电机理论基本电磁定律
电磁感应定律内容

电磁感应定律内容
电磁感应定律是指在一个导体中,当导体与磁场发生相对运动或磁场发生变化时,会产生感应电流。
电磁感应定律主要包括法拉第电磁感应定律和楞次定律。
1. 法拉第电磁感应定律:当闭合线圈中的磁通量发生变化时,会在线圈中产生感应电动势。
法拉第电磁感应定律可以用公式表示为:ε = -dΦ/dt
其中,ε表示感应电动势的大小,Φ表示磁通量,t表示时间,d表示对时间的导数。
负号表示感应电动势的方向与磁通量变化的方向相反。
2. 楞次定律:楞次定律是根据能量守恒定律提出的,它描述了感应电流产生的规律。
根据楞次定律,当导体中的磁通量发生变化时,感应电流的方向会使得产生的磁场阻碍磁通量变化。
这一定律可以总结为以下两个原则:
- 磁通量增加时,感应电流的方向会使其产生的磁场与外部磁场方向相反,从而减小磁通量的变化。
- 磁通量减小时,感应电流的方向会使其产生的磁场与外部磁场方向相同,从而增加磁通量的变化。
通过电磁感应定律,我们可以理解电磁感应现象的原理,并应用于各种实际应用中,如发电机、变压器、感应炉等。
它为我们认识和利用
电磁现象提供了重要的理论基础。
电机理论的基本电磁定律

在电能的应用中,电动机起着重要的作用。在机 械工业、冶金工业、化学工业、交通运输及日常 生活等各个方面,电动机将电能转换成机械能, 为各种工作机械提供动力。随着新型电机、大功 率半导体器件、大规模集成电路的发展和计算机 技术的应用,电力拖动系统的品种、质量和性能 都有了进一步的提高,带动了数控机床、工业机 器人、交通运输、航空航天及家用电器等机电一 体化高科技产品的迅速发展。随着科学技术的进 步,工业、农业和国防等各部门都要求有性能更 好的新型电机及电力拖动系统,以满足各方面的 不同需求,电机与电力拖动系统也必将在国民经 济发展中发挥越来越重要的作用。
统两大类。 (3) 根据驱动电源的不同,电力拖动有直流电力拖动、交流电
力拖动两种方式。
0.3 电机与电力拖动的应用
在国民经济生产中,电机工业是机械工业的一个重 要组成部分,是机电一体化中机和电的结合点,是 工业企业电气化的心脏,对国民经济的发展有着重 要的作用。
电机是电力工业的主要设备之一。在发电厂,发电 机将原始能源(如热能、水能、化学能、核能和太阳 能等)转换为生产和生活中可使用的电能。变电站的 作用是经济地传输和分配电能,升压变压器把大型 发电机发出的低压电转换成高压电,输送到高压电 网上进行远距离传输,而在供给用户使用前,再把 来自高压输电网的电能经过降压变压器降压。可见, 在电能的生产、传输和分配过程中,发电机和变压 器起着重要的作用。
至于电力拖动系统,则是指驱使机器工作、机构运动的电 气机械装置,它通常为机器设备的一部分,其系统组成如 图0-1所示。
法拉第电磁感应定律的公式及使用条件

法拉第电磁感应定律的公式及使用条件
法拉第电磁感应定律的公式为:ε = -dφ/dt,其中ε为感应电
动势,dφ/dt为磁通量随时间的变化率。
使用条件:
1.该定律适用于闭合导线回路中的电磁感应现象。
2.导线回路必须处于磁场中,并磁通量相对于导线回路的面积发
生改变。
拓展:
1.法拉第电磁感应定律是电磁学中的重要定律之一,描述了磁场
和导体之间相互作用的规律。
该定律为电磁感应现象提供了理论基础,广泛应用于电动机、变压器等电磁设备的设计与工作原理中。
2.根据法拉第电磁感应定律,当导体相对于磁场的运动速度增大时,感应电动势也会增大,这就是电磁感应发电机工作原理的基础。
3.除了法拉第电磁感应定律外,还有安培法则和洛伦兹力定律等电磁学定律,它们共同构成了电磁学的基础理论。
深入理解这些定律对于探索电磁现象的规律和应用具有重要意义。
