:⎩⎪⎨⎪⎧3x -2≥15-x >214.先化简,再求值:(2x x 2-1-1x -1)÷xx +1,其中x =2.15.某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试. (1)若随机抽取一名同学,恰好抽到小艺同学的概率为 ;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.16.如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.17.(6分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.四、(本大题共3小题,每小题8分,共24分)18.如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=kx(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=22.(1)求反比例函数的解析式;(2)求∠EOD的度数.19.为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<40 40≤x<50 50≤x<60 60≤x<70 70≤x<80 80≤x<90 90≤x≤100 人数 1 3 3 8 15 m 6 根据以上图表信息,完成下列问题:(1)m=;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有人,至多有人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.20.如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D 顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,3≈1.732)五、(本大题共2小题,每小题9分,共18分)21.已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).22.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…-2 -1 0 1 2 …y…m0 -3 n-3 …(1)根据以上信息,可知抛物线开口向,对称轴为;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P',描出相应的点P',再把相应的点P'用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>-2)与抛物线及(3)中的点P'所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系.六、(本大题共12分)23.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=23,DE=2,点P在AE上,∠ABP=30°,PE=2,求五边形ABCDE的面积.答案与解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.-3的倒数是()A.3 B.-3 C.-D.【知识考点】倒数.【思路分析】根据倒数的定义即可得出答案.【解答过程】解:-3的倒数是-.故选:C.【总结归纳】此题主要考查了倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列计算正确的是()A.a3+a2=a5B.a3-a2=a C.a3•a2=a6D.a3÷a2=a【知识考点】合并同类项;同底数幂的乘法;同底数幂的除法.【思路分析】根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答过程】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.故选:D.【总结归纳】本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.3.教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A.5.0175×1011B.5.0175×1012C.0.50175×1013D.0.50175×1014【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答过程】解:50175亿=5017500000000=5.0175×1012.故选:B.【总结归纳】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A.AB∥CD B.∠B=30°C.∠C+∠2=∠EFC D.CG>FG【知识考点】平行线的判定;三角形的外角性质.【思路分析】依据平行线的判定与性质,以及三角形外角性质,即可得出结论.【解答过程】解:∵∠1=∠2=65°,∴AB∥CD,故A选项正确,又∵∠3=35°,∴∠C=65°-35°=30°,∴∠B=∠C=30°,故B选项正确,∵∠EFC是△CGF的外角,∴∠EFC=∠C+∠3,故C选项错误,∵∠3>∠C,∴CG>FG,故D选项正确,故选:C.【总结归纳】本题主要考查了平行线的判定与性质,以及三角形外角性质,解题时注意:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.5.如图所示,正方体的展开图为()A.B.C.D.【知识考点】几何体的展开图.【思路分析】根据正方体的展开与折叠,正方体展开图的形状进行判断即可.【解答过程】解:根据“相间、Z端是对面”可得选项B不符合题意;再根据“上面∧”符号开口,可以判断选项A符合题意;选项C、D不符合题意;故选:A.【总结归纳】本题考查正方体的展开与折叠,掌握正方体展开图的特征是正确判断的前提.6.在平面直角坐标系中,点O为坐标原点,抛物线y=x2-2x-3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1 C.y=x+D.y=x+2【知识考点】待定系数法求一次函数解析式;二次函数的性质;二次函数图象上点的坐标特征;抛物线与x轴的交点;坐标与图形变化-平移.【思路分析】求得A、B的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n+3),把B′(4,n+3)代入抛物线解析式求得n,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A'B'的表达式.【解答过程】解:如图,∵抛物线y=x2-2x-3与y轴交于点A,与x轴正半轴交于点B,令y=0,解得x=-1或3,令x=0,求得y=-3,∴A(3,0),B(0,-3),∵抛物线y=x2-2x-3的对称轴为直线x=-=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n+3),∵点B'落在抛物线上,∴n+3=16-8-3,解得n=2,∴A′(1,2),B′(4,5),设直线A'B'的表达式为y=kx+b,∴,解得∴直线A'B'的表达式为y=x+1,故选:B.