清华大学机械原理课件——第5章轮系
合集下载
机械原理课件-轮系

2. 主 、从动轮转向关系的确定
(1)轮系中各轮几何轴线均互相平行的情况
i15 (1)3
z2 z3z5 z1z2, z3,
z2z3z5 z1z2, z3,
(2) 轮系中所有齿轮的几何轴线不都平行, 但首、尾两轮的轴线互相平行
用箭头表示各轮转向;
(3)轮系中首尾两轮几何轴线不平行的情况 其转向只能用箭头表示在图上。如图所示:
2、列出计算各基本轮系传动比的方程式; 3、找出各基本轮系之间的关系; 4、方程式联立求解,即可求得混合轮系的传动比。
§5-4 轮系的功能
一、实现分路传动:
利用轮系可以使一个 主动轴带动若干个从动轴同 时旋转,并获得不同的转速。
二、获得较大的传动比
采用周转轮系,可以在使用很 少的齿轮并且也很紧凑的条件下, 得到很大的传动比。
图5-1
§5-1 轮系的类型
2. 周转轮系:
至少有一个齿轮轴线的位置不固定,而是绕着其它定轴齿轮的轴线 做周向运动的轮系。
周转轮系举例:
图中所示为一基本型 周转轮系。它由4个活动构 件组成,它们是:两个定 轴转动的中心轮(又称太 阳轮)1和3,支承齿轮2轴 线且作定轴转动的系杆 (又称行星架或转臂)H, 轴线随系杆H而转动的行星 轮2。
五、实现换向传动:
在主轴转向不变的条件下, 可以改变从动轴的转向。
六、实现运动的分解:
差动轮系可以将一个基本构件的主 动转动按所需比例分解成另两个基本构件的不同转动。
七、实现结构紧凑的大功率传动
周转轮系常采用多个行星轮均 布的结构形式
多个行星轮共同分担载荷,可 以减少齿轮尺寸;
各齿廓啮合处的径向分力和行星 轮公转所产生的离心惯性力得以平衡, 可大大改善受力状况;
机械原理 第五章 轮系

w1 3 z 2 z3 z 4 z5 3 z 2 z3 z5 i15 1 1 w5 z1 z 2 z3 z 4 z1 z 2 z3
3
3 ´
2 ´
2
4 5
将齿数代入上式,即
300 z 2 z3 z 4 z5 3 40 80 15 1 1 w5 z1 z2 z3 z4 20 30 30
H i 13
100 n H 20 25 200 n H 30 25
nH=-100r/min
2) n1与n3 反向,即用 n1=100r/min,n3= -200r/min代入,
i
H 13
100 n H 20 25 200 n H 30 25
可得
nH=700r/min
4.实现运动的合成与分解 运动输入
5 r 4 H
运 n 动 1 输 出
2 1
3 2 H
运 n3 动 输 出
2L
§5-2 定轴轮系的传动比计算 一、轮系传动比的定义
2
3' 1 3 4 4'
w1
w5
5
(avi)
输入轴与输出轴之间
的角速度之传动比:
i15
w1 n 1 w5 n5
包含两个方面:大小与转向
H 43
3
4
联立求解得:
i14 i1H i4 H
63 1 ( ) 588 6 56
§5-3 混合轮系的传动比
3 1 2 4 H 2'
1、复合齿轮系:既含有定轴齿轮系,又含有行星齿轮系 , 或者含有多个行星齿轮系的传动。 3 H 2' OH 4 4 (1) 6 (2) 5 2 H 3 1
3
3 ´
2 ´
2
4 5
将齿数代入上式,即
300 z 2 z3 z 4 z5 3 40 80 15 1 1 w5 z1 z2 z3 z4 20 30 30
H i 13
100 n H 20 25 200 n H 30 25
nH=-100r/min
2) n1与n3 反向,即用 n1=100r/min,n3= -200r/min代入,
i
H 13
100 n H 20 25 200 n H 30 25
可得
nH=700r/min
4.实现运动的合成与分解 运动输入
5 r 4 H
运 n 动 1 输 出
2 1
3 2 H
运 n3 动 输 出
2L
§5-2 定轴轮系的传动比计算 一、轮系传动比的定义
2
3' 1 3 4 4'
w1
w5
5
(avi)
输入轴与输出轴之间
的角速度之传动比:
