(完整版)定弦定角最值问题(含答案)

合集下载

定隐圆之弦定角最值问题

定隐圆之弦定角最值问题

定弦定角最值问题【定弦定角题型的识别】有一个定弦,一个主动点,一个从动点,定弦所对的张角固定不变。

【题目类型】图形中一般求一个从动点到一个定点线段长度最值问题,一般涉及定弦定角最值问题【解题原理】同弧所对的圆周角相等,定弦的同侧两个圆周角相等,则四点共圆,因此动点的轨迹是圆。

(线段同侧的两点对线段的张角相等,则这两点以及线段的两个端点共圆。

)【一般解题步骤】①让主动点动一下,观察从动点的运动轨迹,发现从动点的运动轨迹是一段弧。

②寻找不变的张角(这个时候一般是找出张角的补角,这个补角一般为45°、60°或者一个确定的三角函数的对角等)③找张角所对的定弦,根据三点确定隐形圆。

④确定圆心位置,计算隐形圆半径。

⑤求出隐形圆圆心至所求线段定点的距离。

⑥计算最值:在此基础上,根据点到圆的距离求最值(最大值或最小值)。

1.(2016·新观察四调模拟1)如图,△ABC中,AC=3,BC=24,∠ACB=45°,D为△ABC内一动点,⊙O为△ACD的外接圆,直线BD交⊙O于P点,交BC 于E点,弧AE=CP,则AD的最小值为()A.1 B.2 C.2D.241-42.如图,AC=3,BC=5,且∠BAC=90°,D为AC上一动点,以AD为直径作圆,连接BD交圆于E点,连CE,则CE的最小值为()16A.213-B.213+C.5 D.93.(2015·江汉中考模拟1)如图,在△ABC中,AC=3,BC=24,∠ACB=45°,AM∥BC,点P在射线AM上运动,连BP交△APC的外接圆于D,则AD的最小值为()A.1 B.2 C.2D.34-24.如图,⊙O 的半径为2,弦AB 的长为32,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的面积的最大值是( )A .3612+B .336+C .3312+D .346+5.如图,⊙O 的半径为1,弦AB =1,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的最大面积是( )A .21B .22C .23D .436.如图,A (1,0)、B (3,0),以AB 为直径作⊙M ,射线OF 交⊙M 于E 、F 两点,C 为弧AB 的中点,D 为EF 的中点.当射线绕O 点旋转时,CD 的最小值为__________7.如图,AB是⊙O的直径,AB=2,∠ABC=60°,P是上一动点,D是AP的中点,连接CD,则CD的最小值为__________。

隐圆模型---定弦定角【模型专题】(含答案解析)

隐圆模型---定弦定角【模型专题】(含答案解析)
【详解】解:如图,连接CE,ห้องสมุดไป่ตู้
∴∠CED=∠CEB=90°,
∴点E在以BC为直径的⊙Q上,
∵BC=4,
∴QC=QE=2,
当点Q、E、A共线时AE最小,
∵AC=10,
∴AQ= = ,
∴AE=AQ−QE= ,
∴AE的最小值为 ,
故答案为 .
【点睛】本题考查了圆周角定理和勾股定理,解决本题的关键是确定E点运动的规律,从而把问题转化为圆外一点到圆上一点的最短距离问题.
【结论3】如图所示,在 中,A,B均为定点,点P为平面内一动点,且 (或 ),则点P在以 为底,以 为腰构造 等腰 (或 )的顶点C(或 )为圆心的圆上运动.
【解题技巧】
构造隐圆
圆形中一般求一个定点到一动点线段长度的最小值问题的时候一般涉及定弦定角问题.
定弦定角解决问题的步骤:
(1)让动点动一下,观察另一个动点的运动轨迹,发现另一个动点的运动轨迹为一段弧
【答案】 ﹣2
【解析】
【详解】试题分析:如图,连接BO′、BC.在点D移动的过程中,点E在以AC为直径的圆上运动,当O′、E、B共线时,BE的值最小,最小值为O′B- O′E,利用勾股定理求出B O′即可解决问题.
点睛:本题主要考查的就是直角三角形的勾股定理以及圆的基本性质的问题,本题有一定的难度.解决本题的关键问题就是找出点E所运动的轨迹是什么,然后根据两点之间线段最短以及直角三角形的勾股定理进行求解得出答案.同学们对于解决动点问题时,首先要找出运动轨迹,然后根据题意得出最短距离.
【答案】(1)见解析;(2)见解析;(3)见解析
【解析】
【分析】(1)如图①,先作等边三角形 ,再以点 为圆心, 为半径作 ,则 与矩形 的边 , 的交点 , 即是使 的所有点 ;