法拉第电磁感应定律

法拉第电磁感应定律法拉第电磁感应定律是电磁学中的基本定律之一,由英国科学家麦克斯韦尔于19世纪中叶提出。
它描述了磁场发生变化所导致的感应电流的产生。
本文将详细介绍法拉第电磁感应定律的原理和应用,并探讨其在现代社会中的重要性。
一、法拉第电磁感应定律的原理法拉第电磁感应定律是建立在麦克斯韦尔方程组和洛伦兹力的基础上的。
根据法拉第电磁感应定律,当磁场穿过一个闭合导线圈时,会在导线中产生感应电流。
而这个感应电流的大小与磁场的变化率成正比。
法拉第电磁感应定律可以用数学公式表示为:ε = -dφ/dt其中,ε表示感应电动势,dφ/dt表示磁通量的变化率。
负号表示感应电流的方向满足洛伦兹右手定则。
二、法拉第电磁感应定律的应用法拉第电磁感应定律在生活中有广泛的应用。
其中最常见的就是发电机的原理。
发电机通过旋转磁场线圈,使磁通量发生变化,从而在导线中感应出电流。
这种感应电流通过导线外部的电路,可以产生电能供给使用。
另外,法拉第电磁感应定律还应用于变压器的原理中。
变压器通过感应电磁感应定律将电能从一个电路传输到另一个电路。
当一个变压器的输入端的电流发生变化时,产生的磁场会感应出另一个线圈中的感应电流,并将电能传输给输出端。
此外,在磁浮列车和电磁炮等现代科技装置中也广泛应用了法拉第电磁感应定律。
在磁浮列车中,通过改变轨道上导线的电流,产生的磁场和磁轨上的磁场相互作用,从而使列车悬浮在轨道上。
而电磁炮则是通过在导轨上产生瞬间巨大的感应电流,利用洛伦兹力将物体加速射出。
三、法拉第电磁感应定律的重要性法拉第电磁感应定律在现代社会中具有重要的意义。
首先,法拉第电磁感应定律为我们理解电磁感应现象提供了准确的理论基础。
通过深入研究法拉第电磁感应定律,我们可以更好地理解电磁现象的本质,并且能够应用这一定律解决实际问题。
其次,法拉第电磁感应定律的应用使得电力工业得到了长足的发展。
发电机和变压器等设备的应用使得电能的输送和控制更加高效,为人们的生产和生活提供了便利。
电机学知识点讲义汇总

电机学知识点讲义汇总第一章 基本电磁定律和磁路电机的基本工作原理是建立在电磁感应定律、全电流定律、电路定律、磁路定律和电磁力定律等定律的基础上的,掌握这些基本定律,是研究电机基本理论的基础。
▲ 全电流定律全电流定律 ∑⎰=I Hdl l式中,当电流方向与积分路径方向符合右手螺旋关系时,电流取正号。
在电机和变压器的磁路计算中,上式可简化为∑∑=Ni Hl▲电磁感应定律 ①电磁感应定律 e=-dtd N dt d Φ-=ψ 式中,感应电动势方向与磁通方向应符合右手螺旋关系。
②变压器电动势磁场与导体间无相对运动,由于磁通的变化而感应的电势称为变压器电动势。
电机中的磁通Φ通常是随时间按正弦规律变化的,线圈中感应电动势的有效值为m fN E φ44.4=③运动电动势e=Blv④自感电动势 dtdiL e L -= ⑤互感电动势 e M1=-dt di 2 e M2 =-dtdi1 ▲电磁力定律f=Bli▲磁路基本定律 ① 磁路欧姆定律 Φ=A l Ni μ=mR F =Λm F 式中,F=Ni ——磁动势,单位为A ;R m =Alμ——磁阻,单位为H -1; Λm =lA R m μ=1——磁导,单位为H 。
② 磁路的基尔霍夫第一定律0=⎰sBds上式表明,穿入(或穿出)任一封闭面的磁通等于零。
③ 磁路的基尔霍夫第二定律∑∑∑==mRHl F φ上式表明,在磁路中,沿任何闭合磁路,磁动势的代数和等于次压降的代数和。
磁路和电路的比较第二章 直流电动机一、直流电机的磁路、电枢绕组和电枢反应 ▲磁场是电机中机电能量转换的媒介。
穿过气隙而同时与定、转子绕组交链的磁通为主磁通;仅交链一侧绕组的磁通为漏磁通。