i15
w1 n 1 w5 n5
包含两个方面:大小与转向
H 43
3
4
联立求解得:
i14 i1H i4 H
63 1 ( ) 588 6 56
§5-3 混合轮系的传动比
3 1 2 4 H 2'
1、复合齿轮系:既含有定轴齿轮系,又含有行星齿轮系 , 或者含有多个行星齿轮系的传动。 3 H 2' OH 4 4 (1) 6 (2) 5 2 H 3 1
机械设计基础课件第五章轮系

第二节 定轴轮系及其传动
机械设计基础课件第五章轮系
第二节 定轴轮系及其传动比
一对圆锥齿轮传动时,在节点具有相同速度, 故表示转向的箭头或同时指向节点(图c),或同时 背离节点。
蜗轮的转向不仅与蜗杆 转向有关,而且与其螺旋线 方向有关。判断时可采用左 手或右手定则。
请注意蜗杆旋向的表示 方法。
机械设计基础课件第五章轮系
第六节 几种特殊的行星传动简介
• 四、活齿传动
• 随着原动机和工作机向着多样化方向的发展,对 传动装置的性能要求也日益苛刻。为了适应这一 要求,除对齿轮、蜗杆蜗轮等传统的传动装置作 大量的研究和改进外,近20多年来人们还研究出 了多种新型传动装置如谐波传动、摆线针轮传动 等。这些传动都成功地应用于许多行业的各种机 械装置中。
机械设计基础课件第五章轮系
第二节 定轴轮系及其传动比
机械设计基础课件第五章轮系
第三节 周转轮系及其传动比
周转轮系中行星轮的运动不是绕固定轴线的 简单转动(包括自转和公转),所以周转轮系各 构件间的传动比就不能直接用定轴轮系的方法来 计算了。
机械设计基础课件第五章轮系
第三节 周转轮系及其传动比
• 周转轮系和定轴轮系的根本区别在于周转轮系中 有转动着的系杆。为了解决周转轮系的传动比的 计算问题,我们应当设法将周转轮系转化成定轴 轮系。也就是说应当使系杆静止不动。
机械设计基础课件第五章轮系
第六节 几种特殊的行星传动简介
二、摆线针轮行星传动 摆线针轮行星传动与渐开线少齿差行星传动的
不同处在于齿廓曲线各异。在摆线针轮行星传动中, 轮1的内齿是带有套筒的圆柱销形针齿,行星轮2的 齿廓曲线则是短幅外摆线的等距曲线。
摆线针轮行星传动除具有传动比大、结构紧凑、 体积小、重量轻及传动效率高的优点外,还因为同时 承担载荷的齿数多,以及齿廓间为滚动摩擦,所以传 动平稳、承载能力大、轮齿磨损小、使用寿命长。
机械原理第05章 轮系

i12
ω1 = = ω2
z2 z 1
z1 ω1 z2 ω2
两轮转向相同
i12
ω1 z2 = =+ ω2 z1
z1 ω1 z2 ω2
i12
ω1 z2 = = ω2 z1
(转向如图所示) 转向如图所示) 两轮的转向只能用画箭头的办法表示
ω1 z2 i12 = = ω2 z1 ω3′ z4 i3′4 = = ω4 z3′
第五章 轮系
Chapter 5 Gear Trains
轮系: 轮系:由齿轮组成的传动系统 5.1轮系的分类 5.1轮系的分类 (types of gear train) 根据轮系在运转过程中各轮轴 线在空间的位置关系是否固定, 线在空间的位置关系是否固定, 对轮系进行分类。 对轮系进行分类。 定轴轮系( 定轴轮系(ordinary gear trains) 所有齿轮轴线的位置 在运转过程中固定不 变的轮系
= 3×4 2×4 2 = 2
根据周转轮系中基本构件的不同,周转轮系可以分为 根据周转轮系中基本构件的不同, 2K2K-H型周转轮系 K表示中心轮,H表示系杆 表示中心轮,
3K型周转轮系 3K型周转轮系
在此轮系中系杆H只 在此轮系中系杆H 起支承行星轮使其与 中心轮保持啮合的作 不起传力作用, 用,不起传力作用, 故在轮系的型号中不 含“H”。 。
的周转轮系。 的周转轮系。
