单晶的塑性变形
5.2 晶体的塑性变形

铜多晶试样拉伸后形成的滑移带, 173×
5.2.3 合金的塑性变形
• 合金分类:单相固溶体合金 多相合金 • 合金的塑性变形:单相固溶体合金塑性变形 多相合金塑性变形
一. 单相固溶体合金塑性变形
溶质原子的作用主要表现在固溶强化 (Solid—solution Strenthening)作用,提高塑性变形抗力。 1. 固溶强化 • 固溶强化:固溶体合金的σ-ε曲线:由于溶质原子加 入使σs 和整个σ-ε曲线的水平提高,同时提高了加工 硬化率n。 • 影响固溶强化的因素: ① 溶质原子类型及浓度。 ② 溶质原子与基体金属的原子尺寸差。相差大时强化 作用大。 ③ 间隙型溶质原子比置换型溶原子固溶强化效果好。 ④ 溶质原子与基体金属价电子数差。价电子数差越大, 强化作用大。 固溶强化的实质是溶质原子与位错的弹性交互作用、 化学交互作用和静电交互作用。
FCC晶体孪生变形
• FCC晶体的孪生面是(111),孪生方向是[11-2 ]。 图2是FCC晶体孪生示意图。fcc中孪生时每层晶面 的位移是借助于一个不全位错(b=a/6[11-2])的 移动造成的,各层晶面的位移量与其距孪晶面的 距离成正比。孪晶在显微镜下观察呈带状或透镜 状。每层(111)面的原子都相对于邻层(111) 晶面在[11-2 ]方向移动了此晶向原子间距的一个 分数值。 • 下图2中带浅咖啡色的部分为原子移动后形成的孪 晶。可以看出,孪晶与未变形的基体间以孪晶面 为对称面成镜面对称关系。如把孪晶以孪晶面上 的[11-2 ]为轴旋转180度,孪晶将与基体重合。 其他晶体结构也存在孪生关系,但各有其孪晶面 和孪晶方向。
(4) 孪晶的位错机制
• 孪生变形( deformation twinning )是 整个孪晶区发生均匀切变,其各层面的 相对位移是借助于一个 Shockley 不完全 位错移动而造成的。 • 形变孪晶是通过位错增值的极轴机制形 成的。(如:L型扫动位错)
单晶的塑性变形

几何硬化:,远离45,滑移变得困难;
第 四 章 塑 性 变 形 第 二 节 单 晶 体 塑 变
第二节 单晶体的塑性变形
几何硬化与几何软化 · 几何硬化:如果晶体滑移面原来是处于其法线 与外力轴夹角接近45º 的位向,经滑移和转动 后,就会转到离45º 夹角越来越远的位向,从 而使滑移变得越来越困难。 几何软化:经滑移和转动后,一些原来角度远 离45º 的晶面将转到接近45º ,使滑移变得容易 进行。
第 四 章 塑 性 变 形 第 二 节 单 晶 体 塑 变
第四章 晶体的塑性变形
1
第 四 章 塑 性 变 形 第 二 节 单 晶 体 塑 变
第四章 晶体的塑性变形
纳米铜的室温超塑性
2
第 四 章 塑 性 变 形 第 二 节 单 晶 体 塑 变
第二节 单晶体的塑性变形
常温下塑性变形的主要方式:滑移、孪生、扭折。
变形机制
全位错运动的结果
分位错运动的结果
18
第 四 章 塑 性 变 形 第 二 节 单 晶 体 塑 变
第二节 单晶体的塑性变形
二 孪生 孪晶的生成方式: 变形孪晶 生长孪晶 退火孪晶
19
第 四 章 塑 性 变 形 第 二 节 单 晶 体 塑 变
第二节 单晶体的塑性变形
二 孪生 孪生的位错机制
20
不改变(对抛光面观察无 重现性)。
滑移方向上原子间距的整 数倍,较大。 很大,总变形量大。 有一定的临界分切压力 一般先发生滑移
改变,形成镜面对称关系(对抛 光面观察有重现性)
位移量 不 同 点
对塑变的贡献 变形应力 变形条件