直流电机空载时的气隙磁场是由励磁磁动势建立的。
空载时,主磁通Φ0与励磁磁动势F 0的关系曲线Φ0=f (F 0)为电机的磁化曲线。
从磁化曲线可以看出电机的饱和程度,饱和程度对电机的性能有很大的影响。
▲ 电机的磁化曲线仅和电机的几何尺寸及所用的材料有关,而与电机的励磁方式无关。
电机学基础知识PPT课件

2021年5月27日星期四
11
第11页/共45页
电机与电力拖动的发展概况
2.电力拖动的发展概况 最初电动机拖动代替了蒸汽或水力的拖动; 当时电动机拖动生产机械的方式是通过天轴来实
现的,称为“成组拖动”。 即由一台电动机拖动一组生产机械,从电动机到
各种生产机械的能量传送以及在各生产机械之间的能 量分配完全用机械的方式,靠天轴及机械传动来实现。
2021年5月27日星期四
10
第10页/共45页
电机与电力拖动的发展概况
随着自动控制系统和计算机装置的发展,在一般旋 转电机的理论基础上,又发展了许多种可靠性,高 精度、快速响应的控制电机,成为电机学科的一个 独立的分支。
我国的电机工业在建国以来发生了巨大的变化。现 在已建立了自己的工业体系,有统一的国家标准、 统一的电机、变压器系列,能生产成套的大、小型 火力和水力发电设备,基本上能生产满足国民经济 生产需要的各种电机。
2021年5月27日星期四
1
第1页/共45页
电机与电力拖动的发展概况
二、按运动方式及电源性质分类
静止电机-----------------变压器
电机
直流发电机 直流电机
直流电动机
旋转电机
异步电机 异步电动机
交流电机
异步发电机
同步发电机 同步电机
同步电动机
控制电机
2021年5月27日星期四
2
第2页/共45页
1.2.1 磁场的基本物理量 一、磁感应强度
磁感应强度B
表示磁场内某点磁场强弱和方向的物理量。
磁感应强度B的方向
与电流的方向之间符合右手螺旋定则。
磁感应强度B的大小
B
F Il
电磁学中的安培定律和法拉第定律

电磁学中的安培定律和法拉第定律电磁学是研究电场和磁场相互作用的科学领域,其中安培定律和法拉第定律是电磁学中最基础也是最重要的定律之一。
本文将对安培定律和法拉第定律进行详细介绍和解析。
一、安培定律安培定律是描述电流周围的磁场的定律,由法国物理学家安培于19世纪初提出。
它揭示了电流与磁场之间的相互作用规律。
安培定律有两种表达方式:一种是积分形式,另一种是微分形式。
积分形式的安培定律可以用公式表示为:∮B·dl = μ₀·I其中∮B·dl表示磁场B沿闭合回路l的环流积分,μ₀为真空中的磁导率,I为穿过闭合回路的电流。
微分形式的安培定律可以用公式表示为:∇×B = μ₀·J其中∇×B表示磁场B的旋度,J为电流密度。
微分形式的安培定律更常用于分析电流与磁场的关系。
安培定律的实际应用非常广泛,如电磁铁、电动机和发电机等电磁设备的设计和使用都依赖于安培定律。
它不仅对电磁学理论的发展有重要贡献,也为电磁能的应用提供了基础。
二、法拉第定律法拉第定律是描述电磁感应现象的定律,由英国物理学家法拉第于19世纪初提出。
它揭示了磁场的变化可以产生感应电动势的规律。
法拉第定律可以分为两个方面:感应电动势和感应电流。
1. 感应电动势根据法拉第定律,当磁通量Φ穿过一个导线回路时,会在回路中产生感应电动势ε。
感应电动势的大小与磁通量的变化率成正比。
可以用以下公式表示:ε = - dΦ/dt其中ε表示感应电动势,dΦ/dt表示磁通量的变化率。
2. 感应电流除了感应电动势,根据法拉第定律,感应电动势还可以导致电流的产生。
当一个导体回路中存在感应电动势时,如果回路是闭合的,就会产生感应电流。
感应电流的方向与感应电动势的方向相反。