单一的定轴轮系或单 计算混合轮系传动比的正确方法是: 计算混合轮系传动比的正确方法是: 一的周转轮系 (1)首先将各个基本轮系正确地区分开来 首先将各个基本轮系正确地区分开来。 (1)首先将各个基本轮系正确地区分开来。 (2)分别列出计算各基本轮系传动比的方程式。 (2)分别列出计算各基本轮系传动比的方程式。 分别列出计算各基本轮系传动比的方程式 (3)找出各基本轮系之间的联系 找出各基本轮系之间的联系。 (3)找出各基本轮系之间的联系。 (4)将各基本轮系传功比方程式联立求解.即可求得 (4)将各基本轮系传功比方程式联立求解. 将各基本轮系传功比方程式联立求解 混合轮系的传动比 正确划分各个基本轮系的方法 几何轴线位置不固定的齿轮; 几何轴线位置不固定的齿轮 (1) 先找行星轮 —几何轴线位置不固定的齿轮; 支承行星轮的构件即为系杆; 支承行星轮的构件即为系杆 (2) 然后找系杆 —支承行星轮的构件即为系杆; 几何轴线与系杆重合且直接与行星轮相 (3) 再找中心轮 —几何轴线与系杆重合且直接与行星轮相 啮合的定轴齿轮。 啮合的定轴齿轮。 这一由行星轮、系杆、中心轮所组成的轮系,就是一个 这一由行星轮、系杆、中心轮所组成的轮系, 基本的周转轮系。区分出各个基本的周转轮系后. 基本的周转轮系。区分出各个基本的周转轮系后.剩余的那 些由定轴齿轮所组成的部分就是定轴轮系。 些由定轴齿轮所组成的部分就是定轴轮系。
清华大学机械原理——轮系PPT课件

(2) 运动分解
nH
1 2
(n3
n5 )
n3 r L n5 r L
n3
r
r
L
nH
n5
r
r
L
nH
第46页/共75页
6. 实现执行机构的复杂运动
行星轮既有自转又有公转—复杂运动
例:行星搅拌机构
第47页/共75页
用于食品加工的行星搅拌机构
第48页/共75页
5.5 轮系的设计
定轴轮系的设计 基本内容 ➢选择轮系的类型 ➢确定轮系中各轮的齿数 ➢选择轮系的布置方案
缺点:中间轴较长,变 形使齿宽上的载荷分布 不均匀。
周转轮系的设计 基本内容 ➢周转轮系类型的选择 ➢确定轮系中各轮的齿数 ➢*周转轮系的均衡装置
第55页/共75页
1.周转轮系类型的选择
考虑因素:
➢传动比范围; ➢效率高低; ➢结构复杂程度; ➢外廓尺寸等。
第56页/共75页
➢当轮系主要用于传递运动时
双排2K-H 单排2K-H
假想一个中心
z1
x
z2 z2'
2) 同心条件
z2
i1H
(x 1) x 1
z1
3) 装配条件
k z1 i1H (Q Rx)
(Q, R均为正整数)
第68页/共75页
➢ 双排2K-H行星轮系(标准齿轮传动,各轮模数相等)
4) 邻接条件
(z1
z2
)
sin
180 k
z2
+2 ha*
假定z2 z2'
若 x z2 1 z2'
第34页/共75页
2. 实现减速、增速或变速运动
例1:汽车手动变速器(130)
第5章-机械设计基础-轮系1PPT课件

H z2
ωH
z1
.
z2
z3
z1
ωH 设计:潘存云
铁锹
16
例五:图示圆锥齿轮组成的轮系中,已知:
z2 o
z1=33,z2=12, z2’=33, 求
解:判别转向: 齿轮1、3方向相反
i3H1
3 1
H H
3 H 0 H
i3H 1
i3H
r1
H
z1 z3
=-1
p z1
δ1
ωH
ωωδ2H22
设计:潘存云
2)实现分路传动,如钟表时分秒针;
3)换向传动 4)实现变速传动 5)运动合成加减法运算
图示行星轮系中:Z1= Z2 = Z3
2
作者:潘存云教授
1
3
H
i3H1
n3 n1
nH nH
z1 z3
=-1
nH =(n1 + n3 ) / 2
结论:行星架的转.速是轮1、3转速的合成。
25
§11-5 轮系的应用
结论:系杆转1000. 0圈时,轮1同向转1圈。
14
又若 Z1=100, z2=101, z2’=100, z3=100,Z2
Z’2
i1H=1-iH1H=1-101/100 =-1/100,
H
iH1=-100
设计:潘存云
结论:系杆转100圈时,轮1反向转1圈。
Z1
Z3
此例说明行星轮系中输出轴的转向,不仅与输入轴的转向有关,而且与各轮的齿数有关。本例中只将 轮3增加了一个齿,轮1就反向旋转,且传动比发生巨大变化,这是行星轮系与定轴轮系不同的地方
联立解得:i1 B
1 B
z3 (1 z5 )
ωH
z1
.
