定弦定角最值问题(教师版)

合集下载

线段最值系列之(一)——定弦定角,定最值

线段最值系列之(一)——定弦定角,定最值

线段最值系列之(一)——定弦定角,定最值一条线段的两个端点和该线段外一动点构成的角(动点是角的顶点),不随点的运动而变化,即该动角的度数恒定不变,称为“定弦定角”问题。

该线段称“定弦”,该运动的定值角称“定角”。

先复习两个基础知识点知识点1、如下图,(1)以AB为直径的⊙O上有一动点,则∠APB恒为90°,反之,当∠APB=90°时,点P一定在以AB为直径的圆上。

(2)如下图,在⊙O外有一点C,则点C到⊙O上点的最小距离和最大距离的确定:过点C与圆心O的线与圆的两个交点,如图,即CP长为最小值,CE长为最大值。

知识点2、如下图,(1)在⊙O中,弦CD一定时,则该弦所对劣弧(或优弧)上的圆周角∠CTD就一定;反之,当∠CTD为一定值时,点T一定在以CD为弦的圆上。

(2)如下图,在⊙O外有一点A,射线AO与圆的交点分别为点T和点E,则点A到圆的最小距离是AT的长,最大距离是AE的长。

下面,以两道典型例题来说明定弦定角在解一类线段最值题目中的应用。

例1:如图,在Rt△ABC ,∠ABC=90° ,AB=4, BC=6 ,P是△ABC 内部的一个动点,且满足∠PAB=∠PBC , 则线段CP的长度的最小值是 .(您的点赞,就是给予作者一份信心,别忘了,给作者一个鼓励,点个赞哦!)下面还有,继续……变式练习:如图,在Rt△ABC ,∠ABC=90° ,AB=4,BC=6, P是△ABC所在平面上的一个动点,且满足∠APB=90° , 则线段CP长度的取值范围是 .例2:如图,已知点E , F为等边△ABC边AB 、AC上的两动点,且AF=BE ,:连接CE , BF交于点T, 若等边△ABC的边长为6 ,则AT的长度的最小值是 .。

定隐圆之弦定角最值问题

定隐圆之弦定角最值问题

定弦定角最值问题【定弦定角题型的识别】有一个定弦,一个主动点,一个从动点,定弦所对的张角固定不变。

【题目类型】图形中一般求一个从动点到一个定点线段长度最值问题,一般涉及定弦定角最值问题【解题原理】同弧所对的圆周角相等,定弦的同侧两个圆周角相等,则四点共圆,因此动点的轨迹是圆。

(线段同侧的两点对线段的张角相等,则这两点以及线段的两个端点共圆。

)【一般解题步骤】①让主动点动一下,观察从动点的运动轨迹,发现从动点的运动轨迹是一段弧。

②寻找不变的张角(这个时候一般是找出张角的补角,这个补角一般为45°、60°或者一个确定的三角函数的对角等)③找张角所对的定弦,根据三点确定隐形圆。

④确定圆心位置,计算隐形圆半径。

⑤求出隐形圆圆心至所求线段定点的距离。

⑥计算最值:在此基础上,根据点到圆的距离求最值(最大值或最小值)。

1.(2016·新观察四调模拟1)如图,△ABC中,AC=3,BC=24,∠ACB=45°,D为△ABC内一动点,⊙O为△ACD的外接圆,直线BD交⊙O于P点,交BC 于E点,弧AE=CP,则AD的最小值为()A.1 B.2 C.2D.241-42.如图,AC=3,BC=5,且∠BAC=90°,D为AC上一动点,以AD为直径作圆,连接BD交圆于E点,连CE,则CE的最小值为()16A.213-B.213+C.5 D.93.(2015·江汉中考模拟1)如图,在△ABC中,AC=3,BC=24,∠ACB=45°,AM∥BC,点P在射线AM上运动,连BP交△APC的外接圆于D,则AD的最小值为()A.1 B.2 C.2D.34-24.如图,⊙O 的半径为2,弦AB 的长为32,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的面积的最大值是( )A .3612+B .336+C .3312+D .346+5.如图,⊙O 的半径为1,弦AB =1,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的最大面积是( )A .21B .22C .23D .436.如图,A (1,0)、B (3,0),以AB 为直径作⊙M ,射线OF 交⊙M 于E 、F 两点,C 为弧AB 的中点,D 为EF 的中点.当射线绕O 点旋转时,CD 的最小值为__________7.如图,AB是⊙O的直径,AB=2,∠ABC=60°,P是上一动点,D是AP的中点,连接CD,则CD的最小值为__________。