(完整word版)定弦定角最值问题

(完整word版)定弦定角最值问题

定弦定角最值问题【定弦定角题型的识别】有一个定弦,一个主动点,一个从动点,定弦所对的张角固定不变。

【题目类型】图形中一般求一个从动点到一个定点线段长度最值问题,一般涉及定弦定角最值问题【解题原理】同弧所对的圆周角相等,定弦的同侧两个圆周角相等,则四点共圆,因此动点的轨迹是圆。

(线段同侧的两点对线段的张角相等,则这两点以及线段的两个端点共圆。

)【一般解题步骤】①让主动点动一下,观察从动点的运动轨迹,发现从动点的运动轨迹是一段弧。

②寻找不变的张角(这个时候一般是找出张角的补角,这个补角一般为45°、60°或者一个确定的三角函数的对角等)③找张角所对的定弦,根据三点确定隐形圆。

④确定圆心位置,计算隐形圆半径。

⑤求出隐形圆圆心至所求线段定点的距离。

⑥计算最值:在此基础上,根据点到圆的距离求最值(最大值或最小值)。

【例1】(2016 •新观察四调模拟 1)如图,△ ABC 中,AC = 3 , BC = 4J2,/ ACB = 45° D 为△ ABC 内一动点,O O 为厶ACD 的外接圆,直线 BD 交O O 于P 点,交BC 于E 点,弧AE = CP , 则AD 的最小值为( )•••/ BDC = 135 ° (定弦定角最值) 如图,当AD 过O 时,AD 有最小值 •••/ BDC = 135 ° •••/ BO'C = 90 °• △ BO C 为等腰直角三角形:丄 ACO = 45 °+ 45 °= 90 °• AO = 5又 OB = O 'C = 4 •- AD = 5 — 4 = 1【例 2】如图,AC = 3,BC = 5,且/ BAC = 90° D BD 交圆于E 点,连CE ,贝U CE 的最小值为(A . 1B . 2解:•••/ CDP = Z ACB = 45 D . . 41 4.2B .13 2C . 5169•••/ AEB = Z AED = 90 °• E 点在以AB 为直径的圆上运动 当CE 过圆心O 时,CE 有最小值为-132解:连接AE•/ AD 为O O 的直径【练】(2015 •江汉中考模拟1)如图,在△ ABC 中,AC = 3,BC = 4: 2,/ ACB = 45° AM II BC ,):丄 BDC = 135 °如图,当AD 过圆心0时,AD 有最小值 •••/ BDC = 135° •••/ BO 'C = 90° 二 O 'B = O C = 4 又/ ACO = 90°• AO = 5• AD 的最小值为 5 — 4= 1【例3】(2016 •勤学早四调模拟 1)如图,O O 的半径为2,弦AB 的长为2... 3,点P 为优弧AB 上一动点,AC 丄AP 交直线PB 于点C ,则△ ABC 的面积的最大值是(.⑼M 鞋学早呵H 權®L TU 】如图,◎◎的平栓为b 范屈的凰育2再'点尸为优那M 上一玫钛 丄ULAP 交宜线刊干点:G 刖 用I 面理的舉丈值杲:划:占臼二.y*AGG = — E .宴匣乙肋i •川匚*扎怡离最九 叮抽=7N/U 片3W 代蛊(?在①財丄.且£月血二抄,当点<?划次胡眄中点时.自E 利肋餡夏咼烧大.此01卫肿(?两梅三肃希CW ・2希+玄皿尸据XQJJ+为・6+3的,【练】(2014 •洪山区中考模拟 1)如图,OO 的半径为1, 则△ ABC 的最大面积是(22■■;■ 34C . 12 3.3D . 6 4. 3A. I2+6J3C L2+3 7JD. 6+4^/3PB 于点C , AC 丄AP 交直线【例5】如图,A(1 , 0)、B(3, 0),以AB为直径作O M,射线OF交O M于E、F两点,C为弧AB的中点,D为EF的中点•当射线绕O点旋转时,CD的最小值为 _________________J4'01//解:连接DM••• D是弦EF的中点• DM 丄EF1•点D在以A为圆心的,OM为直径的圆上运动C当CD过圆心A时,CD有最小值连接CM x__ ••• C为弧AB的中点0'、A\阿• CM 丄AB\ V /『/••• CD的最小值为.2 1【练】如图,AB是O O的直径,AB = 2,/ ABC = 60° P是上一动点,CD,贝U CD的最小值为__________•/ D为弦AP的中点• OD 丄AP•••点D在以AO为直径的圆上运动当CD过圆心O时,CD有最小值过点C作CM丄AB于M •/ OB = OC,/ ABC = 60°• △ OBC为等边三角形1•OM = -,CM2•O,c= —74练习:如图,在动点C与定长线段AB组成的△ ABC中,AB= 6 ,D是AP的中点,连接• CD的最小值为■■ 7 1解:连接ODAD丄BC于点D , BE丄AC于点E , 连接DE •当点C在运动过程中,始终有匹至,则点C到AB的距离的最大值是________________________________________________________________________________AB 22.如图,已知以BC为直径的。