小于孪生方向上的原子间距, 较小。 有限,总变形量小。 所需临界分切应力远高于 滑移 滑移困难时发生
金属的塑性变形与再结晶(3)

同一滑移面上若有大量的位错移出,则在晶体表 面形成一条滑移线。
位错在晶体中移动时所需切应力很小,因为当位错中心前 进一个原子间距时,一齐移动的只是位错中心少数原子, 而且其位移量都不大,形成逐步滑移,这就比一齐移动所 需的临界切应力要小得多,这称为“位错的易动性”。
研究表明,亚晶界的存在使晶体的变形抗力增加, 是引起加工硬化的重要因素之一。
3.形变织构
在塑性变形过程中,当金属按一定的方向变形量 很大时(变形量大于70%以上),多晶体中原来任 意位向的各晶粒的取向会大致趋于一致,这种有 序化结构叫作“变形织构”,又称为“择优取 向”,
金属材料的加工方式不同形成不同类型的织构: 拉拔时形成的织构称为丝织构,其特征是各个晶 粒的某一晶向平行于拉拔方向;轧制时形成的织 构称为板织构,其特征是不仅某一晶面平行于轧 制平面,而且某一晶向也平行于轧制方向。
3.变形引起的内应力
在金属塑性变形过程中,大约有10%的能量转化为内应力而残留在金属中, 使其内能增加。
这些残留于金属内部且平衡于金属内部的应力称为残余内应力。它是由于金 属在外力作用下各部分发生不均匀的塑性变形而产生的。
内应力一般可分为三种类型:Βιβλιοθήκη (1)宏观内应力(第一类内应力)
金属材料在塑性变形时,由于各部分变形不均匀,使整个工件或在较大的 宏观范围内(如表层与心部)产生的残余应力。
3.1.2多晶体金属塑性变形的特点
大多数金属材料是由多晶体组成的。 多晶体塑性变形的实质与单晶体一样。 要考虑到晶粒彼此之间在变形过程中的约束作用,以及晶界对塑性变形的影
单晶体的塑性变形原理

单晶体的塑性变形原理单晶体是由同一种晶体结构组成的完整晶体,具有高度的有序性和周期性。
在单晶体中,晶体晶格之间的结合力非常强大,使得晶格的平移和扭曲受到很大的限制。
然而,当单晶体受到外力作用时,就会出现塑性变形。
塑性变形是指物体在外力的作用下发生可逆的非弹性变形,即变形后物体可以保持新的形状。
塑性变形主要发生在常温下,与高温下的固溶体形变机制不同,高温下的固溶体形变机制主要是滑移。
单晶体的塑性变形原理可以用绕晶形变和位错划移来解释。
绕晶形变是指在晶体中某个平面内的晶格原子围绕某个原子旋转,从而引起整个晶体的塑性变形。
绕晶形变发生的条件是在某个平面附近存在一定程度的局部解理,即平面上的原子比其他方向上的原子容易移动。
绕晶形变可以分为两种类型:瑞士型形变和墙巢型形变。
瑞士型形变是指当晶体发生外力作用时,原子团块在某些面上的原子重排,使得晶体变形。
这种形变需要较大的应力才能实现,且发生在晶格容易发生切变的面上。
墙巢型形变是指当晶体受到外力作用时,在晶体内部形成位错和蚀斜,从而引起晶体的变形。
位错是晶体中的一种结构缺陷,它是由于晶体中的原子偏离了理想晶格位置而引起的。
蚀斜是指晶格在应力的作用下发生的微小变形。
墙巢型形变发生时,位错在晶体中移动,从而引起晶体变形。
位错划移是单晶体塑性变形的主要方式。
当晶体受到外力作用时,发生位错移动,这种移动可以看作是原子的排列发生了变化,从而引起晶格的变形。
位错划移的机制包括滑移和蠕变。
滑移是指位错在晶体中的某些面上移动,从而引起晶格的变形。
滑移的方向与晶体中原子排列的方向相吻合。
蠕变是指在晶体中,位错不仅在某些面上移动,还在垂直于该面的晶面上移动,从而引起晶体的变形。
除了绕晶形变和位错划移,单晶体的塑性变形还与材料的晶体结构和成分有关。
晶体结构的紧密性和原子间的键合方式都会影响晶体的塑性变形。
