运筹学2020最新试卷带答案

合集下载

运筹学试题及详细答案

运筹学试题及详细答案

运筹学试题及详细答案
一、选择题
1、Nash均衡的定义是:
A、每位参与者的行为均达到最佳利益的状态
B、每位参与者的行为均达到得到最大胜利的状态
C、每位参与者的行为均达到合作的最佳状态
D、每位参与者的行为均达到合作的最大胜利的状态
答案:A
2、决策就是参与者用来实现选择的:
A、计划
B、机构
C、程序
D、工具
答案:D
3、运筹学可以分为:
A、组合数学
B、运动学
C、博弈论
D、概率论
答案:A、B、C、D
4、非线性规划有:
A、分支定界法
B、梯度下降法
C、基于格法的解法
D、对偶法
答案:A、B、C、D
5、关于迭代法,下列表述正确的有:
A、可以求解非凸优化问题
B、单次迭代过程简单
C、收敛性较好
D、用于非线性规划
答案:A、B、C
二、填空题:
1、博弈论是研究__参与者之间的__的科学。

答案:多,竞争。

《运筹学》期末考试试题及参考答案

《运筹学》期末考试试题及参考答案

� �
0*
12
4
5
� �

� (0)
8
2

� 11 (0) 5
5� √ �
4�
�2
3
(0)
0* �


� �
0*
12
4
5
� �

第 9 页 共 11 页
� 0*
6
(0)
3�


� 13 (0) 5
4�
� �
4
3
0*
(
0)
� �
� �
(0)
10
2
3
� �
�0 0

至此已得最优解� � 0 1
�0 0
9
4
3
70

4
6
10
120
360
200
300
1�建立使得该厂能获得最大利润的生产计划的线性规划模型��5 分�
第 2 页 共 11 页
2�用单纯形法求该问题的最优解。�10 分� 解�1�建立线性规划数学模型�
设甲、乙产品的生产数量应为 x1、x2�则 x1、x2≥0�设 z 是产品售后的总利 润�则
30
400/13 100/11
100
四、�10 分�用大 M 法或对偶单纯形法求解如下线性规划模型�
min z =5x1�2x2�4x3
�3 x1 � x2 � 2 x3 � 4
� �
6
x1

3x2

5 x3

10
� �
x1, x2 , x3

0
第 4 页 共 11 页

运筹学试卷及参考答案

运筹学试卷及参考答案

运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。

答案:运筹学在现实生活中的应用非常广泛。

例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。

此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。

总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。

2、请简述单纯形法求解线性规划的过程。

答案:单纯形法是一种求解线性规划问题的常用方法。

它通过不断迭代和修改可行解,最终找到最优解。

具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。

《运筹学》课程考试试卷及答案

《运筹学》课程考试试卷及答案

《运筹学》课程考试试卷一、填空题(共10分,每空1分)1、线性规划问题的3个要素是: 、 和 。

2、单纯形法最优性检验和解的判别,当 现有顶点对应的基可行解是最优解,当 线性规划问题有无穷多最优解,当 线性规划问题存在无界解。

4、连通图的是指: 。

5、树图指 ,最小树是 。

6、在产销平衡运输问题中,设产地为m 个,销地为n 个,运输问题的解中的基变量数为 。

二、简答题 简算题(共20分) 1、已知线性规划问题,如下: max Z=71x -22x +53x⎪⎩⎪⎨⎧=≥≤+≤+-3,2,1,084632..31321i x x x x x x t s i请写出其对偶问题。

(10分)2、已知整数规划问题:1212121212max105349..528,0,,z x x x x s t x x x x x x =++≤⎧⎪+≤⎨⎪≥⎩且为整数在解除整数约束后的非整数最优解为(x1, x2)=(1, 1.5),根据分支定界法,请选择一个变量进行分支并写出对应的2个子问题(不需求解)。

(10分)三、计算题(共70分)1、某厂用A1,A2两种原料生产B1,B2,B3三种产品,工厂现有原料,每吨所需原料数量以及每吨产品可得利润如下表。

在现有原料的条件下,应如何组织生产才能使该厂获利最大?(共20分) (1) 写出该线性规划问题的数学模型(4分)(2)将上面的数学模型化为标准形式(2分)(3)利用单纯形法求解上述问题(14分,单纯形表格已给出, 如若不够, 可自行添加)(3)利用单纯形法求解上述问题(14分,单纯形表格已给出, 如若不够, 可自行添加)2、考虑下列运输问题:请用表上作业法求解此问题,要求:使用V ogel法求初始解。

