工业机器人机械手及其控制系统设计

合集下载

基于PLC机械手控制系统设计

基于PLC机械手控制系统设计

基于PLC机械手控制系统设计工业机械手是一种高科技自动化生产设备,也是工业机器人的一个重要分支。

它通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。

机械手作业的准确性和在各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。

机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。

通用机械手是一种能够独立按程序控制实现重复操作的机械手,适用范围比较广。

由于通用机械手能够很快地改变工作程序,适应性较强,因此在不断变换生产品种的中小批量生产中得到了广泛的应用。

机械手的发展得益于其积极作用:一方面,它能够部分代替人工操作;另一方面,它能够按照生产工艺的要求,遵循一定的程序、时间和位置来完成工件的传送和装卸;还能够操作必要的机具进行焊接和装配,从而改善了工人的劳动条件,显著提高了劳动生产率,加快了实现工业生产机械化和自动化的步伐。

因此,机械手受到了很多国家的重视,投入了大量的人力物力来研究和应用。

尤其是在高温、高压、粉尘、噪音以及带有放射性和污染的场合,机械手的应用更为广泛。

近年来,在我国也有较快的发展,并取得了一定的效果,受到了机械工业的关注。

机械手是一种能够自动控制并可重新编程以变动的多功能机器,具有多个自由度,可以搬运物体以完成在不同环境中的工作。

随着工业技术的发展,机械手的结构形式开始比较简单,专用性较强。

但现在,制成了能够独立按程序控制实现重复操作,适用范围比较广的通用机械手。

本文介绍了机械手的分类和应用,其中第一类是通用机械手,可以根据任务需要编制程序完成各项规定工作。

本项目要求设计的机械手模型也属于这一类,通过设计可以增强对工业机械手的认识,并熟悉掌握PLC技术、位置控制技术、气动技术等工业控制常用的技术。

机械手控制系统的设计步骤包括确定被控系统必须完成的动作和它们之间的关系、分配输入输出设备、设计PLC用户程序、对程序进行调试和修改,最后保存已完成的程序。

毕业设计--基于PLC的机械手控制系统设计

毕业设计--基于PLC的机械手控制系统设计

设计题目基于PLC的机械手控制系统设计摘要【摘要】工业机械手是近几十年发展起来的一种高科技自动生产设备。

工业机械手也是工业机器人的一个重要分支。

他的特点是可以通过编程来完成各种预期的作业,在构造和性能上兼有人和机器各自的优点,尤其体现在人的智能和适应性。

机械手作业的准确性和环境中完成作业的能力,在国民经济领域有着广泛的发展空间。

机械手的发展是由于它的积极作用正日益为人们所认识:其一、它能部分的代替人工操作;其二、它能按照生产工艺的要求,遵循一定的程序、时间和位置来完成工件的传送和装卸;其三、它能操作必要的机具进行焊接和装配,从而大大的改善了工人的劳动条件,显著的提高了劳动生产率,加快实现工业生产机械化和自动化的步伐。

因而,受到很多国家的重视,投入大量的人力物力来研究和应用。

尤其是在高温、高压、粉尘、噪音以及带有放射性和污染的场合,应用的更为广泛。

在我国近几年也有较快的发展,并且取得一定的效果,受到机械工业的。

机械手是一种能自动控制并可从新编程以变动的多功能机器,他有多个自由度,可以搬运物体以完成在不同环境中的工作。

机械手的结构形式开始比较简单,专用性较强。

随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。

由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的引用。

ABSTRACTManipulator hand and arm can imitate the certain movements function, according to fixed program to grab, transporting or operating tool for automatic operation of the device. It can replace the hard labor in order to realize people the mechanization of manufacturing and automation, can in harmful environment operation to protect the personal safety and so widely used.The type of manipulator, according to drive mode can be divided into hydraulic, pneumatic, electric and mechanical manipulator; According to applicable range can be divided into robots for and general manipulator two; According to the trajectory control mode can be divided into position control and continuous track control robots.The design of the manipulator and add plane rotation type and structure, the action of the manipulator by pneumatic cylinder driving, pneumatic cylinder of the corresponding electromagnetic valve to control, electromagnetic valve controlled by PLC. Drive the implementation of the component finish, can very convenient embedded in all kinds of industrial production line. Manipulator used PLC control, and has high reliability, change program flexible, and other advantages, whether for time control or travel control or mixed control, can be set to realize through PLC program. According to the order of the manipulator action can modify the program, so that more of the manipulator strong generality.Keywords: manipulator electromagnetic valve PLC目录摘要 (1)ABSTRACT (2)第一章绪论 (4)1.1机械手的概述 (4)1.1.1机械手的简介 (4)1.1.2机械手的类型 (4)第二章机械手总体方案的设计 (4)2.1机械手的工作过程及控制要求 (5)2.1.1 机械手的基本结构 (5)2.1.2机械手的控制要求 (7)2.2.3 机械手的控制方案设计 (9)2.2.4 机械手的手部结构 (9)2.2.5机械手的主要参数..................................................................... 错误!未定义书签。