z2
z3
z1
ωH 设计:潘存云
铁锹
16
例五:图示圆锥齿轮组成的轮系中,已知:
z2 o
z1=33,z2=12, z2’=33, 求
解:判别转向: 齿轮1、3方向相反
i3H1
3 1
H H
3 H 0 H
i3H 1
i3H
r1
H
z1 z3
=-1
p z1
δ1
ωH
ωωδ2H22
设计:潘存云
2)实现分路传动,如钟表时分秒针;
3)换向传动 4)实现变速传动 5)运动合成加减法运算
图示行星轮系中:Z1= Z2 = Z3
2
作者:潘存云教授
1
3
H
i3H1
n3 n1
nH nH
z1 z3
=-1
nH =(n1 + n3 ) / 2
结论:行星架的转.速是轮1、3转速的合成。
25
§11-5 轮系的应用
结论:系杆转1000. 0圈时,轮1同向转1圈。
14
又若 Z1=100, z2=101, z2’=100, z3=100,Z2
Z’2
i1H=1-iH1H=1-101/100 =-1/100,
H
iH1=-100
设计:潘存云
结论:系杆转100圈时,轮1反向转1圈。
Z1
Z3
此例说明行星轮系中输出轴的转向,不仅与输入轴的转向有关,而且与各轮的齿数有关。本例中只将 轮3增加了一个齿,轮1就反向旋转,且传动比发生巨大变化,这是行星轮系与定轴轮系不同的地方
联立解得:i1 B
1 B
z3 (1 z5 )
机械设计基础----第5章轮系

太阳轮被固定。
图5-4c
三、周转轮系的传动比计算
一)基本思路
如图5-4 a、b所示。
周转轮系与定轴轮系的
根本区别在于周转轮系
中有一个转动着的行星
架,因此使行星轮既自
转又公转。如果能
图5-4 a、b
够设法使行星架固定不动,那么周转轮系就可转化成一个
假想的定轴轮系,并称其为周转轮系的转化轮系。
在周转轮系转化为转化轮系后,就可以对转化轮系应
2、5的转向相同)
∴
i17=
z2 z1
•
z3 z 2
•
z4 z3
•
z5 z4
•
z6 z5
•
z7 z6
上例中的轮4,其齿数多少不影响传动比的大小,只
起改变转向的作用,在轮系中的这种齿轮称为惰轮(过桥
齿轮)——仅影响 i 的符号,而不影响 i 的大小。
▲自学:P74例5-1。
§5—3 周转轮系及其传动比
构件的轴线可互不平行;
3、正负号——指转化轮系中轮G、K的转向关系,图上画 箭头来确定(同定轴轮系);
4、真实转速nG、nK、nH中的已知量代入公式时要带正负 号(可假定某一转向为正,则相反的转向为负),求
得的未知量的转向也依据计算结果的正负号来确定。
例:在图示的轮系中,已知z1=z2=30,z3=90。试求当构件 1、3的转速分别为 n1=10rpm,n3=10rpm (转向如图) 时,求 nH及i1H的值。
转轮系)。
图a
图b
三、轮系的传动比(Transmission ratio)
一对齿轮的传动比:是指两轮的角速度或转速之比,即 i12=ω1 /ω2= n1 /n2 = z2 /z1。
图5-4c
三、周转轮系的传动比计算
一)基本思路
如图5-4 a、b所示。
周转轮系与定轴轮系的
根本区别在于周转轮系
中有一个转动着的行星
架,因此使行星轮既自
转又公转。如果能
图5-4 a、b
够设法使行星架固定不动,那么周转轮系就可转化成一个
假想的定轴轮系,并称其为周转轮系的转化轮系。
在周转轮系转化为转化轮系后,就可以对转化轮系应
2、5的转向相同)
∴
i17=
z2 z1
•
z3 z 2
•
z4 z3
•
z5 z4
•
z6 z5
•
z7 z6
上例中的轮4,其齿数多少不影响传动比的大小,只
起改变转向的作用,在轮系中的这种齿轮称为惰轮(过桥
齿轮)——仅影响 i 的符号,而不影响 i 的大小。
▲自学:P74例5-1。
§5—3 周转轮系及其传动比
构件的轴线可互不平行;
3、正负号——指转化轮系中轮G、K的转向关系,图上画 箭头来确定(同定轴轮系);
4、真实转速nG、nK、nH中的已知量代入公式时要带正负 号(可假定某一转向为正,则相反的转向为负),求
得的未知量的转向也依据计算结果的正负号来确定。
例:在图示的轮系中,已知z1=z2=30,z3=90。试求当构件 1、3的转速分别为 n1=10rpm,n3=10rpm (转向如图) 时,求 nH及i1H的值。
转轮系)。
图a
图b
三、轮系的传动比(Transmission ratio)
一对齿轮的传动比:是指两轮的角速度或转速之比,即 i12=ω1 /ω2= n1 /n2 = z2 /z1。
机械原理第五章 轮系