若表格不够可自行添加(15分)3、有4台机器都可以做A、B、C、D四种工作,都所需费用不同,其费用如下表所示。

请用匈牙利法求总费用最小的分配方案。

(10分)4、某工厂内联结6个车间的道路如下图所示,已知每条道路的的距离,求沿部分道路架设6个车间的电话网,使电话线总距离最短。

《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。

A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。

答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。

答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。

答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。

答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。

答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。

()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。

()答案:错误3. 目标规划中的偏差变量可以是负数。

()答案:正确4. 在动态规划中,最优策略具有最优子结构。

()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。

运筹学考试试卷及答案

运筹学考试试卷及答案

运筹学考试试卷及答案一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都非负B. 目标函数是最大化C. 所有约束条件都是等式D. 所有约束条件都是不等式答案:A2. 单纯形法中,如果某个变量的检验数为负数,那么:A. 该变量可以增大B. 该变量可以减小C. 该变量保持不变D. 该变量不能进入基答案:A3. 在运输问题中,如果某种资源的供应量大于需求量,那么应该:A. 增加供应量B. 减少需求量C. 增加需求量D. 减少供应量答案:C4. 动态规划的基本原理是:A. 递归B. 迭代C. 回溯D. 分解答案:D5. 决策树中,每个节点代表:A. 一个决策B. 一个状态C. 一个结果D. 一个概率答案:A6. 排队论中,M/M/1队列的特点是:A. 到达时间服从泊松分布,服务时间服从指数分布,且只有一个服务台B. 到达时间服从指数分布,服务时间服从泊松分布,且只有一个服务台C. 到达时间服从泊松分布,服务时间服从指数分布,且有两个服务台D. 到达时间服从指数分布,服务时间服从泊松分布,且有两个服务台答案:A7. 网络流问题中,最大流最小割定理说明:A. 最大流等于最小割B. 最大流小于最小割C. 最大流大于最小割D. 最大流与最小割无关答案:A8. 整数规划问题中,分支定界法的基本思想是:A. 将问题分解为多个子问题B. 将问题转化为线性规划问题C. 将问题转化为非线性规划问题D. 将问题转化为动态规划问题答案:A9. 在多目标决策中,如果目标之间存在冲突,通常采用的方法是:A. 目标排序B. 目标加权C. 目标合并D. 目标替换答案:B10. 敏感性分析的目的是:A. 确定最优解的稳定性B. 确定最优解的唯一性C. 确定最优解的可行性D. 确定最优解的最优性答案:A二、填空题(每题2分,共20分)1. 线性规划问题的可行域是由所有_________约束条件构成的集合。

答案:可行2. 在单纯形法中,如果目标函数的系数都是正数,则该问题为_________问题。

运筹学试题及答案

运筹学试题及答案

运筹学试题及答案考试时间:120分钟命题人:XXX一、选择题(共60分)1. 运筹学的核心思想是:A. 尽可能地满足需求B. 确定最优决策C. 提高运营效率D. 预测未来趋势答案:B2. 下列哪个不是运筹学的应用领域?A. 生产调度B. 金融风险管理C. 市场营销D. 交通规划答案:C3. 线性规划是研究下列问题的数学方法:A. 最大化目标函数B. 最小化目标函数C. 求解等式系统D. 优化约束条件答案:D4. 整数规划是线性规划的扩展,其特点是:A. 变量只能取整数值B. 变量可以取任意实数值C. 目标函数必须是整数D. 约束条件必须是整数答案:A5. 运筹学中的最短路径问题是指:A. 在有向图中找到从起点到终点的最短路径B. 在无向图中找到连接所有节点的最短路径C. 在网络中找到连接所有节点的最短路径D. 在带权图中找到权值最小的路径答案:A二、计算题(共40分)1. 某工厂有3个生产车间,分别需要完成4个任务。

完成每个任务所需时间如下:车间1:10小时车间2:8小时车间3:6小时为了提高效率,每个车间只能同时进行一个任务。

请问应如何分配任务,才能使得所有任务完成的时间最短?答案:将任务按照时间从大到小排序分配,先将任务分配给车间1和车间2,然后再将任务分配给车间3。

具体分配如下:车间1:10小时(任务1)车间2:8小时(任务2)车间3:6小时(任务3)车间1:18小时(任务1+任务4)车间2:16小时(任务2+任务4)车间3:12小时(任务3)总时间为18小时。