定弦定角专题

定弦定角专题

定弦定角最值问题类型一、定弦定角【基本原理】如图1\⊙O中,A、B为定点,则AB为定弦,点C为优弧上任一点,在C点运动过程中则∠ACB 的度数不变⇒逆运用⇒如图2、点A、B为定点,点C为线段AB外一点,且∠ACB=θ(θ为固定值)⇒点C在以AB为弦的圆上运动(不与A、B重合)图1 图2例、如图,AB为定长,点C为线段AB外一点,且满足∠ACB=60度,请在图中画出点C的运动轨迹,简要说明作图步骤步骤1、___________________________________________________步骤2、___________________________________________________练习、1、如图,AB为定长,点C为线段AB外一点,且满足∠ACB=90度,请在图中画出点C的运动轨迹.2、如图,AB为定长,点C为线段AB外一点,且满足∠ACB=120度,请在图中画出点C的运动轨迹,3、思考:AB为定长,点C为线段AB外一点,且满足∠ACB=30°,45°,60°,90°,120°,135°,150°,时如何画出点C的运动轨迹。

【实战应用】 一、90°应用例1、如图,AC =3,BC =5,且∠BAC =90°,D 为AC 上一动点,以AD 为直径作圆,连接BD 交圆于E 点,连CE ,则CE 的最小值为( ) A .213- B .213+C .5D .9162、如图,已知在RT △ABC 中,∠ACB=90°,AC=2,BC=5,点D 是BC 边上的动点,连结AD ,以CD 为直径的圆交AD 于点E ,则BE 的最小值为 。

3、如图,在△ABC 中,∠ACB =90°.P 是BC 边上一动点,以PC 为直径作⊙O ,连结AP 交⊙O 于点Q ,连结BQ ,点P 从点B 出发,沿BC 方向运动,当点P 到达点C 时,点P 停止运动.在整个运动过程中,线段BQ 的大小变化情况是( ) A. 一直增大 B. 一直减小 C. 先增大后减小 D. 先减小后增大4、如图,在Rt ⊿ABC 中,∠BAC=90º,AB=AC ,BC=42,点D 是AC 边上一动点,连接BD ,以AD 为直径的圆交BD 于E ,连接CE ,则线段CE 长的最小值为 .例5、如图,A(1,0)、B(3,0),以AB 为直径作⊙M ,射线OF 交⊙M 于E 、F 两点,C 为弧AB 的中点,D 为EF 的中点.当射线绕O 点旋转时,CD 的最小值为__________6、如图,AB 是⊙O 的直径,AB =2,∠ABC =60°,P 是上一动点,D 是AP 的中点,连接CD ,则CD 的最小值为__________7、如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE =DF .连接CF 交BD 于G , 连接BE 交AG 于点H .若正方形的边长为2,则线段DH长度的最小值是__________第2题图 第3题图 第6题图 第5题图 第4题图 第7题图8、如图,△ABC 是边长为2的等边三角形,D 是边BC 上的动点,BE ⊥AD 于E ,则CE 的最小值为___________9、如图,Rt △ABC 中,AB ⊥BC ,AB=6,BC=4,P 是△ABC 内部的一个动点,且满足∠PAB=∠PBC ,则线段CP 长的最小值为_________二、60°、30°应用例1、如图,边长为3的等边△ABC ,D 、E 分别为边BC 、AC 上的点,且BD =CE ,AD 、BE 交于P 点,则CP 的最小值为_________2、如图,⊙O 的半径为2,弦AB 的长为32,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的面积的最大值是( ) A .3612+B .336+C .3312+D .346+3、如图,⊙O 的半径为1,弦AB =1,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的最大面积是( )A .21B .22C .23D .434、如图,在⊙O 中,弦AD 等于半径,B 为优弧AD 上的一动点,等腰△ABC 的底边BC 所在直线经过点D ,若⊙O 的半径为1,则OC 的长不可能为( ) A. 2-3 B.3-1 C.2 D. 3+1第9题图第8题图第2题图第1题图第3题图三、45°应用例1、如图,△ABC 中,AC =3,BC =24,∠ACB =45°,D 为△ABC 内一动点,⊙O 为△ACD 的外接圆,直线BD 交⊙O 于P 点,交BC 于E 点,弧AE =CP ,则AD 的最小值为( ) A .1 B .2 C .2D .2441-2、如图,在△ABC 中,AC =3,BC =24,∠ACB =45°,AM ∥BC ,点P 在射线AM 上运动,连BP 交△APC 的外接圆于D ,则AD 的最小值为( ) A .1 B .2 C .2D .324-3、如图,已知以BC 为直径的⊙O ,A 为BC 中点,P 为AC 上任意一点,AD ⊥AP 交BP 于D ,连CD .若BC =8,则CD 的最小值为___________4、 如图,边长为2的正方形ABCD 中,F 为CD 上一动点,E 为AF 上一点,且BE=BA, ∠CBE 的角平分线交AF 的延长线于点G ,则G 到CD 距离的最大值为 .5、如图,在动点C 与定长线段AB 组成的△ABC 中,AB =6,AD ⊥BC 于点D ,BE ⊥AC 于点E ,连接DE .当点C 在运动过程中,始终有22DE =AB ,则点C 到AB 的距离的最大值是_________ .AC例1、如图,∠XOY = 45°,一把直角三角尺ABC的两个顶点A、B分别在OX、OY上移动,其中AB = 10,那么点O到顶点A的距离最大值为_______点O到AB的距离的最大值为______【分析】:题意中AB为定长线段在角的两边滑动,O为定点,滑动中C为动点,AB两点位置发生变化,点O到AB距离的最大值的确定有难度,若改变思路,借助物理中运动的相对性可知,若将△ABC固定,将∠XOY的两边绕AB滑动,与原题中运动效果等价,题目中数量关系不会发生改变。