对于紧密堆积的晶体结构来说,原子之间的相互作用力较强,使得晶体更加难于发生塑性变形。
单晶体的塑性变形形变孪晶

图 临界分析应力分析图
cos cos cos cos称为取向因子
s c s cos cos
τc称为临界分切应力,其数值与 晶体的类型、纯度即温度等因 素有关,还与该晶体的加工和 处理状态、变形速度以及滑移 系类型等因素有关。
2.滑移系 晶体中的滑移只能沿一定的晶面和该面上一定的晶体学方
向进行,我们将其称为滑移面和滑移方向。 滑移面和滑移方向往往是晶体中原子最密排的晶面和晶向,
这是由于最密排面的面间距最大,因而点阵阻力最小,容 易发生滑移,而沿最密排方向上的点阵间距最小,从而使 导致滑移的位错的柏氏矢量也最小。 每个滑移面以及此面上的一个滑移方向称为一个滑移系, 滑移系表明了晶体滑移时的可能空间取向。
第六章 固体材料的变形与断裂
材料在外力作用下,当外力较小时将发生弹性变形,随着 外力的逐步增大,进而会发生永久变形,直至最终断裂。 在这个过程中,不仅其形状或尺寸发生了变化,其内部组 织以及相关的性能也都会发生相应变化。
研究材料在塑性变形中的行为特点,分析其变形机理以及 影响因素具有十分重要的理论和实际意义。
图 弹性模量与原子序数的变化关系
表 几种不同材料的弹性模量
材料 钢 铜
聚乙烯 橡胶 氧化铝
E/104MPa 20.7 11 0.3
10-4~10-3 40
泊松比 0.28 0.35 0.38 0.49 0.35
§6.1.2 滞弹性
在低于弹性极限的应力范围内,实际固体的应力和应变不 是单值对应关系,往往有一个时间的滞后现象,这种特性 称为滞弹性。
工程材料 5 塑性变形

(c) 变形80%
2. 亚组织的细化 塑性变形使晶粒碎化,内部 形成更多位向略有差异的亚晶粒 (亚结构),在其边界上聚集着 大量位错。 3. 产生形变织构 由于塑性变形过程中 晶粒的转动,当变形量达 到一定程度(70%~90%) 以上时,会使绝大部分晶 粒的某一位向与外力方向 趋于一致,形成织构。
产生加工硬化
由于塑性变形的变形度增加, 使金属的强度、硬度提高,而塑 性下降的现象称为加工硬化。
二、冷塑性变形对金属组织的影响 1. 形成纤维组织 金属在外力作用下产生塑性变形时,随着外形变化,而且其 内部的晶粒形状也相应地被拉长或压偏。当变形量很大时,晶粒 将被拉长为纤维状。
(a) 未变形
(b) 变形40%
2. 再结晶退火
把冷变形金属加热到再结晶温度以上,使其产生再结晶的热处 理称为再结晶退火。 生产中金属的再结晶退火温度比其再结晶温度高100~200℃。
三、晶粒长大
再结晶完成后,若继续升高加热温度或延长保温时间,金 属晶粒将继续长大是通过晶界的迁移进行的,是大晶粒吞食小 晶粒的过程。这是一个自发的过程。 影响晶粒大小的因素除加热温度和保温时间外,还有晶粒 原始尺寸、杂质的分布、预先变形度等。加热温度和预先变形 度影响最大。
晶粒粗大会使金属的强度,特别是塑性和冲击韧性降低。
1. 加热温度和保温时间的影响 加热温度越高,保温时间越长, 金属晶粒越粗大。
黄铜再结晶后晶粒的长大
580º C保温8秒后的组织
580º C保温15分后的组织
700º C保温10分后的组织
2. 预变形度的影响
对一般金属,当变形度为2%~10%时,由于变形很不均匀, 会造成晶粒异常长大,应予避免。变形度过大(>90%),因织 构,晶粒也会粗大。通常变形度为30%~60%。
第六章 金属材料的塑性变形
15