2. 某物流公司需要将货物从发货仓库A送至目的地仓库B。

货物可通过3条不同的路径运送,分别需要的运输时间为:路径1:6小时路径2:8小时路径3:10小时若考虑各路径的运输成本,路径1的运输成本为100元/小时,路径2的运输成本为150元/小时,路径3的运输成本为120元/小时。

请问应如何选择路径,使得运输成本最低?答案:计算各路径的单位成本,并选择单位成本最低的路径。

运筹学试题及答案

运筹学试题及答案

运筹学试题及答案运筹学试题及答案一、选择题:从下列四个选项中选择正确的答案。

1. 运筹学一词最初来自于哪个国家?A. 中国B. 美国C. 英国D. 德国答案:B. 美国2. 运筹学的主要目标是什么?A. 提高企业的生产效率B. 降低企业的成本C. 提高企业的利润D. 优化资源的利用答案:D. 优化资源的利用3. 下列哪个不是运筹学的研究方法?A. 线性规划B. 动态规划C. 模拟D. 微积分答案:D. 微积分4. 下列哪个是运筹学的一个应用领域?A. 人力资源管理B. 市场营销C. 金融投资D. 以上都是答案:D. 以上都是二、填空题:根据题目要求,在空格中填入正确的答案。

1. 线性规划是运筹学中的一种常用方法,其目标是在一定的约束条件下,______线性目标的最优解。

答案:最大化或最小化2. 动态规划是一种解决_______过程中的最优化问题的方法。

答案:多阶段决策3. 供应链管理中,______是指将不同的物流节点连接起来,实现物流流程的顺畅和高效。

答案:协调4. 在项目管理中,______图是一种重要的工具,用于展示项目活动与任务之间的依赖关系。

答案:网络三、问答题:根据题目要求,回答问题。

1. 什么是线性规划?请简要解释线性规划的基本原理。

答:线性规划是一种数学优化方法,通过建立线性数学模型,以线性目标函数和线性约束条件为基础,寻找使目标函数最大或最小的决策变量值。

其基本原理是通过确定目标函数的优化方向和约束条件,使用线性代数和数学规划理论进行求解,得出最优解。

2. 动态规划在运筹学中的应用有哪些?请举例说明。

答:动态规划在运筹学中有广泛的应用,例如在资源分配、生产计划、货物调度等方面。

举个例子就是在货物调度中,通过动态规划的方法可以确定最优的调度方案,使得货物的运输成本最小化,货物的运输时间最短化。

3. 什么是供应链管理?为什么供应链管理对企业的重要性?答:供应链管理是指协调各个物流节点,包括原材料供应、生产、仓储、运输和客户服务等环节,实现产品或服务的流动和交付。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《运筹学》样卷参考答案(48课时)一、判断题(对的记√,错的记×,共10分,每小题2分)1.线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大;()y 说明在最优生产计划中第i种资源2.已知*y为线性规划的对偶问题的最优解,若*0i已完全耗尽;( ) 3.运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:有惟一最优解、有无穷多最优解、无界解和无可行解;()4.求解整数规划是可以先不考虑变量的整数约束,而是先求解相应的线性规划问题,然后对求解结果中的非整数的变量凑整即得最优解。

()5.11个公司之间可能只有4个公司与偶数个公司有业务联系;()答案:1. T; 2. T; 3. F; 4. F; 5. F二、选择题(共15分,每小题3分)1.在利用图解法求解最大利润问题中中,通过各极点作与目标函数直线斜率相同的平行线,这些平行线称之为。

( )A.可行解B.可行域C.等利润线D.等成本线2.用单纯形法求解线性规划问题时引入的松弛变量在目标函数中的系数为。

( )A.0B.很大的正数C.很大的负数D.13.以下关系中,不是线性规划与其对偶问题的对应关系的是。

( )A.约束条件组的系数矩阵互为转置矩阵B.一个约束条件组的常数列为另一个目标函数的系数行向量C.两个约束条件组中的方程个数相等D.约束条件组的不等式反向4.需求量大于供应量的运输问题需要做的是。

( )A.虚设一个需求点B.删去一个供应点C.虚设一个供应点,取虚设供应量为恰当值D.令供应点到虚设的需求点的单位运费为05.对一个求目标函数最大的混合整数规划问题,以下命题中不正确的是。

