过程控制系统第五章 前馈控制系统

合集下载

天津大学过程控制系统 5)前馈控制系统(王江教授)

天津大学过程控制系统 5)前馈控制系统(王江教授)
章前馈控制系统
第五章 前馈控制系统
School of electrical engineering and automation
天津大学电气与自动化工程学院
1
过程控制系统
2011-05-09
第五章前馈控制系统
通过这章的学习,我们 可以得到以下收获:
什么情况下采用前馈增强控制系统性能? 利用五个规则设计前馈控制系统; 前馈控制系统设计和应用。
天津大学电气与自动化工程学院
过程控制系统
前馈控制系统---结构形式
3)前馈-反馈复合控制系统
Y ( s)
第五章前馈控制系统
Gc (s)G0 (s) G (s) GB ( s)G0 (s) R( s ) F F ( s) 1 Gc (s)G0 (s) 1 Gc (s)G0 ( s)
School of electrical engineering and automation
天津大学电气与自动化工程学院
12
过程控制系统
2011-05-09
第五章前馈控制系统
如 反 前 制
何 将 馈 与 馈 控 结合?
前馈控制
School of electrical engineering and automation
为了获得期望的控制性能,用方框图方法描述控制器 Gff(s)的模型形式。
如 何 测 量 CVA ?
School of electrical engineering and automation
天津大学电气与自动化工程学院
8
过程控制系统
2011-05-09
第五章前馈控制系统
CV s CVA s CVB s 0
KF GB ( s ) KB K0

过程控制工程课件 05_前馈比值控制系统共42页文档

过程控制工程课件 05_前馈比值控制系统共42页文档
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
过程控制工程课件 05_前馈比值控制 系统
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
42

第五章前馈控制系统ppt课件

第五章前馈控制系统ppt课件

第5章
前馈控制系统
5.1 前馈控制系统的特点 5.2 前馈控制系统的几种主要结构形式 5.3 前馈控制规律的实施 5.4 前馈控制系统的应用 5.5 前馈控制系统的参数整定 5.6 多变量前馈控制
实验:前馈控制系统实验
5.4 前馈控制系统的应用
什么情况下采用前馈控制:
(1)对象滞后较大,反馈难以满足要求,可把主要干 扰进行前馈控制
G(s) K es Ts 1
T1s 1 T2s 1
1 T2s 1
e f s
1
1 2
f
s
1
1 2
f
s
-K
输入

+K
1
+
1 2
f
s
1

-
输出
5.3 前馈控制系统的实施
输入
K=T1/T2-1
Kf
K
1/(T2s+1)
+
输出 -Σ
+
图5-12 (T1s+1)/(T2s+1)实施框图
t
mf
mf (t) K f [1 ( 1)e ]T1 (输出)
实验:前馈控制系统实验
5.3 前馈控制系统的实施
前馈控制规律取决于对象干扰通道和控制通道的 传递函数
工业对象特性复杂,导致前馈控制规律种类繁多, 不利于实施
工业应用希望控制规律能具有一定的通用性, 便于控制实施(特别是仪表)
5.3 前馈控制系统的实施
一般的工业对象可以用一阶容量滞后加纯滞后环节近似,如:
同样对于上述换热器FFC-FBC系统,如果蒸汽流量不稳定, 无论FFC或FBC的效果都不能正常发挥

过程控制工程第5章前馈控制系统讲义

过程控制工程第5章前馈控制系统讲义
T2sp
TC


前馈控制器 × RF k1
RVsp
RV
FC
蒸汽
- T1
T2
凝液
工艺 介质
特点:可克服对象的非线性,或具有变增益控制器的功能。
换热器反馈控制系统举例
换热器前馈反馈控制系统 #1
换热器前馈反馈控制系统 #2
结论

引入前馈控制的可能应用场合:
(1)主要被控量不可测; (2)尽管被控量可测,但控制系统所受的干扰严重, 常规反馈控制系统难以满足要求。
RVsp
FC
前馈 控制器 T1
RV
蒸汽
c p RF (T2 T1 ) HV RV
R 1
sp V
RF
工艺 介质 T2 凝液
Kv
RF (T T1 ) ,
sp 2
K v HV / c p
前馈控制的动态补偿
d(t) GYD (s) GFF (s) u(t) GYC (s)
+ +
y(t)
对于干扰与控制通道的动态模型,对通道模型要求弱,大多数情况 要求已知而且准确 无需对象模型
对时变与非线性对象的适应性弱
对时变与非线性对象的适应性与 鲁棒性强
换热器的前馈反馈控制方案1
T2sp
TC


前馈控制器 × RF k1

RVsp
RV
FC
蒸汽
- T1
T2
工艺 介质 凝液
换热器的前馈反馈控制方案2
换热器的控制方案(续)
蒸 汽 载 热 体 TC
TC
工艺 介质 凝液
换热器的控制方案(续)
扰动 RF (t), Ti (t) 热交换器 干扰 通道 控制 通道 + + 被控变量 T(t)