定弦定角最值问题(教师版)

定弦定角最值问题(教师版)

定弦定角最值问题(答案版) 【例1】(2016·新观察四调模拟1)如图,△ABC 中,AC =3,BC =24,∠ACB =45°,D 为△ABC 内一动点,⊙O 为△ACD 的外接圆,直线BD 交⊙O 于P 点,交BC 于E 点,弧AE =CP ,则AD 的最小值为( )A .1B .2C .2D .2441-解:∵∠CDP =∠ACB =45°∴∠BDC =135°(定弦定角最值)如图,当AD 过O ′时,AD 有最小值∵∠BDC =135°∴∠BO ′C =90°∴△BO ′C 为等腰直角三角形∴∠ACO ′=45°+45°=90°∴AO ′=5又O ′B =O ′C =4∴AD =5-4=1【例2】如图,AC =3,BC =5,且∠BAC =90°,D 为AC 上一动点,以AD 为直径作圆,连接BD 交圆于E 点,连CE ,则CE 的最小值为( )A .213-B .213+C .5D .916解:连接AE∵AD 为⊙O 的直径∴∠AEB =∠AED =90°∴E 点在以AB 为直径的圆上运动当CE 过圆心O ′时,CE 有最小值为213-【练】(2015·江汉中考模拟1)如图,在△ABC 中,AC =3,BC =24,∠ACB =45°,AM ∥BC ,点P 在射线AM 上运动,连BP 交△APC 的外接圆于D ,则AD 的最小值为( )A .1B .2C .2D .324-解:连接CD∴∠P AC =∠PDC =∠ACB =45°∴∠BDC =135°如图,当AD 过圆心O ′时,AD 有最小值∵∠BDC =135°∴∠BO ′C =90°∴O ′B =O ′C =4又∠ACO ′=90°∴AO ′=5 ∴AD 的最小值为5-4=1【例3】(2016·勤学早四调模拟1)如图,⊙O 的半径为2,弦AB 的长为32,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的面积的最大值是( )A .3612+B .336+C .3312+D .346+【练】(2014·洪山区中考模拟1)如图,⊙O 的半径为1,弦AB =1,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的最大面积是( )A .21 B .22 C .23 D .43【例5】如图,A (1,0)、B (3,0),以AB 为直径作⊙M ,射线OF 交⊙M 于E 、F 两点,C 为弧AB 的中点,D 为EF 的中点.当射线绕O 点旋转时,CD 的最小值为__________解:连接DM∵D 是弦EF 的中点∴DM ⊥EF∴点D 在以A 为圆心的,OM 为直径的圆上运动当CD 过圆心A 时,CD 有最小值连接CM∵C 为弧AB 的中点∴CM ⊥AB∴CD 的最小值为12【练】如图,AB 是⊙O 的直径,AB =2,∠ABC =60°,P 是上一动点,D 是AP 的中点,连接CD ,则CD 的最小值为__________解:连接OD∵D 为弦AP 的中点∴OD ⊥AP∴点D 在以AO 为直径的圆上运动当CD 过圆心O ′时,CD 有最小值过点C 作CM ⊥AB 于M∵OB =OC ,∠ABC =60°∴△OBC 为等边三角形∴OM =21,CM =23∴O ′C =47 ∴CD 的最小值为2147-练习:如图,在动点C 与定长线段AB 组成的△ABC 中,AB =6,AD ⊥BC 于点D ,BE ⊥AC 于点E ,连接DE .当点C 在运动过程中,始终有22=AB DE ,则点C 到AB 的距离的最大值是_________。