()A.其线性规划松弛问题的最优解可能是该整数规划问题的最优解。

B.该问题可行解的个数一定是有限的;C.任一可行解的目标函数值不可能大于其线性规划松弛问题的目标函数值;D.该问题可行解中可能存在不取整数值的变量。

答案:6.C 7.A 8.C 9.C 10.B三、简答题(每题5分,共15分)1.线性规划问题的三个要素是什么?线性规划模型有哪些特征?答案:线性规划问题的三个要素是决策变量、目标函数和约束条件。

线性规划模型的特征有:(1)目标函数是决策变量的线性函数;(2)约束条件是决策变量的线性(不)等式;(3)决策变量连续变化。

2. 利用0-1变量表示下列约束条件(要求说明0-1变量的意义):x 取值0,2,4,6,8中的一个答案:设y j =1为取第j 个数,否则,y j =0.则123451234502468101,1,2,,5jx y y y y y y y y y y y or j ⎧=++++⎪++++=⎨⎪= =⎩ 3. 写出求极大值的运输问题的产销平衡表答案:令新表中单位运价为17ijij C C '=-,总产量=65>60=总销量,增加一个虚拟的销地,销(10分=5分+5分) 某产品有三个产地、四个销地,各产地的产量、各销地的销量以及产地到答案:为了简便,表中[]中的数为运行方案,()中的数为检验数。

最小元素法:检验数2410σ=-<,当前方案不是最优,调整如下:所有检验数非负,当前方案为最优方案.有非基变量检验数为0,有无穷多最优解。

(4)用图解法求下列目标规划的满意解:11222331212111222123312min )211()0()210()81056(),,,0(1,2,3)+-+(i i z P d P d d P d x x a x x d d b x x d d c x x d d d x x d d i --+-+-+-+=++++≤⎧⎪-+-=⎪⎪++-=⎨⎪++-=⎪≥=⎪⎩图略,满意解是线段GD 上任意点,其中G 点(2,4),D 点(10/3,10/3),因为GD 上任意点对应的30d -=(5)设图中各弧上数为距离,求该网络(看作无向图)的最小生成树。

13. 解: (1)破圈法或加边法,过程略如上图,为该网络(看作无向图)的最小生成树,总的权重为18三 、解答题(共50分)1. (10分)某企业生产甲、乙两种产品,从工艺资料知道:每生产一吨产品甲需用资源A3个单位,资源B 5个单位,每生产一吨产品乙需用资源A 4个单位,资源B 2个单位。

若一吨产品的甲和乙的经济价值分别为10千元和6千元,每天原料供应的能力分别为10,12单位,企业应该如何安排生产计划,使得一天的总利润最大? 解:设每天生产甲、乙各12,x x 吨,则121212126410212,max 103..05z x x s t x x x x x x ++≤ =⎧+≤≥⎪⎨⎪⎩ 图解法求解:略最优解为:X=(2, 1 ), 最优目标值为z=26.答:每天生产甲、乙各2 吨和1吨,使得一天的总利润最大2. 下面三题选一:(1)已知线性规划问题(P )123123123max 2333..4790,1,2,3jz x x x x x x s tx x x x j =++⎧++≤⎪++≤⎨⎪≥=⎩ 的一个单纯形表如下。

(b ) 写出(P)的对偶模型及其最优解。

答案:(1)基变量为X1,X2,故当前基本可行解为(1,2,0,0,0),因为所有检验数非正,故为最优解。

(2)(P)的对偶模型为1212121212min 3924373,0w y y y y y y y y y y =++≥⎧⎪+≥⎪⎨+≥⎪⎪≥⎩其最优解为原问题最优单纯表中检验数的相反数,即(5/3, 1/3)(2)已知线性规划问题: 123412412234123j max z 2x 4x x x x 3x x 82x x 6x x x 6x x x 9x 0(j 1,,4) =+++++≤⎧⎪+≤⎪⎪++≤⎨⎪++≤⎪≥=⎪⎩ 的最优解为X *=(2,2,4,0),根据对偶理论求出对偶问题最优解。

解:对偶模型为1234124123434141234min 8669223311,,,0w y y y y y y y y y y y y y y y y y y y =++++ + ≥⎧⎪+ + + ≥⎪⎪+ ≥⎨⎪ + ≥⎪⎪≥⎩设对偶问题最优解为1234*(,,,)Y y y y y =。