第 5章 前馈控制系统

第 5章  前馈控制系统
ff
( S ) G PC ( S )
1 G C ( S ) G PC ( S )
应用不变性条件:
F ( S ) 0, 0
可推导出前馈控制器的传递函数:
G PD ( S ) G G
ff ff
( S ) G PC ( S ) 0
(S )
G PD ( S ) G PC ( S )
F c p ( 1 2 ) F S h S
FS
Gff Mff
F
θ
2
θ
1
F c p ( 1 2 ) F S h S
Cp—物料的比热容 hs—蒸气的汽化潜热
FS F cp hS ( 1 i
2
)
由上式可求得,静态前馈控制方程式为:
FS F cp hS ( 1 i
• 本系统不但能通过串级副回路及时克服给 水流量的干扰,而且还能实现对蒸汽负荷 的前馈控制,在稳定工况下,给水量Q将等 于蒸汽量D的变化,从而维持了水位H的不 变。
5.5 前馈控制系统的参数整定
5.5.1 Kf的整定 5.5.2 T1、T2的整定
5.5.1 Kf的整定
重要性:如果正确的选择Kf,也就能正确地决定阀 位。如果Kf过大,则相当对反馈控制路施加了干扰, 将会输出错误的静态前馈输出。 Kf的整定方法: (1)开环整定方法: 开环整定是在反馈回路断开,使系统处于单 纯静态前馈状态下,施加干扰, Kf 由小逐步增大, 直到被控变量回到给定值,此时Kf 为最佳值。
一个固定的前馈 模型难以获得良好的 控制品质。为了解决 上述局限性,将前馈 与反馈相结合,构成 前馈—反馈控制系统 (FFC-FBC)
TC Gff θ F Σ

第五章2 前馈-反馈控制系统

第五章2 前馈-反馈控制系统

东北大学
前馈—反馈控制系统框图
5.2.2 前馈控制系统的结构形式
东北大学
5.2.2 前馈控制系统的结构形式
前馈—反馈控制系统优点:
(1) 由于增加了反馈回路,大大简化了原有前馈控制系统, 只需对主要的干扰进行前馈补偿,其它干扰可由反馈控 制予以校正; (2) 反馈回路的存在,降低了前馈控制模型的精度要求,为 工程上实现比较简单的通用模型创造了条件;
K 1 K ] T2 s 1
T1 1时,有 T2 (T1/T2 )-1 T T s 1 1 1 1] K f 1 T2 s 1 T2 T2 s 1
W f ( s) K f [
东北大学
常规仪表实现时,由一个正微分器、反微分器及比值器串联而成。
K T s 1 正微分器的传递函数: W正 ( s ) d 1 T1s 1 T2 s 1 K d T2 s 1
Wm (s)
o ,则动态前馈控制器为
K f (T o s 1) Ko (Tf s 1) Km (T o s 1) Tf s 1
K o (T f s 1)
W f ( s) Wo (s)
如果 T f To ,则
Wm (s) Km (s)
显然,当被控对象的控制通道和干扰通道的动态特性完全相同时, 动态前馈补偿器的补偿作用相当于一个静态放大系统。实际上,静态前 馈控制是动态前馈控制的一种特殊情况。
(3) 负荷变化时,模型特性也要变化,可由反馈控制加以补 偿,因此具有一定自适应能力。
东北大学
5.2.2 前馈控制系统的结构形式 前馈—反馈控制系统的局限性: (1) 前馈控制器的输出与反馈控制器的输出相叠加后送至控制
阀,这实际上将所要求的物料流量与加热蒸气流量对应关系

前馈控制

前馈控制

前馈控制一、前馈控制系统单回路控制系统和串级控制系统都是反馈控制系统,它主要是根据被控量和给定值的偏差信号来进行控制的。

反馈控制的最大优点是可以克服所有引起被控量发生变化的扰动信号,但它本身也存在很大的缺点,那就是调节不及时,调节总是滞后于扰动,即只有扰动作用于系统引起被控量发生变化,导致调节器输入端的偏差信号发生变化后,调节器才改变输出的调节信号,克服扰动,对被控量进行调节。