中考数学专题复习-定弦定角最值问题.doc

中考数学专题复习-定弦定角最值问题.doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】九年级讲义:定弦定角最值问题【例1】如图,△ABC中,AC=3,BC=24,∠ACB=45°,D为△ABC内一动点,⊙O为△ACD 的外接圆,直线BD交⊙O于P点,交BC于E点,弧AE=CP,则AD的最小值为()【例2】如图,AC=3,BC=5,且∠BAC=90°,D为AC上一动点,以AD为直径作圆,连接BD交圆于E点,连CE,则CE的最小值为()【练】如图,在△ABC中,AC=3,BC=24,∠ACB=45°,AM∥BC,点P在射线AM上运动,连BP交△APC的外接圆于D,则AD的最小值为()【例3】如图,⊙O的半径为2,弦AB的长为32,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的面积的最大值是()【练】如图,⊙O的半径为1,弦AB=1,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的最大面积是()【例4】如图,边长为3的等边△ABC ,D 、E 分别为边BC 、AC 上的点,且BD =CE ,AD 、BE 交于P 点,则CP 的最小值为_________【例5】如图,A(1,0)、B(3,0),以AB 为直径作⊙M ,射线OF 交⊙M 于E 、F 两点,C 为弧AB 的中点,D 为EF 的中点.当射线绕O 点旋转时,CD 的最小值为__________【练】如图,AB 是⊙O 的直径,AB =2,∠ABC =60°,P 是上一动点,D 是AP 的中点,连接CD ,则CD 的最小值为__________针对练习:1.如图,在动点C 与定长线段AB 组成的△ABC 中,AB =6,AD ⊥BC 于点D ,BE ⊥AC 于点E ,连接DE .当点C 在运动过程中,始终有22AB DE ,则点C 到AB 的距离的最大值是_________ABCDP2.如图,已知以BC为直径的⊙O,A为BC中点,P为AC上任意一点,AD⊥AP交BP于D,连CD.若BC=8,则CD的最小值为___________定角、定线段与定圆问题主要是体现在题目中出现了固定度数的角对着固定长度的线段时隐含着一个固定大小的圆,此时定线段为隐圆的一条弦,定角为弦所对的一个圆周角,借助隐圆来分析问题极其方便,关键是要先发现隐含着的特殊度数的角。

2022年中考专题讲义:定弦定角最值问题(学生版+解析版)

2022年中考专题讲义:定弦定角最值问题(学生版+解析版)