【总结归纳】本题考查了抛物线与x轴的交点,坐标和图形变换-平移,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据题意表示出A′、B′的坐标是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.计算:(a-1)2=.【知识考点】完全平方公式.【思路分析】直接利用完全平方公式计算即可解答.【解答过程】解:(a-1)2=a2-2a+1.【总结归纳】本题考查了完全平方公式,熟记公式是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.8.若关于x的一元二次方程x2-kx-2=0的一个根为x=1,则这个一元二次方程的另一个根为.【知识考点】一元二次方程的解;根与系数的关系.【思路分析】利用根与系数的关系可得出方程的两根之积为-2,结合方程的一个根为1,可求出方程的另一个根,此题得解.【解答过程】解:∵a=1,b=-k,c=-2,∴x1•x2==-2.∵关于x的一元二次方程x2-kx-2=0的一个根为x=1,∴另一个根为-2÷1=-2.故答案为:-2.【总结归纳】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之积等于是解题的关键.9.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是.【知识考点】用数字表示事件.【思路分析】根据题意可知,这个两位数的个位上的数是5,十位上的数是2,故这个两位数我25.【解答过程】解:由题意可得,表示25.故答案为:25.【总结归纳】本题主要考查了用数字表示事件,理清题目中的符号表示的意义是解答本题的关键.10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0 1 2 3 4 5 6 7 8 9频数8 8 12 11 10 8 9 8 12 14那么,圆周率的小数点后100位数字的众数为.【知识考点】近似数和有效数字;数学常识;频数(率)分布表;众数.【思路分析】直接根据众数的定义可得答案.【解答过程】解:圆周率的小数点后100位数字的众数为9,故答案为:9.【总结归纳】本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.11.如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE 的度数为.【知识考点】全等三角形的判定与性质.【思路分析】证明△ABC≌△ADC得∠D+∠ACD=∠B+∠ACB=49°,进而根据三角形内角和定理得结果.【解答过程】解:∵AC平分∠DCB,∴∠BCA=∠DCA,∵CB=CD,∵AC=AC,∴△ABC≌△ADC(SAS),∴∠B=∠D,∴∠B+∠ACB=∠D+∠ACD,∵∠CAE=∠D+∠ACD=49°,∴∠B+∠ACB=49°,∴∠BAE=180°-∠B-∠ACB-∠CAE=82°,故答案为:82°.【总结归纳】本题主要考查了角平分线的定义,全等三角形的性质与判定,三角形的内角和定理,三角形的外角定理,关键是证明三角形全等,求得∠B+∠ACB=49°.12.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段.当图中存在30°角时,AE的长为厘米.【知识考点】矩形的性质;翻折变换(折叠问题).【思路分析】根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE=30°时或当∠AEB=30°时或当∠ABA′=30°时求AE的长.【解答过程】解:①当∠ABE=30°时,AE=AB×tan30°=;②当∠AEB=30°时,AE===4;③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=,∵AF=AE+EF=ABtan30°=,∴x+=,∴x=8-4,∴AE=8-4.故答案为:厘米或4厘米或8-4厘米.【总结归纳】本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:(1-)0-|-2|+()-2;(2)解不等式组:【知识考点】实数的运算;零指数幂;负整数指数幂;解一元一次不等式组.【思路分析】(1)先计算零指数幂、绝对值和负整数指数幂,再计算加减可得答案;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答过程】解:(1)原式=1-2+4=-1+4=3;(2)解不等式3x-2≥1,得:x≥1,解不等式5-x>2,得:x<3,则不等式组的解集为1≤x<3.【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(6分)先化简,再求值:(-)÷,其中x=.【知识考点】分式的化简求值.【思路分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答过程】解:原式=[-]÷=•=,当x=时,原式==.【总结归纳】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.15.(6分)某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.【知识考点】列表法与树状图法.【思路分析】(1)共有4种可能出现的结果,抽到小艺的只有1种,可求出抽到小艺的概率;(2)用列表法表示所有可能出现的结果,进而求出两个同学均来自八年级的概率.【解答过程】解:(1)共有4种可能出现的结果,抽到小艺的只有1种,因此恰好抽到小艺的概率为,故答案为:;(2)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中都是八年级,即抽到小志、小晴的有2种,∴P==.(小志、小晴)【总结归纳】本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.16.(6分)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.【知识考点】作图-旋转变换.【思路分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)根据AB=2,BC=,AC=5,利用数形结合的思想解决问题即可.【解答过程】解:(1)如图1中,△A'B'C'即为所求.(2)如图2中,△AB'C'即为所求.【总结归纳】本题考查作图-旋转变换,解题的关键是理解题意,学会利用数形结合的思想解决问题,属于中考常考题型.17.(6分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.【知识考点】一元一次方程的应用;二元一次方程组的应用.【思路分析】(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元,根据“小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)先求两人带的总钱数,再求出两人合在一起买文具所需费用,由二者的差大于2个小工艺品所需钱数,可找出:他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【解答过程】解:(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元,依题意,得:,解得:.