与反馈控制相比较,前馈控制直接根据扰动信号对被控量进行调节,调节快速性很好。

1.前馈控制的基本概念前馈控制也称为扰动补偿控制,是指在控制系统中,控制器根据扰动信号作用的大小和方向对被控量进行调节,称这种控制为前馈控制。

2.概念的理解(1)在前馈控制系统中,送给控制器的测量信号是扰动信号,而不是被控量,这和反馈控制存在很大的差别。

反馈控制是将被控量作为测量信号,调节器是根据被控量的测量值与给定值的偏差对被控量进行调节;而前馈控制是直接根据某个扰动信号的变化来对被控量进行调节的。

(2)前馈控制系统中的控制器通常叫做前馈控制器,或者前馈补偿器,该控制器只接收某个扰动作用的测量信号,无给定值输入信号。

因而从严格意义上讲,它不是一个控制器,而是一个补偿器,其作用是补偿扰动信号对被控量所造成的影响。

(3)一个前馈控制器只能对某一个扰动信号进行补偿。

若系统中存在多个扰动信号,则需要设计多个前馈控制器,分别去对多个扰动信号进行补偿。

3.前馈控制系统的结构前馈控制系统主要由前馈控制器、测量变送器、执行器、调节机构和被控对象组成。

其中,测量变送器是对扰动信号进行测量,而前馈控制器的输入信号只有一个,即扰动量的测量信号,无被控量的定值输入信号。

因而前馈控制器实际是一个前馈补偿器,补偿扰动对被控量的影响。

下面结合实例进行分析。

图3-10是一混合水温前馈控制系统示意图。

通过冷水调节阀和热水调节阀分别去调节冷水流量和热水流量,混合水的温度θ是系统的被控参数,要求θ为一定值。

第五章2前馈-反馈控制系统

第五章2前馈-反馈控制系统
东北大学
5.2.3 前馈控制规律
2.模拟仪表实施
• KF型前馈调节器:利用常规的比例调节器等仪表来实现。
WFF (s) K F

KF
T1 s T2 s
1 1
型前馈调节器:一阶超前-滞后的前馈控制器。
不考虑Kf时,这种前馈控制器在单位阶跃干扰作用下的时间特性表示为:
m
f
(t)
1
T2 T1 T2
T2s 1
-
+

输出
+
K
t
W
f
(s)

K
f
[
T2
K s 1

1

K
]
K T1 1 T2
令K T1 1时,有 T2
Wf
(s)

K
f
[(T1/T2 )-1 T2s 1

1

T1 T2
1]
Kf
T1s 1 T2s 1
东北大学
常规仪表实现时,由一个正微分器、反微分器及比值器串联而成。
(3)前馈控制模型的精度也受到多种因素的限制,对象特性要 受到负荷和工况等因素的影响而产生漂移,导致扰动通道 的传递函数和控制通道的传递函数的变化。
东北大学
5.2.2 前馈控制系统的结构形式
3.前馈-反馈控制系统
反馈控制:在稳态时,使系统在稳态时能准确地使被控量等于给定值; 前馈控制:在动态时,依靠前馈控制能有效地减少被控量的动态偏差,从而提高 控制质量。 在过程控制中这是一种较理想的控制方案.
误差分析: 由于对象干扰通道和调节通道的动态特性
不同所引起的动态偏差,这种偏差是静 态前馈控制无法避免的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TC 为温度调节器;K v为温度调节阀门。
5.1 前馈控制的基本概念
b)系统框图 图5-1 换热器温度反馈控制系统
在图5-1所示的温度反馈控制系统中,当扰动(如被加热的物料流量 q、入口
温化的度,大使小1其 和或偏方蒸离向汽给产压定生力值控p制D作等20 用的,,变随通化之过)温调发度节生调阀后节的,器动将按作引照改起被变热控加流量热体偏用出差蒸口值汽温e的度流2量20发q生D2变, 从而补偿扰动对被控量 2 的影响。
2. 前馈控制只适用于克服可测不可控的扰动,而对系统中的其它扰动无抑制作 用,前馈控制具有指定性补偿的局限性。为了克服这种局限性,通常将前馈、 反馈两者结合起来,构成复合控制系统。可测不可控的主要扰动由前馈控制抑 制,其它的由闭环控制解决。
3. 前馈控制具有静态和动态两种。静态前馈控制只能对扰动的稳态响应有良好 的补偿作用,但静态前馈控制器只是一个比例调节器,实施起来十分方便。动 态前馈控制几乎每时每刻都在补偿扰动对被控量的影响,故能极大提高控制过 程的动态品质,是改善控制系统品质的有效手段,但控制器取决于被控对象的 特性,往往比较复杂,难以实施。
(1)完全补偿难以实现。
前馈控制只有在实现完全补偿的前提下,才能使系统得到良好的动态品质、
但完全补偿几乎是难以作到的,因为要准确地掌握过程扰动通道特性 Wf (s)及
控制通道特性 W0 (s) 是不容易的。故而前馈模型 Wm (s) 难以准确获得;且被控
对象常含有非线性特性,在不同的工况下其动态特性参数将产生明显的变化,
(5-3)
5.1 前馈控制的基本概念
由此,可将前馈控制器的特点归纳如下:
1)前馈控制是“基于扰动来消除扰动对被控量的影响”,故前馈控制又称为 “扰动补偿”。
2)扰动发生后,前馈控制器“及时”动作,对抑制被控量由于扰动引起的动、 静态偏差比较有效。
3)前馈控制属于开环控制,所以只要系统中各环节是稳定的,则控制系统必 然稳定。
5.1 前馈控制的基本概念
由图5-3可知
Y (s) Wf (s)F (s) Wm (s)W0 (s)F (s)
Y (s)