中考专题讲义:定弦定角最值问题(学生版)【例1】如图,△ABC 中,AC =3,BC =24,∠ACB =45°,D 为△ABC 内一动点,⊙O 为△ACD 的外接圆,直线BD 交⊙O 于P 点,交BC 于E 点,弧AE =CP ,则AD 的最小值为( )A .1B .2C .2D .2441-【例2】如图,AC =3,BC =5,且∠BAC =90°,D 为AC 上一动点,以AD 为直径作圆,连接BD 交圆于E 点,连CE ,则CE 的最小值为( )A .213-B .213+C .5D .916【练】如图,在△ABC 中,AC =3,BC =24,∠ACB =45°,AM ∥BC ,点P 在射线AM 上运动,连BP 交△APC 的外接圆于D ,则AD 的最小值为( )A .1B .2C .2D .324-【例3】如图,⊙O 的半径为2,弦AB 的长为32,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的面积的最大值是( )A .3612+B .336+C .3312+D .346+【练】如图,⊙O 的半径为1,弦AB =1,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的最大面积是( )A .21B .22C .23D .43【例4】如图,边长为3的等边△ABC ,D 、E 分别为边BC 、AC 上的点,且BD =CE ,AD 、BE 交于P 点,则CP 的最小值为_________【例5】如图,A (1,0)、B (3,0),以AB 为直径作⊙M ,射线OF 交⊙M 于E 、F 两点,C 为弧AB 的中点,D 为EF 的中点.当射线绕O 点旋转时,CD 的最小值为__________C PED CB A【练】如图,AB 是⊙O 的直径,AB =2,∠ABC =60°,P 是上一动点,D 是AP 的中点,连接CD ,则CD 的最小值为__________针对练习:1.如图,在动点C 与定长线段AB 组成的△ABC 中,AB =6,AD ⊥BC 于点D ,BE ⊥AC 于点E ,连接DE .当点C 在运动过程中,始终有22 AB DE ,则点C 到AB 的距离的最大值是_________2.如图,已知以BC 为直径的⊙O ,A 为BC 中点,P 为AC 上任意一点,AD ⊥AP 交BP 于D ,连C D .若BC =8,则CD 的最小值为___________BA BO B中考专题讲义:定弦定角最值问题(教师版)【例1】如图,△ABC 中,AC =3,BC =24,∠ACB =45°,D 为△ABC 内一动点,⊙O 为△ACD 的外接圆,直线BD 交⊙O 于P 点,交BC 于E 点,弧AE =CP ,则AD 的最小值为( )A .1B .2C .2D .2441-【解析】:∵∠CDP =∠ACB =45°∴∠BDC =135°(定弦定角最值)如图,当AD 过O 1时,AD 有最小值∵∠BDC =135°∴∠BO 1C =90°∴△BO 1C 为等腰直角三角形∴∠ACO 1=45°+45°=90°∴AO 1=5又O 1B =O 1C =4∴AD =5-4=1【例2】如图,AC =3,BC =5,且∠BAC =90°,D 为AC 上一动点,以AD 为直径作圆,连接BD 交圆于E 点,连CE ,则CE 的最小值为( )A .213-B .213+C .5D .916解析:连接AE ,B∵AD 为⊙O 的直径∴∠AEB =∠AED =90°∴E 点在以AB 为直径的圆上运动当CE 过圆心O 1时,CE2-.【练】如图,在△ABC 中,AC =3,BC =24,∠ACB =45°,AM ∥BC ,点P 在射线AM 上运动,连BP 交△APC 的外接圆于D ,则AD 的最小值为( )A .1B .2C .2D .324-解析:连接CD∴∠P AC =∠PDC =∠ACB =45°∴∠BDC =135°如图,当AD 过圆心O 1时,AD 有最小值∵∠BDC =135°∴∠BO 1C =90°∴O 1B =O 1C =4又∠ACO 1=90°∴AO 1=5∴AD 的最小值为5-4=1【例3】如图,⊙O 的半径为2,弦AB 的长为32,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的面积的最大值是( )A .3612+B .336+C .3312+D .346+答案:B.解析:构造直径BE ,连接AE ,易求∠E =60°=∠P ,∴∠C =30°,要使△ABC 的面积最大,则点C 到AB 的距离最大,∵AB =ACB =30°,∴点C 在⊙M 上,且∠AMB =60°,当点C 为优弧AB 的中点时,点C 到AB 的距离最大,此时△ABC 为等腰三角形,CN =3,S △ABC =12×3)=6+【练】如图,⊙O 的半径为1,弦AB =1,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的最大面积是( )A .21B .22C .23D .43答案:D.解析:连OA 、OB ,依题意易知△ABO 为正三角,∴∠O =60°,即∠P =30°,又AP ⊥AC ,即∠C =60°,构过A 、B 、C 三点的圆,即C 点在优弧AB 上,∴当C 点为优弧AB 的中点时,△ABC.C【例4】如图,边长为3的等边△ABC ,D 、E 分别为边BC 、AC 上的点,且BD =CE ,AD 、BE 交于P 点,则CP 的最小值为_________解析:如图,AB =3,∠APB =120°,CP【例5】如图,A (1,0)、B (3,0),以AB 为直径作⊙M ,射线OF 交⊙M 于E 、F 两点,C 为弧AB 的中点,D 为EF 的中点.当射线绕O 点旋转时,CD 的最小值为__________【解析】:连接DM .∵D 是弦EF 的中点,∴DM ⊥EF ,∴点D 在以A 为圆心的,OM 为直径的圆上运动;当CD 过圆心A 时,CD 有最小值,连接CM ,∵C 为弧AB 的中点.∴CM ⊥AB ,∴CD1 .【练】如图,AB 是⊙O 的直径,AB =2,∠ABC =60°,P 是上一动点,D 是AP 的中点,连接CD ,则CD 的最小值为__________PED CB A解析:连接OD ,∵D 为弦AP 的中点∴OD ⊥AP∴点D 在以AO 为直径的圆上运动,当CD 过圆心O 1时,CD 有最小值,过点C 作CM ⊥AB 于M ,∵OB =OC ,∠ABC =60°,∴△OBC 为等边三角形,∴OM =12,CM,∴O 1C. ∴CD12.针对练习:1.如图,在动点C 与定长线段AB 组成的△ABC 中,AB =6,AD ⊥BC 于点D ,BE ⊥AC 于点E ,连接DE .当点C 在运动过程中,始终有22=AB DE ,则点C 到AB 的距离的最大值是_________解析:连OE 、O D .∵DE AB ,∴∠DOE =90°,即∠CBE =45°, 又BE ⊥AC ,∴∠C =45°,又AB =6,构过点A 、B 、C 三点的⊙O 1,BAA BB则点C一定在优弧AB上,故当C为优弧AB的中点时,C到AB的距离最大,其值为3+.2.如图,已知以BC为直径的⊙O,A为BC中点,P为AC上任意一点,AD⊥AP交BP于D,连C D.若BC=8,则CD的最小值为___________【解析】:连OE、OD,∵BC为直径的⊙O,且A为BC中点,∴∠P=45°,又AP⊥AD,∴∠ADP=45°,即∠ADB=135°,又AB=A、B、D的圆弧,即优弧AB,设其对应圆的圆心为O1,连C O1,则CD的最小值为:-3.O。