工业机器人电气控制系统设计分析

工业机器人电气控制系统设计分析

工业机器人电气控制系统设计分析摘要:工业机器人主要用于搬运物料,即按照程序要求将特定动作有序完成的一种机械装置。

除了搬运物料以及完成动作这两种功能以外,工业机器人还具有图像识别、语音交互等功能,而且开发人员正致力于其他功能的设计。

工业机器人由四个部分组成:1.检测系统;2.控制系统;3.驱动系统;4.机械系统。

对此,本文围绕工业机器人如何应用电器控制系统这一问题展开了详细论述,以期能够为工业行业创造更高效益。

关键词:工业生产;机器人;电气控制1 工业机器人的起源《罗萨姆的万能机器人》这本著作中最先提出了机器人这一名词。

二战期间,美国为了开发核武器,设计了遥控机械手,这也是世界上首台工业机器人。

早在1954年,乔治.沃尔德相当于可编辑机器人的最先设计者。

约瑟夫·英格伯格享有“工业机器人之父”的称号,他在1959年就成为了Unimation公司的董事,主要从事于工业机器人的生产。

到1961年,通用汽车公司将工业机器人广泛用于汽车零部件的生产当中。

Unimation公司为了扩大工业机器人的推广与应用,通过降低成本价向通用公司出售工业机器人。

Unimation 公司于1967年向瑞典出售了工业机器人,这也是工业机器人在欧洲的首次使用。

到1969年,Unimation公司又将工业机器人远销到日本。

此后,全世界都开始注重工业机器人的研发与推广。

纵观工业机器人的发展历程,可知工业机器人在美国的引领下取得了非凡的成就。

与其他国家相比,日本和欧洲还是比较超前,只是要晚于美国。

2 工业机器人电气控制系统的功能2.1搬运工业机器人的常见动作就是搬运工厂零件或物品。

例如,加工机床将工业机器人取代人工作业进行上下料。

机器人需在头部安装吸附装置或夹持装置,这样才能搬运物品。

一般来说,机器人主要用于夹持气缸,吸附真空吸盘。

为了使气缸动作得到控制,机器人的内部控制系统必须保证开关量信号的输出。

想要使真空吸盘能够产生吸力,也是如此。

毕业设计(论文)基于三菱FX系列PLC的机械手控制系统设计

毕业设计(论文)基于三菱FX系列PLC的机械手控制系统设计
2.1 PLC的
可编程控制器是在计算机技术、通信技术和继电器控制技术的发展基础上开发起来的,现已广泛应用于工业控制的各个领域。它以微处理器为核心,用编写的程序进行逻辑控制、定时、计数和算术运算等,并通过数字量和模拟量的输入/输出来控制机械设备或生产过程。
高可靠性(1)所有的I/O接口电路均采用光电隔离,使工业现场的外电路与PLC内部电路之间电气上隔离;(2)各输入端均采用R-C滤波器,其滤波时间常数一般为10~20ms;(3)各模块均采用屏蔽措施,以防止辐射干扰;(4)采用性能优良的开关电源。(5)对采用的器件进行严格的筛选;(6)良好的自诊断功能,一旦电源或其他软,硬件发生异常情况,CPU立即采用有效措施,以防止故障扩大;(7)大型PLC还可以采用由双CPU构成冗余系统或有三CPU构成表决系统,使可靠性更进一步提高。
同时,借助组态软件的辅助作用,大大提高了系统的工作效率。因此,在自动化机床和综合加工自动生产线上,目前几乎都设有机械手,以减少人力和更准确地控制生产的节拍,便于有节奏地进行生产。
工业机械手是近几十年发展起来的一种高科技自动化生产设备。工业机械手是工业机器人的一个重要分支。它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。
机械手主要由执行机构、驱动机构和控制系统构成。
执行机构包括手部、手臂和躯干。手部装在手臂前端,可以转动、开闭手指。机械手手部的构造系统模仿人的手指,分为无关节、固定关节和自由关节三种。手指的数量又可以分为二指、三指、四指等,其中以二指用得最多。可根据夾持
对象的形状和大小配备多种形状和尺寸的夹头,以适应操作的需要。本设计采用二指的构造。手臂的作用是引导手指准确地抓住工件,并运送到所需要的位置上。为了使机械手能够正确地工作,手臂的三个自由度都需要精确地定位。总之,机械手的运动离不开直线移动和转动二种,因此它采用的执行机构主要是直线液压缸、摆动液压缸、电液脉冲马达、伺服液压马达、交流伺服电动机、直流伺服电动机和步进电动机等。躯干是安装手臂、动力源和各种执行机构的机架。