5. 产生变形织构 金属晶粒的取向一般是无规则的随机排列,尽管每个晶粒有各 向异性,宏观性能表现出各向同性。当金属经受大量(70%以上) 的一定方向的变形之后,由于晶粒的转动造成晶粒取向趋于一致, 形成了“择优取向”,即某一晶面在某个方向出现的几率明显 高于其他方向。金属大变形后形成的这种有序化结构叫做变形 织构,它使金属材料表现出明显的各向异性。
ys 0 kd
1/ 2
式中的d为晶粒的平均直径,k为比例常数。这是个经验公式, 但又表达了一个晶界影响的普遍规律。该公式常称为霍尔-佩 奇(Hall-Petch)关系。
8
另一方面,晶界数量的增加则材料的晶粒愈细,不仅强度愈高, 而且塑性与韧性也较高。因为晶粒愈细,单位体积中的晶粒数 便愈多,变形时同样的形变量便可分散在更多的晶粒中发生, 晶粒转动的阻力小,晶粒间易于协调,产生较均匀的变形,不 致造成局部的应力集中,而引起裂纹的过早产生和发展。因而 断裂前便可发生较大的塑性形变量,具有较高的冲击载荷抗力。 所以在工业上通过各种方法(凝固、压力加工、热处理)使材 料获得细而均匀的晶粒,使目前提高材料力学性能的有效途径
之一。
9
三、塑性变形过程
局部不均匀性: 在多晶体金属中,由于每个晶 粒的晶格位向都不同,其滑移面和滑移方向的 分布便不同,故在在同一外力作用下,每个晶 粒中不同滑移面和滑移方向上所受的分切应力 便不同。取向因子较大(接近1/2),分切应力较 大的必将首先发生滑移变形,通常称这种位向 的晶粒为处于“软位向”;而滑移面或滑移方 向处于或接近于与外力相平行或垂直,即取向 因子较小(接近0)的晶粒则处于“硬位向”,它 们所受的分切应力将较小,较难发生滑移。由 此可见,由于多晶体金属中每个晶粒所取的位 向不同,金属的塑性变形将会在不同晶粒中逐 批发生,是个不均匀的塑性变形过程。
第五章 金属的塑性变形及再结晶
孪生所需要的切应力很大。
滑移易进行。
二、多晶体金属的塑性变形
1、多晶体拉伸试验
(1)多晶体和单晶体对比试验
(2)两个晶粒试样拉伸
2、多晶体塑性变形的特点
1)每个晶粒内:滑移和孪生; 2)整个晶体:既要克服晶界的阻碍,又要同周围晶粒同时发生相 适应的变形来协调配合,以保持晶粒间的结合和晶体的连续性,否 则会导致晶体破裂。
三种典型金属晶格的滑移系
(A)体心立方晶格滑移系: 6 ×2 = 12
滑移面: {110} 6个 滑移方向:<111> 2个。
{110} <111>
(B)面心立方晶格滑移系: 4 ×3 = 12
滑移面: {111} 4个 滑移方向:<110> 3个
<110>
{111}
(C)密排六方晶ห้องสมุดไป่ตู้滑移系: 1 ×3 = 3
第五章 金属的塑性变形及再结晶
锻造 挤压
车 铣
轧制
成形加工工艺
金属获得一定的形状和尺寸
拉拔
金属塑性变形
刨
切削加工工艺
金属内部组织与结构变化
钻
改变晶粒大小、形态、分布
金属加热再结晶
改善金属材料的性能
§2-1 金属的塑性变形
P
一、单晶体金属的塑性变形
在室温下,单晶体的塑性变形主要是通过滑移和孪生进行的。
1、晶粒正常长大:
再结晶后的晶粒均匀、稳速地长大的现象。发生在再结晶 晶粒细小且均匀时。(希望的长大方式) 2、晶粒异常长大:
再结晶后的晶粒不均匀,急剧长大的现象。少数处于优越条件 的晶粒优先长大,迅速吞食周围的大量小晶粒,最后得到异常粗 大的晶粒,也称“二次再结晶”。
第5章 材料的形变和再结晶3
常见金属加工方法
(a) Rolling. (b) Forging (open and closed die). (c) Extrusion (direct and indirect).(d) Wire drawing. (e) Stamping.