专题3、中考辅助圆问题之定弦定角最值问题

专题3、中考辅助圆问题之定弦定角最值问题

隐圆再现--定弦定角问题【知识要点】若固定线段AB所对动角∠P为定值,则点P运动轨迹为过A、B、P三点的圆。

备注:点P在优弧、劣弧上运动皆可。

原理:同弧所对的圆周角相等;同弧所对的圆周角等于圆心角的一半。

请在上方后面的图形中找到圆心。

【解题技巧】解题技巧:构造隐圆圆形中一般求一个定点到一动点线段长度的最小值问题的时候一般涉及定弦定角问题。

定弦定角解决问题的步骤:(1)让动点动一下,观察另一个动点的运动轨迹,发现另一个动点的运动轨迹为一段弧(2)找不变的张角(这个时候一般是找出张角的补角),(这个补角一般为60︒、45︒)(3)找张角所对的定弦,根据三点确定隐形圆,确定圆心位置(4)计算隐形圆的半径(5)圆心与所求线段上定点的距离可以求出来(6)最小值等于圆心到定点之间的距离减去半径【例题讲解】例题1、如图,∠O的半径为1,弦AB﹦1,点P为优弧AB上一动点,AC⊥AP交直线PB 于点C,则△ABC的最大面积为.例题2、在平面直角坐标系中,已知点A(4,0)、B(﹣6,0),点C是y轴上的一个动点,当∠BCA﹦45°,点C的坐标为.训练2、如图所示,在平面直角坐标系中,抛物线y 83 x2 3x 6 3 的顶点为A,并与x 轴正半轴交于点B,在y 轴上存在点C,使∠ACB=30°. 则点C 的坐标是______例题3、如图,∠ABC,∠EFG均是边长为2的等边三角形,当D是边BC、EF的中点,直线AG、FC相交于点M.当∠EFG绕点D旋转时,线段BM长的最大值为.训练3、如图,以G (0,1)为圆心,半径为2的圆与x 轴交于A 、B 两点,与y 轴交于C 、D 两点,点E 为∠G 上一动点,CF ∠AE 于F .若点E 从在圆周上运动一周,则点F 所经过的路径长为 .【及时训练】1、如图,△ABC 中,AC =3,BC =24,∠ACB =45°,D 为△ABC 内一动点,⊙O 为△ACD 的外接圆,直线BD 交⊙O 于P 点,交BC 于E 点,弧AE =CP ,则AD 的最小值为( )A .1B .2C .2D .2441-2、如图,在△ABC 中,AC =3,BC =24,∠ACB =45°,AM ∥BC ,点P 在射线AM 上运动,连BP 交△APC 的外接圆于D ,则AD 的最小值为( )A .1B .2C .2D .324-3、如图,⊙O 的半径为2,弦AB 的长为32,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的面积的最大值是( )A .3612+B .336+C .3312+D .346+【课堂总结】1.2.3.4.【课上练习】1、如图,边长为3的等边△ABC,D、E分别为边BC、AC上的点,且BD=CE,AD、BE交于P点,则CP的最小值为_________2、如图,A(1,0)、B(3,0),以AB为直径作⊙M,射线OF交⊙M于E、F两点,C为弧AB的中点,D为EF的中点.当射线绕O点旋转时,CD的最小值为__________3、如图,AB是⊙O的直径,AB=2,∠ABC=60°,P是上一动点,D是AP的中点,连接CD,则CD的最小值为__________4.如图,已知以BC 为直径的⊙O ,A 为BC 中点,P 为AC 上任意一点,AD ⊥AP 交BP 于D ,连CD .若BC =8,则CD 的最小值为___________【真题再现】1.如图,在动点C 与定长线段AB 组成的△ABC 中,AB =6,AD ⊥BC 于点D ,BE ⊥AC 于点E ,连接DE .当点C 在运动过程中,始终有22 AB DE ,则点C 到AB 的距离的最大值是_________2.如图,∠MON =90°,矩形ABCD 的顶点A 、B 分别在边OM 、ON 上运动,且形状和大小保持不变,其中AB =4,BC =3.(1)当∠OAB =45°时,OA 的长为 ;(2)连接AC ,当AC ∥ON 时,求OA 的长;(3)设AB 边的中点为E ,分别求出OA 、OB 、OC 、OD 、OE 在运动过程中的长度变化范围.A C3.如图,已知∠MON=45°,矩形ABCD的顶点A、D分别是边OM、ON边上的动点,且AD=4,AB=2,则OB长的最大值为.2,以DE为边4,如图,点D和点E是等腰直角三角形ABC的边AC和AB上的点,且DE=2向外作正方形DEFG,则AF的最大值是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定弦定角最值问题
【定弦定角题型的识别】
有一个定弦,一个主动点,一个从动点,定弦所对的张角固定不变。