F (s) Wf (s) Wm (s)W0 (s)
要使
Y (s) 0 F (s)
可得,前馈控制器模型为
Wm
(
s)


Wf W0
(s) (s)
(5-1) (5-2)
4. 前馈控制属于开环控制,只要系统中各环节是稳定的,则控制系统必然稳定。
5.1 前馈控制的基本概念
5.1 前馈控制的基本概念
到目前为止,所讨论的控制系统,如单回路控制系统、串级控制系统,都是 有反馈的闭环控制系统,其特点是当被控过程受到扰动后,必须等到被控参数 出现偏差时,调节器才动作,以补偿扰动对被控参数的影响。众所周知,被控 参数产生偏差的原因是由于扰动的存在,倘若能在扰动出现时就进行控制,而 不是等到偏差发生后再进行控制,这样的控制方案一定可以更快、更有效地消 除扰动对被控参数的影响。前馈控制正是基于这种思路提出来的。
5.1 前馈控制的基本概念
由此可归纳出反馈控制的特点如下:
1)反馈控制的本质是“基于偏差来消除偏差”。如果没有偏差出现,也就没有 控制作用了。
2)无论扰动发生在哪里,总要等到引起被控量发生偏差后,调节器才动作,故 调 节器的动作总是落后于扰动的作用,是一种“不及时”的控制。
3)反馈控制系统,因构成闭环,故而存在稳定性的问题。即使组成闭环系统的 每一个环节都是稳定的,闭环系统是否稳定,仍然需要作进一步的分析。
4)引起被控量发生偏差的一切扰动,均被包围在闭环内,故反馈控制可消除多 种扰动对被控量的影响。
5)反馈控制系统中,调节器的控制规律通常是P、PI、PD和PID等。
5.1 前馈控制的基本概念
5.1.2 前馈控制原理与特点
a)系统控制流程图
b)控制系统框图
图5-2 换热器前馈控制系统
对图5-1所示的热换器,采用如图5-2所示的前馈控制系统。
在过程控制领域中,前馈和反馈是两类并列的控制方式,为了分析前馈控制 的基本原理,首先回顾一下反馈控制的特点。
5.1 前馈控制的基本概念
5.1.1 反馈控制的特点
a)原理示意图 图5-1 换热器温度反馈控制系统
图5-1为换热器温度控制系统原理框图。图中,

p
D2为 为热蒸流汽体压温力度;T;T 为1 为温冷度流测体量温变度送;器q;为20流为体热流流量体;温q度D给为定蒸值汽;流量;
5.1 前馈控制
Wm (s)
F (s)
W0 (s)
Wf (s)

Y (s)

图5-3 前馈控制系统框图
图中, Wm (s)为前馈控制器,传递函数 Wf (s) 为过程扰动通道传递函数;W0(s) 为过程控制通道传递函数;F(s) 为系统可测不可控扰动;Y (s) 为被控参数。
本章内容要点
1. 前馈控制的本质是“基于扰动消除扰动对被控量的影响”,即一旦扰动出现 立刻进行补偿,故前馈控制又称为“扰动补偿”。反馈控制的本质是“基于扰 动产生的偏差来消除扰动对被控量的影响”,在扰动出现后、偏差产生前,调 节器没有控制作用。因此,前馈控制对抑制扰动引起的被控量的动、静态偏差 比较有效。
4)只适合用来克服可测而不可控的扰动,而对系统中的其它扰动无抑制作用。 因此,前馈控制具有指定性补偿的局限性。
5)前馈控制器的控制规律,取决于被控过程的特性。因此,往往控制规律比 较复杂。
5.1 前馈控制的基本概念
5.1.3 前馈控制的局限性
由前馈控制的原理、特点可以看出,前馈控制虽然对可测不可控的扰动有 很好的抑制作用,但同时也存在着很大的局限性。
假变即设化通换幅过热值流器大量的,变物且送料对器流出测量口量温物q 度料是流影量响2的被q影控,响量并力将最2流的显量主著变要。送扰为器动此的,,输此采出时用信前q号馈送变控到化制前频方馈繁式补,,
偿器,前馈补偿器根据其输人信号,按照一定的运算规律操作调节阀,从而
改变加热用蒸汽流量 qD,以补偿物料流量 q 对被控温度的影响。
原有的前馈模型此时就不能适应了,因此无法实现动态上的完全补偿。即使
前馈控制器模型 机)。
相关文档
最新文档