答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)小贤和小艺带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为5×(2+1)+(3-0.5)×10=40(元).∵47-40=7(元),3×2=6(元),7>6,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【总结归纳】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB =2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.【知识考点】反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;直角三角形斜边上的中线.【思路分析】(1)根据题意求得A(2,2),然后代入y=(x>0),求得k的值,即可求得反比例函数的解析式;(2)根据AB=2OA时,点E恰为AB的中点,得出OA=AE=BE,根据直角三角形斜边中线的性质得出CE=AE=BE,根据等腰三角形的性质以及三角形外角的性质即可得出∠AOE=2∠EOD,从而求得∠EOD=15°.【解答过程】解:(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,∴△AOD是等腰直角三角形,∵OA=2,∴OD=AD=2,∴A(2,2),∵顶点A在反比例函数y=(x>0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y=;(2)∵AB=2OA,点E恰为AB的中点,∴OA=AE,∵Rt△ABC中,∠ACB=90°,∴CE=AE=BE,∴∠AOE=∠AEO,∠ECB=∠EBC,∵∠AEO=∠ECB+∠EBC=2∠EBC,∵BC∥x轴,∴∠EOD=∠ECB,∴∠AOE=2∠EOD,∵∠AOD=45°,∴∠EOD=15°.【总结归纳】本题考查了待定系数法求反比例函数的解析式,直角三角形斜边中线的性质,三角形外角的性质,等腰三角形的性质,证得∠AOE=2∠EOD,是解题的关键.19.(8分)为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<40 40≤x<5050≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100人数 1 3 3 8 15 m 6 根据以上图表信息,完成下列问题:(1)m=;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有人,至多有人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.【知识考点】用样本估计总体;频数(率)分布表;频数(率)分布直方图;频数(率)分布折线图.【思路分析】(1)根据前后两次抽取的人数一样多,可以计算出m的值;(2)根据直方图中的数据和表格中的数据,可以将图2中的图补充完整,然后即可写出成绩的变化情况;(3)根据表格中的数据,可以得到分数高于78分的至少有多少人,至多有多少人;(4)根据表格中的数据,可以计算出复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.【解答过程】解:(1)m=(2+8+10+15+10+4+1)-(1+3+3+8+15+6)=14,故答案为:14;(2)折线图如下图所示,复学后,学生的成绩总体上有了明显的提升;(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有14+6=20(人),至多有14+6+(15-1)=34(人),故答案为:20,34;(4)800×=320(人),答:复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的有320人.【总结归纳】本题考查频数分布直方图、折线统计图、统计表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.(8分)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)【知识考点】解直角三角形的应用.【思路分析】(1)通过作垂线,构造直角三角形,利用直角三角形的边角关系,求出CB、AF,即可求出点A到直线DE的距离;(2)画出旋转后的图形,结合图形,明确图形中的已知的边角,再利用直角三角形的边角关系求出相应的角度即可.【解答过程】解:(1)如图2,过A作AM⊥DE,交ED的延长线于点M,过点C作CF ⊥AM,垂足为F,过点C作CN⊥DE,垂足为N,由题意可知,AC=80,CD=80,∠DCB=80°,∠CDE=60°,在Rt△CDN中,CN=CD•sin∠CDE=80×=40(mm)=FM,∠DCN=90°-60°=30°,又∵∠DCB=80°,∴∠BCN=80°-30°=50°,∵AM⊥DE,CN⊥DE,∴AM∥CN,∴∠A=∠BCN=50°,∴∠ACF=90°-50°=40°,在Rt△AFC中,AF=AC•sin40°=80×0.643≈51.44,∴AM=AF+FM=51.44+40≈120.7(mm),答:点A到直线DE的距离约为120.7mm;(2)旋转后,如图3所示,根据题意可知∠DCB=80°+10°=90°,在Rt△BCD中,CD=80,BC=40,∴tan∠D===0.500,∴∠D=26.6°,因此旋转的角度为:60°-26.6°=33.4°,答:CD旋转的角度约为33.4°.【总结归纳】本题考查直角三角形的边角关系,锐角三角函数的意义,通过作辅助线构造直角三角形是常用的方法,也是基本的方法.五、(本大题共2小题,每小题9分,共18分)21.(9分)已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).【知识考点】圆的综合题.【思路分析】(1)连接OA,OB,由切线的性质可求∠PAO=∠PBO=90°,由四边形内角和可求解;(2)当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由切线长定理可得PA=PB,∠APC=∠BPC=30°,由“SAS”可证△APC≌△BPC,可得∠ACP=∠BCP=30°,AC=BC,可证AP=AC=PB=BC,可得四边形APBC是菱形;(3)分别求出AP,PD的长,由弧长公式可求,即可求解.【解答过程】解:(1)如图1,连接OA,OB,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年中考数学精析系列——江西卷考生须知:1. 全卷共六页,有六大题,24小题. 满分为120分.考试时间120分钟.2. 本卷答案必须做在答题纸的对应位置上,做在试题卷上无效. 温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!一、选择题(本大题共有6小题,每小题3分,共18分。