机械手(工业机器人)设计原理与运用

机械手(工业机器人)设计原理与运用

机械手的类型
探索不同类型的机械手,如轴承机械手、并联机械手、柔性机械手等。了解 它们的特点、优势和在特定应用场景中的适用性。
机械手构成要素
了解机械手的构成要素,包括关节、链杆、执行器、传感器等。深入探索这 些要素如何共同协作,实现机械手的各项功能。
电机和减速器的选择
解析选择合适的电机和减速器对机械手性能的重要性。深入讨论功率、扭矩、 效率等关键参数,并提供选择指南。
控制器的作用
探究控制器在机械手中的作用,包括路径规划、运动控制和安全保护。了解 如何选择适合的控制器以实现机械手的高效运行。
机械手的应Байду номын сангаас场景
发现机械手在各个行业中的广泛应用,如汽车制造、电子制造、医疗协助等。 了解机械手如何提高生产效率并增强工作安全性。
机械手未来趋势
展望机械手的未来趋势,包括人工智能的集成、机器学习的应用和人机协作 的发展。探讨机械手对社会和工业的深远影响。
机械手(工业机器人)设计 原理与运用
本节将介绍机械手(工业机器人)的设计原理与应用。了解机械手的类型、构成 要素以及选择电机、减速器和控制器的重要性。同时,我们将探讨机械手在 不同的应用场景下的角色及未来趋势。
机械手的设计原理
探索机械手的设计原理,包括运动学、动力学和控制理论。了解机械手如何 通过联动多个关节实现精确而协调的运动。

机械手PLC控制系统设计

机械手PLC控制系统设计

编号:119050244098本科毕业设计题目:机械手PLC控制系统设计学院:机械工程学院专业:机械设计制造及其自动化年级:11电子1班姓名:徐睿昀指导教师:张德荣老师完成日期:2014年5月27日机械手PLC控制系统设计摘要:本文介绍了机械手的发展和应用概况,提出了可控制系统的概念和应用,以及对机械手的控制编程。

本文介绍的机械手采用PLC可编程控制器作为工件抓取机械手的控制系统,气压驱动作为驱动机构,根据机械手的动作流程和输入输出要求来选PLC的型号并确定I/O接口,最后进行程序的编辑与调试,从而使机械手完成最后的装夹任务。