(1) z1 44, z2 40, z2 42, z3 42 (2) z1 100 , z2 101, z2 100 , z3 99 (3) z1 100 , z2 101, z2 100, z3 100
z2
z2
H
解:(1)
i1H3
n1 n3
nH nH
(1)2
z2 z3 z1z2
(1)3
z2 z4 z6 z1 z3 z5
30 40 120 60 30 40
2
i1H
n1 nH
1 i1H6
12 3
nH
n1 3
6.5
转/分
nH与 n1 同向
例9:图示小型起重机机构,已知 z1 53, z1 44, z2 48, z2 53, z3 58, z3 44, z4 87 ,一般工作情况下,5轴不转,动力由电机M 输入,带动滚筒N 转动;
H H
3 H (1)2 z1z2 1
0 H
z2 z3
上式表明,轮3的绝对角速度为0,但相对角速度不为0。
ω2=2ωH ω3=0
z2
z3
z1
铁锹
ωH
z3
z2 H
z1
z3
H z2 ωH
z1
例5:图示圆锥齿轮组成的轮系中,已知
z1 48, z2 48, z2 18, z3 24, n1 250 r/min , n3 100 r/min
(3) i1H 1 i1H3 1101 100 /100 100 1/100
结论:系杆转100圈时,轮1反向转1圈
iH1 1/ i1H 100
讨论:(1)行星轮系用少数几个齿轮,就可以获得很大的传动比,比定轴轮系要紧凑轻便很多,但当 传 动比很大时,效率很低。因此行星轮系常用于仪表机构,用来测量高速转动或作为精密微调机构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精密仪器与机械学系 设计工程研究所
精密仪器与机械学系 设计工程研究所
周转轮系
转化轮系
精密仪器与机械学系 设计工程研究所
i1H3
H 1
H 3
1 H 3 H
z3 z1
精密仪器与机械学系 设计工程研究所
一般公式
i1H n n1 H H
z2...zn z1...zn-1
转化轮系传动比 “+”—正号机构 “-”—负号机构
精密仪器与机械学系 设计工程研究所
第5章 轮系(Gear Train)
➢ 轮系的类型 ➢ 轮系的传动比 ➢ 轮系的功能 ➢ 轮系的设计
精密仪器与机械学系 设计工程研究所
第5章 轮系(Gear Train)
5.1 轮系的类型
精密仪器与机械学系 设计工程研究所
由一系列齿轮组成的传动系统—轮系
定 轴 轮 系
5.2 轮系的传动比
传动比
iio
in out
nin nout
5.2.1 定轴轮系的传动比
精密仪器与机械学系 设计工程研究所
i12
1 2
z2 z1
i3'4
3 4
z4 z3
i2'3
2 3
z3 z2'
i45
4 5
z5 z4
i1 5
1 5
?
i12i2'3i34i451 2 3 41 2 3 4 5 5
的轮系—周转轮系(动轴轮系) 组成: 行星轮
太阳轮(中心轮)
太阳轮(中心轮) 系杆
精密仪器与机械学系 设计工程研究所
➢ 中心轮1,3和系杆H 的回转轴线的位置均固定且
重合 ➢ 运动的输入或输出构件—周转轮系的基本构件
周转轮系
精密仪器与机械学系 设计工程研究所
行星轮系(F=1) 差动轮系(F=2)
i3H1
n3 nH n1 nH
z1 z3
1
如:n1 0 n3 0
古代指南车
z 3 z 2 z 1
精密仪器与机械学系 设计工程研究所
指南车:据传说西周时就已发 明,但最早的确切记载在三国 时期。
指南针:是利用了磁铁或磁石在地球磁场中的南北指极性 而制成的指向仪器。
指南车:是车上装有一套差动齿轮装置。 现代军事上的坦克、装甲车是钢铁外壳,行驶时又震 动很大,磁性罗盘在车内难以正常工作,就要借 助这种机械指向工具。
z2z3z5 z1 z 2 ' z 3
齿轮4: 惰轮
精密仪器与机械学系 设计工程研究所
➢首尾两轮几何轴线平行
i14
1 4
z2z3z4 z1z2'z3'
精密仪器与机械学系 设计工程研究所
➢首尾两轮几何轴线不平行
精密仪器与机械学系 设计工程研究所
5.2.2 周转轮系的传动比
周转轮系
转化轮系
精密仪器与机械学系 设计工程研究所
例1 已知:z 1 2 8 , z 2 1 8 , z 2 ' 2 4 , z 3 7 0 ,
试求传动比 i 1 H
i1 H 31 3 H Hz z1 2 z z2 3 ' 1 2 8 8 7 2 0 4 1 .8 7 5
3 0
i1H
1 H
11.8752.875
自由度 F =?