【题目类型】
图形中一般求一个从动点到一个定点线段长度最值问题,一般涉及定弦定角最值问题
【解题原理】
同弧所对的圆周角相等,定弦的同侧两个圆周角相等,则四点共圆,因此动点的轨迹是圆。

(线段同侧的两点对线段的张角相等,则这两点以及线段的两个端点共圆。


【一般解题步骤】
①让主动点动一下,观察从动点的运动轨迹,发现从动点的运动轨迹是一段弧。

②寻找不变的张角(这个时候一般是找出张角的补角,这个补角一般为45°、60°或者一个确定的三角函数的对角等)
③找张角所对的定弦,根据三点确定隐形圆。

④确定圆心位置,计算隐形圆半径。

⑤求出隐形圆圆心至所求线段定点的距离。

⑥计算最值:在此基础上,根据点到圆的距离求最值(最大值或最小值)。

【例1】(2016·新观察四调模拟1)如图,△ABC 中,AC =3,BC =24,∠ACB =45°,D 为△ABC 内一动点,⊙O 为△ACD 的外接圆,直线BD 交⊙O 于P 点,交BC 于E 点,弧AE =CP ,则AD 的最小值为( )
A .1
B .2
C .2
D .2441-
解:∵∠CDP =∠ACB =45°
∴∠BDC =135°(定弦定角最值)
如图,当AD 过O ′时,AD 有最小值
∵∠BDC =135°
∴∠BO ′C =90°
∴△BO ′C 为等腰直角三角形
∴∠ACO ′=45°+45°=90°
∴AO ′=5
又O ′B =O ′C =4
∴AD =5-4=1
【例2】如图,AC =3,BC =5,且∠BAC =90°,D 为AC 上一动点,以AD 为直径作圆,连接BD 交圆于E 点,连CE ,则CE 的最小值为( )
A .213-
B .213+
C .5
D .9
16
解:连接AE
∵AD 为⊙O 的直径
∴∠AEB =∠AED =90°
∴E 点在以AB 为直径的圆上运动
当CE 过圆心O ′时,CE 有最小值为213-
【练】(2015·江汉中考模拟1)如图,在△ABC 中,AC =3,BC =24,∠ACB =45°,AM ∥BC ,点P 在射线AM 上运动,连BP 交△APC 的外接圆于D ,则AD 的最小值为( )
A .1
B .2
C .2
D .324-
解:连接CD
∴∠P AC =∠PDC =∠ACB =45°
∴∠BDC =135°
如图,当AD 过圆心O ′时,AD 有最小值
∵∠BDC =135°
∴∠BO ′C =90°
∴O ′B =O ′C =4
又∠ACO ′=90°
∴AO ′=5
∴AD 的最小值为5-4=1
【例3】(2016·勤学早四调模拟1)如图,⊙O 的半径为2,弦AB 的长为32,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的面积的最大值是( )
A .3612+
B .336+
C .3312+
D .346+
【练】(2014·洪山区中考模拟1)如图,⊙O 的半径为1,弦AB =1,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的最大面积是( )
A .
21 B .22 C .
2
3 D .43
【例5】如图,A (1,0)、B (3,0),以AB 为直径作⊙M ,射线OF 交⊙M 于E 、F 两点,C 为弧AB 的中点,D 为EF 的中点.当射线绕O 点旋转时,CD 的最小值为__________
解:连接DM
∵D 是弦EF 的中点
∴DM ⊥EF
∴点D 在以A 为圆心的,OM 为直径的圆上运动
当CD 过圆心A 时,CD 有最小值
连接CM
∵C 为弧AB 的中点
∴CM ⊥AB
∴CD 的最小值为12-
【练】如图,AB 是⊙O 的直径,AB =2,∠ABC =60°,P 是上一动点,D 是AP 的中点,连接CD ,则CD 的最小值为__________
解:连接OD
∵D 为弦AP 的中点
∴OD ⊥AP
∴点D 在以AO 为直径的圆上运动
当CD 过圆心O ′时,CD 有最小值
过点C 作CM ⊥AB 于M
∵OB =OC ,∠ABC =60°
∴△OBC 为等边三角形
∴OM =21,CM =23 ∴O ′C =4
7 ∴CD 的最小值为2147-。

相关文档
最新文档