正应力(Normal stress)的作用
作用在晶格上的正应力只能使晶格的距离加大,不能使原
子从一个平衡位置移动到另一平衡位置,不能产生塑性变形; 正应力达到破坏原子间的吸引力,晶格分离,材料则出现
断裂。
材料在正应力作用下,在应力方向虽然不能发生塑性变形, 但应力的分解在另一方向就有切应力,可使晶格沿另外的方向
三种典型晶格的滑移系
6 <11-20>
(0001)
48
面心立方 的滑移系
BCC: {110}6<111>2+{112}12<111>1+{123}24<111>1 =48
面心立方晶体中的滑移系
密排六方晶体中的滑移系
基面滑移面 圆锥滑移面
棱柱滑移面 按室温以上热激活能力的顺序密排六方镁的滑移面和滑移方向
Density)。
滑移系:由滑移面和此面上的一个滑移方向所组成。
FCC (111)Plane <110>direction
为什么滑移面往往是原子最密排的晶面?
这个问题将在后面回答
第四章金属材料的塑性变形与再结晶
滑移方向上原子间距的 小于孪生方向上的原
整数倍,较大。
子间距,较小。
很大,总变形量大。
有限,总变形量小。
有一定的临界分切 压力 一般先发生滑移
所需临界分切应力远高于 滑移
滑移困难时发生
变形机制
全位错运动的结果 分位错运动的结果 34
(二) 多晶体金属的塑性变形
单个晶粒变形与单晶体相似,多晶体变形比单晶体复杂
① 晶界的特点:原子排列不规则;分布有大量缺陷
② 晶界对变形的影响:滑移、孪生多终止于晶界,极少穿 过。
35
当位错运动到晶界附近时,受到晶界的阻碍而堆积 起来,称位错的塞积。要使变形继续进行, 则必须增加 外力, 从而使金属的变形抗力提高。
36
晶界对塑性变形的影响
Cu-4.5Al合金晶 界的位错塞积
55
(4) 几何硬化:由晶粒转动引 起 由于加工硬化, 使已变形部 分发生硬化而停止变形, 而 未变形部分开始变形。没有 加工硬化, 金属就不会发生 均匀塑性变形。
未变形纯铁
加工硬化是强化金属的重要
手段之一,对于不能热处理
强化的金属和合金尤为重要
变形20%纯铁中的位错
56
2 对力学性能的影响
利弊
d. 孪生本身对金属塑性变形的贡献不大,但形成 的孪晶改变了晶体的位向,使新的滑移系开动, 间接对塑性变形有贡献。
33
总结
滑移
孪生
相同点
晶体位向
位移量 不 同 对塑变的贡献 点
变形应力
变形条件
1 切变;2 沿一定的晶面、晶向进行;3 不 改变结构。 不改变(对抛光面 改变,形成镜面对称关系 观察无重现性)。 (对抛光面观察有重现性)
1、晶粒取向和晶界对塑性变形的影响
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
cosλ cosφ
称为取向因子,取向因子 越大,则分切应力越大。
材料的变形与再结晶
• Crystals slip due to a resolved shear stress, τ. • Applied tension can produce such a stress.