因为原问题最优解为X *=(2,2,4,0),故12412343422331y y y y y y y y y + + =⎧⎪+ + + =⎨⎪ + =⎩又因为4922410s x =---=≠,故40y =,从而3121,2/5,4/5y y y == =,所以对偶问题的最优解为(2/5,4/5,1,0)3. 下面三题选一:(1)用分枝定界法求解整数规划问题:121212122max 323140.5 4.5,02z x x x x x x x x x =++⎧⎪⎨⎪⎩≤+≤≥且为整数 解:该问题的松弛问题(L)为12121212max 323140.5 4.5,20z x x x x x x x x =++≤+≤≥⎧⎪⎨⎪⎩ 用图解法(略)得松弛问题(L)的最优解为(3.25,2.5),最优目标值为14.75.对(L)分别增加条件22x ≤和23x ≥,得两个子问题(L1)和(L2),用图解法(略)得子问题(L1)的最优解为(3.5,2),最优目标值为14.5,子问题(L2)的最优解为(2.5,3),最优目标值为13.5.因为解(3.5,2)满足2x 为整数条件,并且目标函数值是两个子问题中最大,故原问题的最优解为(3.5,2).(2) 从甲, 乙, 丙, 丁, 戊五人中挑选四人去完成四项工作,已知每人完成各项工作的时间如下表所示。

规定每项工作只能由一个人去单独完成,每个人最多承担一项工作,假定甲必须保证分配到工作,丁因某种原因不同意承担第四项工作。

在满足上述条件下,如何分配工作,使完成四项工作总的花费时间最少。

(20分)18. 解:10 5 15 20 M 8 3 10 12 M 5 0 7 9 M-3 2 10 5 15 0 0 8 0 7 0 0 8 0 7 0 3 15 14 13 0 ~ 1 13 9 5 0 ~ 1 13 9 5 0 ~ 15 2 7 M 0 13 0 2 M-8 0 13 0 2 M-8 0 9 4 15 8 0 7 2 10 0 0 7 2 10 0 04 0 6 8 M-3 0 9 0 7 1 0 13 8 4 0 12 0 1 M-9 0 7 3 10 0 1此时,费用最小,其中,丙做第一事, 甲做第二事, 乙做第三事, 戌做第四事(3)求解0-1规划问题:1231231231223123max3252244..346,,01z x x x x x x x x x s t x x x x x x x =-++-≤⎧⎪++≤⎪⎪+≤⎨⎪+≤⎪⎪=⎩或解:易看出123(,,)(0,0,0)x x x =满足约束条件,故为一个可行解,且相应的目标函数值为00z =。

因为是求极大值问题,应增加一个约束条件(目标值下界):1233250x x x -+≥,求解过程可由下表来表示:218553*=+++=Z从而得最优解*(1,0,1)Tx = ,最优值8*=z 。

4. (10分)(二选一)(1)设图中各弧上数为距离,求1v 到9v 的最短距离与最短路径。

(2)设图中各弧上数为容量,求1v 到9v 的最大流量。

(1) 标号过程:略;最短路为:v 1→ v 2→v 6→v 9,最短距离为8.5 (2)标号过程:略;最大流量为6, 最小割集为:(S,T)={(v 1,v 2),(v 4,v 7)},其中S={v 1,v 4},T={v 2,v 3,v 5,v 6,v 7,v 8,v 9} 割量为:C(S,T)=3+3=6. 最大流量方案(答案不唯一):f 13=3, f 14=3, f 23=3, f 39=3, f 47=3, f 78=1, f 79=2, f 89=1,其余为零。

下面二题选一:关键工序:A,C,F,J关键路线:1→2→3→7→8工程完工期限:38某农场要决定一块地中选择什么作物,条件如下,如何决策?(1)分别用乐观法、悲观法、等可能法与最小后悔值法对生产方案作出决策。

(2)根据往年天气资料,旱、正常和多雨三种天气的概率分别为0.2、0.7和0.1,求利润期望最大和后悔期望最小的策略。

乐观法(大中取大):最佳方案为:蔬菜 悲观法(小中取大):最佳方案为:小麦或棉花 等可能法:最佳方案为:蔬菜最大利润期望值法:最佳方案为:棉花后悔值如下表所示。

最小后悔值法:最佳方案为:蔬菜 最小损失期望值法:最佳方案为:棉花四 、建立下面问题的数学模型(9分)1. 某造船厂根据合同从当年起连续三年末各提供四条规格相同的大型客货轮。

相关文档
最新文档