请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1. -1的绝对值是( )A .1B .0C .-1D .±1问题苑:实数的绝对值。

思考归纳:解:实数-1属于负整数,其绝对值为正实数,任何实数的绝对值均为非负数。

也可结合绝对值的定义运用数轴解题。

【如下图】 故应选A .2.等腰三角形的顶角为80°,则其底角为( )A .20°B .50°C .60°D .80° 问题苑:特殊三角形的性质。

思考归纳:解:等腰三角形两底角相等,即是等边对等角。

再三角形的内角和为180°便可作答。

故应选B .3.下列运算正确的是( )A .3a + 3a =62aB .6a ÷3-a= 3aC .3a ×3a =32aD . 32)2(a -=68a -问题苑:整式的运算。

思考归纳:解:幂的运算:A 项 合并同类项,系数相加,字母和字母的指数不改变; B 项 同底数幂相除则相减(0≠a ,且m ,n 均为正整数) C 项 同底数幂相乘:nm nmaa a +=⨯ (0≠a ,且m ,n 均为正整数)D 项 幂的乘方:mnn m aa =)( (0≠a ,且m ,n 均为正整数)提醒:①p paa1=-(p -为非0负整数);②10=a (0≠a ) 故应选D .⒋如图,有c b a ,,三户家用电路接入电表,相邻的电路等距排列,则三户所用电线( ) A .a 户最长 B .b 户最长 C .c 户最长 D .三户一样长问题苑:数学实践活动为素材的课题学习。