Al易交滑 移,产生 波纹状滑 移带
材料的变形与再结晶
4. 复滑移
主滑移系 共轭滑移系 随一次滑移进行,晶体的取向相对于加载轴发 生变化,到一定程度后,另一个等同的滑移系也 能启动,称共轭滑移系。
材料的变形与再结晶
三、滑移过程的次生现象
滑移产生的不均匀塑性 变形区: 1. 扭折带 2. 形变带
材料的变形与再结晶
Mg (HCP)
Al (FCC)
tensile direction
6
材料的变形与再结晶
3.临界分切应力定律
滑移的临界分切应力:只有当外力在某 一滑移系中的分切应力达到一定临界值 时,该滑移系方可以首先发生滑移,该分 切应力称为滑移的临界分切应力。
分切应力τ作用在滑移 方向使晶体产生滑移, 其大小为:
材料的变形与再结晶
(1)fcc滑移系 滑移方向<110>,滑移面{111} 面心立方结构共有4×3=12个滑移系
材料的变形与再结晶
(2)bcc滑移系
滑移方向为<111>,可能出现的滑移面有 {110}、{112}、{123},如果三组滑移面都 能启动,则潜在的滑移系数目为:
6× 2 + 12 × 1 + 24 × 1 = 48 {110} {112} {123}
组滑移面同时转到有利位向,使滑移可能在两组或更 多的滑移面上同时或交替地进行,形成“双滑移”或 “多滑移”。
多滑移时两个滑移面上的位错产生相互作用,形成割 阶或扭折,使位错进一步运动的阻力增加,因此多 系滑移比单系滑移要困难。
两根互相垂 直的刃型位
错的交割
刃型位错中 两个螺型位 刃型位错与
的 割 阶 与 扭 错的交割
第三章第二节
单晶体的塑性变形
《材料科学基础》第九章第二节
材料的变形与再结晶
单晶体金属的塑性变形
塑性变形:当外加应力超过一定值(屈服 极限 )时,应力和应变不再呈线性关系, 卸载后变形也不能完全消失,而会留下一 定的残余变形或永久变形,这种不可恢复 的变形称塑性变形。
微观上,单晶体中的塑性变形有两个基本 方式:滑移和孪生。
• Condition for dislocation motion:
• Crystal orientation can make it easy or hard to move disl.
σ τR= σ cos λ cos φ σ
τR > τCRSS
typically 10 -4G to 10 -2G
Adapted from Fig. 7.8, Callister 6e.
二、滑移的位错机制
晶体的滑移借助位错在滑移面上的运动逐步实现的
DISLOCATION MOTION
• Produces plastic deformation, • Depends on incrementally breaking
τ ≈ 2G exp[− 2πa ]
1−ν
(1 −ν )b
a为滑移面的面间距,b为滑移方向上的原子间距
密排面(a大),密排方向(b小),故派纳力较小 →滑移系的确定
材料的变形与再结晶
2.多系滑移
单滑移:只有一个特定的滑移系处于最有利位置而优 先开动,形成单滑移。
多系滑移:由于变形时晶体转动的结果,有两组或几
材料的变形与再结晶
一、滑移
1. 滑移现象
滑移线; 滑移带; 台阶
当应力超过晶体的弹性极限 后,晶体中就会产生层片之 间的相对滑移,大量的层片 间滑动的累积就构成晶体的 宏观塑性变形。 对滑移线的观察也表明了晶 体塑性变形的不均匀性,滑 移只是集中发生在一些晶面 上,而滑移带或滑移线之间 的晶体层片则未产生变形, 只是彼此之间作相对位移而 已。
面心立方晶体的滑移系共有{111}4<110>3=12个; 体心立方晶体,可同时沿{110}{112}{123}晶面滑移,故滑移 系共有{110}6<111>2+{112}12<111>1+{123}24<111>1=48个; 密好六方晶体的滑移系仅有(0001)1 3=3个。由于滑移系数目 太少,hcp多晶体的塑性不如fcc或bcc的好。
σ
τR = 0 λ=90º
τR = 0 φ=90º
τR = σ/2
λφ==4455ºº
λ=90º- φ 当φ=45º时,取向因子有最大值1/2,此时得