感应电流可以用以下公式表示:I = ε/R其中I表示感应电流,ε表示感应电动势,R表示电路的电阻。
法拉第定律的应用广泛,如电磁感应产生的感应电动势和感应电流被应用于发电机、变压器等电磁设备,也被应用于电磁波的传播等领域。
电的三大定律

电的三大定律电的三大定律是电学中最基础且重要的概念之一,它们分别是欧姆定律、基尔霍夫定律和法拉第电磁感应定律。
这三个定律的应用范围广泛,从电路设计到电子设备制造都需要用到它们。
本文将详细介绍这三大定律的定义、公式、应用以及实际意义。
一、欧姆定律1.1 定义欧姆定律是描述电流、电压和电阻之间关系的基本规律。
它表明,在恒温下,通过一个导体的电流与该导体两端的电压成正比,与该导体阻抗成反比。
1.2 公式欧姆定律的数学表达式为:I = V / R其中,I表示通过导体的电流,单位为安培(A);V表示导体两端的电压,单位为伏特(V);R表示导体的阻抗,单位为欧姆(Ω)。
1.3 应用欧姆定律广泛应用于各种类型的电路中。
例如,在直流电路中,可以使用欧姆定律来计算通过各个元件(如灯泡、继电器等)的电流。
在交流电路中,欧姆定律仍然适用,但需要考虑电阻的复杂性和电流的相位差等因素。
二、基尔霍夫定律2.1 定义基尔霍夫定律是描述电路中电流和电压分布的基本规律。
它分为两个定律:基尔霍夫第一定律(KCL)和基尔霍夫第二定律(KVL)。
2.2 基尔霍夫第一定律(KCL)基尔霍夫第一定律指出,在任何一个节点处,所有进入该节点的电流之和等于所有离开该节点的电流之和。
这个原理也被称为“节点法则”。
2.3 基尔霍夫第二定律(KVL)基尔霍夫第二定律指出,在一个封闭回路中,总电压降等于总电动势。
这个原理也被称为“环路法则”。
2.4 应用基尔霍夫定律广泛应用于各种类型的电路中。
例如,在复杂的直流或交流电路中,可以使用基尔霍夫第一和第二定律来计算各个元件(如电阻、容抗、感抗等)之间的关系,并且可以确定每个元件上的电流和电压。
三、法拉第电磁感应定律3.1 定义法拉第电磁感应定律是描述磁场和电场之间相互作用的基本规律。
它表明,当一个闭合线圈被置于变化的磁场中时,它会在其内部产生一定的电动势(EMF)。
3.2 公式法拉第电磁感应定律的数学表达式为:EMF = -dΦ/dt其中,EMF表示电动势,单位为伏特(V);Φ表示穿过线圈表面的磁通量,单位为韦伯(Wb);t表示时间,单位为秒(s)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块1 电机理论的基本电磁定律
• 磁通量
磁通量简称磁通,用表示,它是指穿过某一截面 的磁感应强度的通量,通常用穿过某截面的磁感线的 数目来表示磁通的大小。磁通量与磁感应强度之间的 关系可用下式表示:
B dS
S
电机与拖动技术基础
模块1 电机理论的基本电磁定律
内将感应电动势和产生感应电流。这些电流在铁芯内部围绕磁通呈漩
涡状流动,称为涡流。涡流在铁芯中引起的损耗( i2r )称为涡流
损耗。
(3)铁芯损耗
磁滞损耗与涡流损耗之和,称为铁芯损耗,用 pFe 表示。
电机与拖动技术基础
感应电动势的正方向与磁通的正方向符合右手螺 旋关系,即右手的大拇指表示磁通的正方向,其余四 个手指表示电动势的正方向,则感应电动势可表示为:
e N d d dt dt
式中, 为磁链; 为磁通;N 为线圈匝数。
电机与拖动技术基础
模块1 电机理论的基本电磁定律
• 2.切割电动势
导体与磁场有相对运动,导体切割磁力线,在导体中 会产生感应电动势。在均匀磁场中,若直导体的有效长度 为、磁感应强度为、导体相对切割速度为,则其感应电动 势为:
• 磁场强度 H
磁场强度是描述磁场的一个辅助量,是为建立电流 与由其产生的磁场之间的数量关系而引入的物理量,其 方向与相同,其大小关系为:
B H
电机与拖动技术基础
模块1 电机理论的基本电磁定律
专题1.2 电机理论中常用的基本电磁定律
教学目标: 1)掌握磁路定律、电磁感应定律和电磁力定律; 2)掌握电路定律和磁路定律之间的关系。
模块1 电机理论的基本电磁定律
专题1.3 电机所用材料和铁磁材料的特性
教学目标: 1)了解电机中所用的主要材料; 2)了解铁磁材料的磁特性。
电机与拖动技术基础
模块1 电机理论的基本电磁定律
• 电机中所用的材料
通常将电机所用的材料分为四大类。第一类是导电材 料,用以构成电路,常用铝或铜制成。第二类是导磁材料, 用以构成磁路,常用0.35mm或0.5mm厚的两面涂有绝缘 漆的硅钢片叠成。第三类为绝缘材料,用此把带电部分分 隔开来,用云母、瓷等材料制成。第四类为机械支撑材料, 用钢铁或铝合金制成。
变化的磁场会产生电场,使导体中产生感应电动势, 这就是电磁感应现象。在电机中电磁感应现象主要表现在 两个方面: (1)线圈中的磁通变化时,线圈内产生感应电动势。 (2)导体与磁场有相对运动,导体切割磁感线时,导体内
产生感应电动势,称为切割电动势。
电机与拖动技术基础
模块1 电机理论的基本电磁定律
• 1.感应电动势
2.磁饱和现象及剩磁
电机与拖动技术基础
ip2 Fre
模块1 电机理论的基本电磁定律
3.铁芯损耗
(1)磁滞损耗 铁磁材料置于交变磁场中,材料被反复交变磁化,磁畴相互
不停地摩擦而消耗能量,并以产生热量的形式表现出来,造成的 损耗称为磁滞损耗。
(2)涡流损耗 当通过铁芯的磁通随时间变化时,根据电磁感应定律,铁磁材料
模块1 电机理论的基本电磁定律
专题1.1 有关磁场的几个物理量
教学目标: 1)了解磁场的概念; 2)掌握磁感应强度、磁通量和磁场强度的概念及三者的关
系; 3)了解磁导率及磁动势的概念。
电机与拖动技术基础
模块1 电机理论的基本电磁定律
• 磁场 磁感应强度
磁场是由电流产生的,它是存在于运动电荷周围 空间除电场外的一种特殊物质,对位于其中的运动电 荷有力的作用。表征磁场的物理量有磁感应强度,又 称磁通密度。它是描述磁场强弱及方向的物理量。
电机与拖动技术基础
模块1 电机理论的基本电磁定律
• 磁路的基尔霍夫第一定律
磁路中的任一闭合面内,在任一瞬间,穿过该闭合面 的各分支磁路磁通的代数和等于零,即
0
电机与拖动技术基础
模块1 电机理论的基本电磁定律
• 安培环路定律(磁路基尔霍夫第二定律)
在磁场中,沿任意一个闭合磁回路的磁场强度矢量的 线积分,等于穿过该闭合路径的所有电流的代数和,这 就是安培环路定律。即有如下关系:
Hdl i
电机与拖动技术基础
模块1 电机理论的基本电磁定律
• 磁路欧姆定律
由安培环路定律可得,
lB l
F IN Hl A Rm
式中,Rm
lAFra bibliotek,称为磁路的磁阻。则 F IN
Rm Rm
电机与拖动技术基础
模块1 电机理论的基本电磁定律
• 电磁感应定律
e Blv
电机与拖动技术基础
模块1 电机理论的基本电磁定律
• 电磁力定律
载流导体在磁场中会受到力的作用。由于这种力是 磁场和电流相互作用产生的,所以称为电磁力。若磁场 与载流导体相互垂直,导体的有效长度为、磁感应强度 为、导体中的电流为,则作用在导体上的电磁力为:
f Bli
电机与拖动技术基础
电机与拖动技术基础
模块1 电机理论的基本电磁定律
• 铁磁材料的磁化特性
1.导磁性
铁磁材料包括铁、钴、镍以及它们的合金。所有的非铁磁材料的导磁系
数都接近于真空的导磁系数 0 4 107 H/m,而铁磁材料的导磁系数比
真空的大几千倍。因此,在同样大小的电流下,铁芯线圈产生的磁通比空心 线圈的磁通大很多。