化归思想。

思考归纳:解:本题可以采用割补法将线段向右进行平移,便可直观观察到a b c 三线长度相等。

故应选D . 深度探索,拓展延伸:本类试题近几年成为一股新潮,在江西中考试卷都会出现许多立意深,情景新,思维价值高的“生活实践”型试题。

解答此类试题,可建立几何模型,综合相关几何知识,联系方程,函数,化归,数形结合,分类等数学思想解决问题。

例如下题:(可运用三角函数解答)图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形.当点O 到BC (或DE )的距离大于或等于⊙O 的半径时(⊙O 是桶口所在圆,半径为OA ),提手才能从图甲的位置转到图乙的位置,这样的提手才合格.现用金属材料做了一个水桶提手(如图丙A -B -C -D -E -F ,C -D 是»CD ,其余是线段),O 是AF 的中点,桶口直径AF =34cm ,AB =FE =5cm ,∠ABC =∠FED =149°.请通过计算判断这个水桶提手是否合格. 314,tan 73.6°≈3.40,sin 75.4°≈0.97.)电 源解法一连接OB ,过点O 作OG ⊥BC 于点G . ………………1分 在Rt △ABO 中,AB =5,AO =17,∴ ta n ∠ABO =173.45AO AB ==, ∴∠ABO =73.6°,………………3分 ∴∠GBO =∠ABC -∠ABO =149°-73.6°=75.4°. ………………4分 又 ∵2251731417.72OB =+=≈, ………………5分 ∴在Rt △OBG 中,sin 17.720.9717.1917OG OB OBG =⨯∠=⨯≈>. ……………7分∴水桶提手合格. ……………8分 解法二:连接OB ,过点O 作OG ⊥BC 于点G . ……………1分在Rt △ABO 中,AB =5,AO =17,∴ ta n ∠ABO =173.45AO AB ==,∴∠ABO =73.6°. ………………3分 要使OG ≥OA ,只需∠OBC ≥∠ABO , ∵∠OBC =∠ABC -∠ABO =149°-73.6°=75.4°>73.6°,……7分 ∴水桶提手合格. ………………8分⒌如图,如果在阳光下你的身影方向为北偏东60°的方向,那么太阳相对于你的方向是( )A .南偏西60°B .南偏西30°C .北偏东60°D .北偏东30°问题苑:数学实践活动为素材的课题学习。

思考归纳:解:本题仍是与生活实践相关类型的题目。

太阳光恍若平行光,类似于平行投影,则可以反向延长身影,便可以确定太阳相对于人位于南偏西60° 。

N图丙A BC DE FO 34 G(第五题)S 故应选A .⒍某人驾车从A 地上高速公路前往B 地,中途服务区休息了一段时间。

出发时油箱存油40升,到达B 后剩余4升,则从出发到达B 地油箱所剩的油y (升)与时间t (h )之间的函数大致图像是( )问题苑:函数及其图像分析。

思考归纳:解:随着t 的增大,y 则不断减小,但认真审题可知y 有一段时间保持不变。

故应选C .二、填空题(本大题共8个小题,每小题3分,共24分.) ⒎一个正方体有 个面。

问题苑:特殊立体几何基本性质。

思考归纳:解:正方体有六个全等的面。

⒏当4-=x 时,x 36-的值是 . 问题苑:整式,二次根式的运算。

思考归纳:解:将4-=x 带入x 36-中的)4(36-⨯-=18=23提醒:应化简至最简二次根式。

9.O ,AB 与⊙O 相切与点B ,若∠A =50°,则∠C = 度. C A 问题苑:切线的性质。

思考归纳:解:可以连接OB ,则可知O B ⊥AB 即是∠ABO =90°。

又有等边对等角即∠C =∠CBO =AOB ∠21=20°。

⒑已知关于x 的一元二次方程022=-+m x x 有两个相等的实数根,则m 的值思考归纳:解:“相等的实数根”表明△=ac b 42-0=“不等的实数根”则 △=ac b 42->0; “无实数根”则△=ac b 42-<0本题△=ac b 42-22=)4(14-⨯⨯-=0解的m 的值为-1.⒒已知8)(2=-n m ,2)(2=+n m ,则=+22n m .问题苑:整式的运算.化归思想.思考归纳:解:首先认真审题,细心观察,不应忙于解答.可知两式均是完全平方,且其一是和,其一是差.这样,做题时可以将8)(2=-n m 与2)(2=+n m 相加得到=+22n m 5.,巧妙运用化归思想.⒓已知一次函数)0(≠+=k b kx y 经过(2,- 1),(- 3,4)两点,则其图像不经过第 象限。