本论文拟开发的物料搬运机械手可在空间抓放物体,动作灵活多样,可代替人工在高温和危险的作业区进行作业,并可根据工件的变化及运动流程的要求随时更改相关参数。

利用可编程序控制器对机械手进行控制,选取了合适的PLC型号,根据机械手的工作流程制定了可编程序控制器的控制方案。

关键词:工业机器人;机械手;可编程序控制器(PLC)The Design Of The Manipulator PLC Control SystemAbstract:This article describes the development and application of robotic overview of concepts and applications of control systems and robot control programming. This article describes the robot by the three-way PLC output pulse, respectively, to drive the horizontal axis, vertical axis inverter to control the robot horizontal axis and vertical axis precise positioning, micro switch position signal to the PLC host; the feedback of the position signal from proximity switch for PLC, AC motor reversing control the robot gripper and close them in order to achieve the precise motion of the robot's function. This thesis is to develop the material handling robot can pick and place objects in space, flexible action, can replace the manual to operate at high temperatures and dangerous area of operations, are subject to change parameters and in accordance with the requirements of the changes and movement of the workpiece flow. Programmable logic controller to control the robot, select the appropriate PLC model to develop a control program of the programmable logic controller, according to the robot's workflow.Keywords: Industrial robots; manipulator; programmable logic controller (PLC)目录1. 绪论 (1)1.1 机械手应用发展的必要性 (1)1.2国内外机械手的发展概况 (1)1.3论文研究的内容及意义 (2)1.3.1研究目的 (2)1.3.2研究内容 (2)2.机械手控制系统控制要求与特性 (3)2.1系统控制要求: (3)2.2 机械手PLC控制系统的特性 (3)2.3 控制的系统基本构成 (3)3.系统硬件选型与防干扰措施 (4)3.1硬件控制系统选型 (4)3.1.1中央控制单元 (4)3.1.2 I/O点数估算 (4)3.1.3 选择PLC的类型 (4)3.1.4 气动机械手控制外部接线图 (6)3.2硬件抗干扰措施 (7)3.2.1电磁干扰造成的危害 (7)3.2.2现场干扰源 (7)3.2.3 PLC抗干扰措施 (7)4.机械手控制系统软件设计 (8)4.1 气动机械手控制流程图 (8)4.2程序设计梯形图 (9)结论 (18)致谢 (19)参考文献 (20)附录 (21)内蒙古民族大学学士学位论文机械手PLC控制系统设计1. 绪论1.1 机械手应用发展的必要性据了解,美国生产工业零件中,四分之三是小批量生产;金属加工批量生产中75%在50件以内,零件在机床上的加工时间仅占总生产时间的5%。

画出工业机器人的控制系统基本原理框图并用文字简要说明

画出工业机器人的控制系统基本原理框图并用文字简要说明

画出工业机器人的控制系统基本原理框图并用文字简要说明机器人的基本工作原理现在广泛应用的工业机器人都属于第一代机器人,它的基本工作原理框图如下所示。

示教也称为导引,即由用户引导机器人,一步步将实际任务操作一遍,机器人在引导过程中自动记忆示教的每个动作的位置、姿态、运动参数、工艺参数等,并自动生成一个连续执行全部操作的程序。

完成示教后,只需给机器人一个启动命令,机器人将精确地按示教动作,一步步完成全部操作,这就是示教与再现。

机器人的机械臂是由数个刚性杆体和旋转或移动的关节连接而成,是一个开环关节链,开链的一端固接在基座上,另一端是自由的安装着末端执行器(如焊枪),在机器人操作时,机器人手臂前端的末端执行器必须与被加工工件处于相适应的位置和姿态,而这些位置和姿态是由若干个臂关节的运动合成的。

因此,机器人运动控制中,必须要知道机械臂各关节变量空间和末端执行器的位置和姿态之间的关系,这就是机器人运动学模型。

一台机器人机械臂的几何结构确定后,其运动学模型即可确定,这是机器人运动控制的基础。

机器人机械手端部从起点的位置和姿态到终点的位置以及姿态的运动轨迹空间曲线叫做路径。

轨迹规划的任务是用一种函数来“内插”或“逼近”给定的路径,并沿时间轴产生一系列“控制设定点”,用于控制机械手运动。

目前常用的轨迹规划方法有空间关节插值法和笛卡尔空间规划两种方法。

当一台机器人机械手的动态运动方程已给定,它的控制目的就是按预定性能要求保持机械手的动态响应。

但是,由于机器人机械手的惯性力、耦合反应力和重力负载都随运动空间的变化而变化,因此要对它进行高精度、高速度、高动态品质的控制是相当复杂且困难的。

目前工业机器人上采用的控制方法是把机械手上每一个关节都当做一个单独的伺服机构,即把一个非线性的、关节间耦合的变负载系统,简化为线性的非耦合单独系统。

机械手自动控制设计

机械手自动控制设计

机械手自动控制设计摘要机械手是一种能够模拟人的手臂运动的工具。

通过自动控制机制,机械手能够实现精确的动作,广泛应用于工业生产线、医疗机器人和服务机器人等领域。

本文将介绍机械手自动控制设计的相关内容,包括机械手的结构和原理、自动控制系统的设计和应用场景等。

1. 机械手的结构和原理机械手由多个关节组成,每个关节可以作为一个独立的自由度进行运动。

常见的机械手结构包括串联型、并联型和混合型。

串联型机械手的关节依次连接,可以实现复杂的运动轨迹;并联型机械手的关节通过平行连接,可以实现较高的稳定性和刚度;混合型机械手采用串并联结构的组合,兼具了串联型和并联型的优点。