到最大分切应力,滑移处于最有利的取向,也 称软取向。
当 φ=00 、 90o 时 , 取 向 因 子 为 0 , 称 为 硬 取 向。 最大分切应力正好落在与外力轴成45º角的晶 面以及与外力轴成45º角的滑移方向上。
Applied tensile stress: σ = F/A
F A
slipdirection
F
Resolved shear stress: τR=Fs /As
Relation between σ and τR
slip plane normal, ns
Fs
slipdirectioτnR
τR
τR=Fs /As
螺型位错的
折形成
交割
带割阶位错 的运动
材料的变形与再结晶
如果发生双滑移或多系滑移,会出现Βιβλιοθήκη 叉形的滑移带交叉形的滑移带
3. 交滑移
螺位错在不改变滑移方向的情况下,从一个滑 移面转到另一个滑移面的过程。
材料的变形与再结晶
扩展位错的交滑移:不全位错须先束集为全螺位错, 再进行交滑移。
Cu不易交 滑移,无 波纹状滑 移带
材料的变形与再结晶
滑移带示意图
2. 滑移系
塑性变形时位错只沿着一定的晶面和晶向运动,这些 晶面和晶向分别称为“滑移面”和“滑移方向”。晶体结 构不同,其滑移面和滑移方向也不同。
一个滑移面(通常为密排面)和此面上的一个滑移方 向(通常为密排晶向)合起来叫做一个滑移系。
在其他条件相同时,晶体中的滑移系愈多,滑移过程 可能采取的空间取向便愈多,滑移容易进行,它的塑 性便愈好。
bonds.
• If dislocations don't move, deformation doesn't happen!
材料的变形与再结晶
晶体的滑移借助位错在滑移面上的运动逐步实现的
1. 位错的启动力
(位错中心偏离平衡位置引起晶体能量增加,构成 能垒-位错运动阻力,Peierls-Nabarro力)
• Structure: close-packed planes & directions are preferred.
close-packed plane (bottom)
view onto two close-packed planes.
close-packed directions
close-packed plane (top)
As
Fcos λ A/cos φ
F
λ
slipdirection
Fs
nsφ
A As
τR= σ cos λ cos φ
推导
滑移面面积: Q = A cos φ
作用在此滑移面的滑移 方向上的分力 :
F cosλ
作用在滑移面上 的分切应力:
τ = F cosφ cos λ = σ cosφ cos λ
A
CRITICAL RESOLVED SHEAR STRESS
bcc滑移系数目最多,但不能同时启动, 通常塑性不如fcc金属好。
材料的变形与再结晶
(3)hcp滑移系 滑移方向为< 1,1,-2,0>,滑移面为(0001)或 棱柱面{ 1,0,-1,0}、棱锥面{1,0,-1,1}
hcp滑移系数目较 少,故密排六方 金属的塑性通常 都不太好。
材料的变形与再结晶
最大分切应力正好落在与外力轴成45º角的 晶面以及与外力轴成45º角的滑移方向上。
τR= σ cos λ cos φ
σ
τR = σ/2
λ=45º φ =45º
Plastically stretched zinc single crystal.
Adapted from Fig. 7.9, Callister 6e. (Fig. 7.9 is from C.F. Elam, The Distortion of Metal Crystals, Oxford University Press, London, 1935.)
• Comparison among crystal structures:
FCC: many close-packed planes/directions; HCP: only one plane, 3 directions; BCC: none
• Results of tensile testing.