问题苑:一次函数及其图像分析。

思考归纳:解:采用待定系数法求出函数表达式,在结合图像作答。

111;43;12+-=⇒⎩⎨⎧=-=⇒⎩⎨⎧=+--=+x Y b k b k b k ;图像经过一,二,四象限,不经过第三象限。

⒔如图,已知正五边形ABCDE ,仅用无刻度的直尺准确作出其一条对称轴。

(保留作图痕迹)问题苑:轴对称图形。

A思考归纳:可以连接两个不相邻的顶点,其交点与另一顶点的连线即E 为对称轴。

直线AM即为所求的对称轴。

C DM⒕如图,正方形ABCD与正三角形AEF过程中,当BE=DF时,则∠BAE问题苑:旋转。

分类思想。

A① (第十四题) ②思考归纳:解:本题应有两种情况。

情况一如图①,此时易证)"("SSSAFDAEB∆≅∆则∠BAE的值是15°;情况二如图②,此时也易证)"("SSSAFDAEB∆≅∆,故∠BAF=∠DAE=105°,∠BAE的值是165°。

(大于180°的情况不作考虑)提醒:分类思想。

三、解答题(本大题共4个小题,每小题6分,共24分.解答应写出文字说明、证明过程或演算步骤.)⒖(1)化简:aaaa+-÷-221)11(问题苑:分式的化简。

解:=)1)(1()1(1-++⨯-aaaaaa=111111-=--=---aaaaa思考归纳:解:解答本题应熟练掌握平方差,提公因式及分式的运算。

...............⒗(1).解不等式组:⎩⎨⎧≥--<+13,112x x ①,②问题苑:解不等式组。

思考归纳:解:由①,②可得⎥⎦⎤⎢⎣⎡≥-<x x 21综合可知解集为1-<x 。

数轴表达:-1 0 2 (第十六题)⒘如图,两个菱形◇ABCD ,◇CEFG ,其中点A ,C ,F 在同一直线上,连接BE ,DG . (1).在不添加辅助线时,写出其中两组全等三角形; (2).证明BE =DG 。

⒙如图,有大小质地相同仅颜色不同的两双拖鞋(分左.右脚)共四只,放置于地板上。

【可 表示为(A 1.A 2),(B 1.B 2)】注:本题采用“长方形”表示拖鞋。

(1).若先从两只左脚拖鞋中取一只,再从两只右脚拖鞋中随机取一只,求恰好匹配成一双相同颜色的拖鞋的概率。

(2).若从这四只拖鞋中随机取出两只,利用树形图或表格列举出所有可能出现的情况,并 求恰好匹配成一双相同颜色的拖鞋的概率。

问题苑:列树状图与表格表示概率。

思考归纳:解(1).可列树状图求解 ∵A 1B 1(第十八题)A 2B 2A2B 2A 1A 2B 1 B 2∴P 1(恰好匹配成一双相同颜色的拖鞋)=2142= (2). ① ∵A 1 A2B 1B 2A 2B 1 B 2 A 1 B 1 B 2 A 1 A B 2A 1 A 2 B∴P 2(恰好匹配成一双相同颜色的拖鞋)=31124=∴P 2(恰好匹配成一双相同颜色的拖鞋)=312=提醒:本题难度较易,注意解题时应仔细审题。

四.(本大题共2小题,每小题8分共十六分。

)⒚如图,等腰梯形ABCD 放置于平面直角坐标系中,已知)3,0(),0,6(),0,2(D B A -反比例函数的图像经过点C 。

(1).求点C 的坐标及反比例函数的解析式。

(2). 将等腰梯形ABCD 向上平移m 个单位长度,使得点问题苑:平面直角坐标系,函数,特殊四边形的性质。

思考归纳:解(1). Ⅰ:可以过点C 作 y 轴的平行线CH ,则CH ⊥x 轴。

∵ 易证)"("AAS BHC AOD ≅∆∴CH =DO =3,BH =AO ;OH =4。

∴点C 的坐标为(4,3);Ⅱ:可以设反比例函数的解析式为)0(≠=k xky ∵反比例函数的图像经过点C ,∴k =4×解析式为xy 12=(2). (第十九题) ∵可知,随着等腰梯形沿着 y 轴正方向平移,始终保持与原图形全等形,即.....OB ..的长度不....会变化。

相关文档
最新文档