机械手的运动是由电机驱动的。

电机将电能转换为机械能,通过传动装置驱动机械手的关节运动。

常见的电机类型包括直流电机、步进电机和伺服电机。

直流电机结构简单,控制方便,适用于低功率和低速应用;步进电机能够精确控制转角,适用于高精度应用;伺服电机能够实现闭环控制,在高速、高精度应用中表现出色。

2. 自动控制系统的设计机械手的自动控制系统包括感知、决策和执行三个层次。

感知层负责获取环境信息,包括视觉、力觉和位置等;决策层根据感知信息做出决策,确定机械手的动作;执行层控制机械手的关节运动,完成决策层指定的任务。

2.1 感知层设计感知层主要通过传感器获取环境信息。

常用的传感器包括摄像头、力传感器和位置传感器等。

摄像头可以获取图像信息,用于机械手对工件的识别和定位;力传感器可以测量机械手与工件之间的力和压力,用于力控制和力反馈;位置传感器可以测量机械手的关节位置,用于位置控制和位置反馈。

2.2 决策层设计决策层主要包括机械手的轨迹规划和动作生成。

轨迹规划是指给定起始点和目标点,确定机械手的运动路线;动作生成是指根据轨迹规划生成机械手的具体动作序列。

常用的算法包括插补算法、路径规划算法和运动学算法等。

2.3 执行层设计执行层主要由控制器和执行器组成。

控制器通过对电机的控制来驱动机械手的关节运动;执行器负责将电机的转动转化为机械手的关节运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要工业机器人技术是近年来新技术发展的重要领域之一,是以微电子技术为主导的多种新兴技术与机械技术交叉、融合而成的一种综合性的高新技术。

这一技术在工业、农业、国防、医疗卫生、办公自动化及生活服务等众多领域有着越来越多的应用。

工业机器人在提高产品质量、加快产品更新、提高生产效率、促进制造业的柔性化、增强企业和国家的竞争力等诸多方面有着举足轻重的地位。

而机械手是工业机器人系统中传统的任务执行机构,是机器人的关键部件之一;是现代控制理论与工业生产自动化实践相结合的产物,并以成为现代机械制造生产系统中的一个重要组成部分;是提高生产过程自动化、改善劳动条件、提高产品质量和生产效率的有效手段之一。

尤其在高温、高压、粉尘、噪声以及带有放射性和污染的场合,应用得更为广泛。

本课题将设计一台四自由度的工业机器人,将会被用作自动送料装置。

主要工作部件及设计重点就是机械手。

第一,本人将设计该机器人的底座、大臂、小臂以及执行机构机械手爪的结构和模型;第二,再设计出适合于该机器人的驱动、传动方式,以期构成其的结构平台。

最后,在此基础上再将其控制系统设计出来,由下面几个步骤组成:数据采集卡和伺服放大器的选择、反馈方式和反馈元件的选择、端子板电路的设计以及控制软件的设计。

其中重点要加强控制软件的可靠性和机器人运行过程的安全性,最终要实现的目标包括:关节的伺服控制和制动问题、实时监测机器人的各个关节的运动情况、机器人的示教编程和在线修改程序、设置参考点和回参考点。