行星轮系
(两个中心轮之一固定)
F 3 3 2 3 2 1
精密仪器与机械学系 设计工程研究所
自由度 F =?
自由度: F 3 4 2 4 2 2
Hale Waihona Puke 差动轮系运 动 复 合 两 个 主 动 , 一 个 从 动 运 动 分 解 一 个 主 动 , 两 个 从 动
精密仪器与机械学系 设计工程研究所
*5.3 轮系的效率 5.4 轮系的功能
1. 获得大的传动比 一对齿轮传动,一般i≤5—7
获得大的传动比
定轴轮系(多级传动) 周转轮系和混和轮系
系杆H?
周转轮系:
i1H3nn13 nnH H
z2 z1
z3 z2'
定轴轮系:
系杆H
2
2' 4
1
3'
3
i3'5zz3 4'
z5z5 z4 z3'
n3' n3 nH n5
精密仪器与机械学系 设计工程研究所
区分定、动轴轮系 混合轮系求解对周转轮系进行简化
寻找两种轮系的联系
例3:z1= z2 =z3
分类
周
转
轮
系
混
合
轮
系
精密仪器与机械学系 设计工程研究所
5.1.1 定轴轮系(Ordinary Gear Train)
运转中所有齿轮的轴心线不动的轮系—定轴 轮系(普通轮系)
精密仪器与机械学系 设计工程研究所
5.1.2 周转轮系(Planetary Gear Train)
至少有一个齿轮的轴线绕另一齿轮的轴心线回转
精密仪器与机械学系 设计工程研究所
轮系的类型??
定轴轮系
精密仪器与机械学系 设计工程研究所
按周转轮系中基本构件的不同分类 ➢2K-H型
单排
双排
2K-H型周转轮系
➢3K型
精密仪器与机械学系 设计工程研究所
基本构件是3个中心轮,系杆H只起支承作用
精密仪器与机械学系 设计工程研究所
5.1.3 混合轮系(Composite Gear Train) 定轴轮系 + 周转轮系
系杆H与中心轮1转向相同
精密仪器与机械学系 设计工程研究所
例2 已知:z148, z248, z2' 18, z324,
n1250r/m in, n3100r/m in,
转向如图所示。试求 n H 大小和方向。
i1H 3 nn13H H
n1nH n3nH
z2z3 z1z2'
4824 4 4818 3
中心轮1、3
行星轮2
差动轮系
系杆H
(F =2)
3’— 3 1’— 1
封闭
(F =1)
封闭差动轮系
周转轮系1
精密仪器与机械学系 设计工程研究所
周转轮系2
周转轮系1 + 周转轮系2
混合轮系
精密仪器与机械学系 设计工程研究所
轮系类型??
精密仪器与机械学系 设计工程研究所
周转轮系
混和轮系
定轴轮系
精密仪器与机械学系 设计工程研究所
n 1 2 5 0 r /m in , n 3 1 0 0 r /m in ,
nH375050 r/min
系杆H的转向与齿轮1相同,与齿轮3相反。
精密仪器与机械学系 设计工程研究所
注意
➢ 计算过程的正负号; ➢ 空间轮系的问题。
精密仪器与机械学系 设计工程研究所
5.2.3 混合轮系的传动比
i15i12 i2'3 i34 i45zz12zz23'zz43zz54
精密仪器与机械学系 设计工程研究所
i1k 1 k (1)m所 所 有 有 从 主 动 动 齿 齿 轮 轮 齿 齿 数 数 连 连 乘 乘 积 积
m外 啮 合 齿 轮 对 数
齿轮转向?
i15
z2 z3 z4 z5 z1z2' z3 z4