关键词:工业机器人;机械手;驱动;控制AbstractIndustrial robot technology is one of the important fields in the development of new technologies in recent years, is a cross, a variety of emerging technology and mechanical technology integration with microelectronics technology as the leading into a comprehensive high and new technology. This technology has been used more and more in the fields of industry, agriculture, national defense, medical, office automation and service life. Industrial robots play a decisive role in improving the quality of products, to speed up the update products, improve production efficiency, promote manufacturing flexibility, strengthen enterprise and national competitiveness etc. The manipulator is the traditional task execution mechanism of industrial robot system, is one of the key components of the robot; is a product of modern control theory and automation of industrial production practice, and to become an important part of modern mechanical manufacturing system; it is one of the effective ways to improve the production process automation, improve working conditions, to improve the product quality and production efficiency. Especially with a radioactive pollution in high temperature, high pressure, dust, noise and occasions, more widely applied.This topic will be the design of industrial robot with a four degree of freedom, will be used for the automatic feeding device. The main working parts and design focus is manipulator. First, the base, I will design the robot big arm, small arm and gripper actuator structure and model; second, redesign drive, drive mode suitable for the robot, in order to form the structure of platform. Finally, on the basis of the designed control system, consisting of the following steps: the design of data acquisition card and servo amplifier selection, feedback system and the feedback component selection, terminal board circuit design and control software. The key to strengthen the security of operation reliability and robot control software, to achieve the ultimate goals include: Joint servo control and brake problems, real-time monitoring the movement of each joint of robot, robot teaching programming and online modify the program, set the reference point and the reference point return.Key Words:Industrial robot; Manipulator; Drive; Control目录1绪论 (1)1.1工业机器人简介 (1)1.1.1发展史 (1)1.1.2特点 (1)1.1.3构造分类 (2)1.1.4 应用 (3)1.2国内外发展状况 (4)1.2.1 国外发展 (4)1.2.2 国内发展 (5)1.3工业机器人发展趋势 (5)2 工业机器人试验平台及机械手设计 (6)2.1机械手设计 (6)2.1.1机械手简介 (6)2.1.2 机械手分类 (6)2.1.3具体结构设计 (7)2.2工业机器人基座与连杆设计 (9)2.2.1基座的设计 (9)2.2.2大臂设计 (9)2.2.3小臂设计 (10)2.3工业机器人自由度及关节的设计 (10)2.4选择合适的驱动方式 (11)2.4.1电机驱动 (11)2.4.2液压驱动 (12)2.4.3气压驱动 (12)2.4.4驱动方式的确定 (13)2.5选择合适的传动方式 (13)2.6选择合适的制动器 (14)3控制系统硬件的组成 (15)3.1选择合适的控制系统模式 (15)3.2建立合适的控制系统模型 (16)4控制系统软件的选取和设计 (19)4.1预期实现动作 (19)4.2实现手段 (19)4.2.1 各关节运动控制及监测 (19)4.2.2 直流电机伺服控制 (20)4.2.3 电机自锁 (20)4.2.4 程序的在线修改与示教控制 (22)4.2.5 参考点的设置 (22)5总结 (22)5.1设计经验 (22)5.2 误差分析 (23)5.3 总体评价 (23)致谢 (23)参考文献 (24)1绪论1.1工业机器人简介1.1.1发展史1920年由著名捷克斯洛伐克作家查培克所作剧本《罗萨姆的万能机器人》里第一次出现了“机器人”这个名词,但最初”Robot”一词是苦力的意思,指的是一台类人的且具有特殊功能的机器,为一种人造苦力。

这就是最原始的的工业机器人假想。

进入20世纪中期,有越来越多的人开始关注机器人的研究。

其中美国橡树岭实验室就开始对可控的搬运核原料机械手进行了研究。

其控制系统为主从型控制系统,这种控制方式促进了近代工业机器人的研发和设计。

1954年工业机器人的概念由美国人戴沃尔最早提出且申请专利。

这是一种借助伺服系统控制机器人关节并利用人手对其动作示教,从而达到动作记录与再现的工业机器人,即示教再现机器人。

该控制模式成为当前主流的机器人控制方式。

1959年,美国Unimation 公司生产出了世界上第一台工业机器人,成为机器人发展史上的一块里程碑。

该公司VAL语言也成为机器人领域最原始的程控语言,并逐渐传播于各个大学及科研机构,成为机器人品牌的基本模版,而且其机械部分的结构也成为该行业的范本。

在工业机器人领域,日本也不甘落后,在经过了20世纪60年代的摇篮期,70年代的实用化时期,以及80年代的普及、提高期3个基本阶段后,日本的工业机器人已经取得了突飞猛进的发展。

现在,日本机器人主要用于汽车制造业和电子机械产业,而电子机械产品中的电子零件封装、半导体封装、无尘室、组装等领域占了日本机器人销售额的一半。

现在日本拥有机器人的总量为美国的7倍。

1.1.2特点工业机器人具有以下显著特征:(1)通用性:在执行不同作业任务时,一般的工业机器人都具有良好的通用性(特别设计的专用机器人除外)。

例如:为了让同一部工业机器人执行不同的任务,我们可只更换其末端执行机构(机械手爪,作业工具等);(2)可编程:柔性启动化是生产自动化的下一发展目标。

为了让工业机器人在小批量多品种且具有均衡高效率的柔性制造任务中发挥更好的功能,我们需要根据其工作环境的需要对其进行相应的编程和再编程,这是柔性制造系统中的重要组成部分。

相关文档
最新文档