(完整版)定弦定角最值问题(教师版)

(完整版)定弦定角最值问题(教师版)

定弦定角最值问题(答案版)【例1】(2016 •新观察四调模拟1)如图,△ABC中,AC = 3 , BC = 4J2,/ ACB = 45° D为△ABC内一动点,O O ACD的外接圆,直线BD交O O于P点,交BC于E点,弧AE= CP, 则AD的最小值为()解:J/ CDP = Z ACB = 45°•••/ BDC = 135 ° (定弦定角最值)如图,当AD过O时,AD有最小值•••/ BDC = 135 °•••/ BO'C = 90 °•△ BO C为等腰直角三角形.•./ ACO = 45 °+ 45 °= 90 °•AO = 5又OB = O'C= 4•- AD = 5 —4 = 1【例2】如图,AC = 3,BC = 5,且/ BAC = 90° D为AC上一动点,以AD为直径作圆,连接当CE过圆心O时,CE有最小值为-J3 2BD交圆于E点,连CE,贝U CE的最小值为()169解:连接AE•/ AD为O O的直径•••/ AEB = / AED = 90 °•E点在以AB为直径的圆上运动C. .2D. ,414 2A. 1B. 21)如图,在△ ABC 中,AC = 3,BC = 4 . 2,/ ACB = 45° AM IIBC ,点P 在射线AM 上运动,连 BP 交厶APC 的外接圆于 D ,则AD 的最小值为()A . 1 ■_W【练】(2015 •江汉中考模拟-.oAB4..3c交aB 223 *0CD2B . 6 33 A . 12 6,3C . 12 3.3D . 6 A.-啕诂目隹丹丘it 按丿E 易汞丄片虾・圧戸二上*虾・宴罠厶乂肚的叢丸丽希 则点芒駆腼閉壯\ AB=1^, ^ACB=XT,R^AMB =<M *・当^c^t^jsfn 中屯肘* 点闭肋睡琥大.此01氐册?两梅三甸肪CV2樁+玄皿L*X2括X (2』J"・&+M ,放说3,【练】(2014 •洪山区中考模拟 1)如图,O O 的半径为1,弦AB = 1,点P 为优弧AB 上一动点,••• AD 的最小值为 5 — 4= 1 % /■…/【例3】(2016 •勤学早四调模拟 1)如图,O O 的半径为2,弦AB 的长为2... 3,点P 为优弧上一动点,AC 丄AP 交直线PB 于点C ,则△ ABC 的面积的最大值是(.⑼M 救学早呵H 權H n »)才闻,®。

(完整word版)定弦定角最值问题

(完整word版)定弦定角最值问题

定弦定角最值问题【定弦定角题型的识别】有一个定弦,一个主动点,一个从动点,定弦所对的张角固定不变。

【题目类型】图形中一般求一个从动点到一个定点线段长度最值问题,一般涉及定弦定角最值问题【解题原理】同弧所对的圆周角相等,定弦的同侧两个圆周角相等,则四点共圆,因此动点的轨迹是圆。

(线段同侧的两点对线段的张角相等,则这两点以及线段的两个端点共圆。

)【一般解题步骤】①让主动点动一下,观察从动点的运动轨迹,发现从动点的运动轨迹是一段弧。

②寻找不变的张角(这个时候一般是找出张角的补角,这个补角一般为45°、60°或者一个确定的三角函数的对角等)③找张角所对的定弦,根据三点确定隐形圆。

④确定圆心位置,计算隐形圆半径。

⑤求出隐形圆圆心至所求线段定点的距离。

⑥计算最值:在此基础上,根据点到圆的距离求最值(最大值或最小值)。

【例1】(2016 •新观察四调模拟 1)如图,△ ABC 中,AC = 3 , BC = 4J2,/ ACB = 45° D 为△ ABC 内一动点,O O 为厶ACD 的外接圆,直线 BD 交O O 于P 点,交BC 于E 点,弧AE = CP , 则AD 的最小值为( )•••/ BDC = 135 ° (定弦定角最值) 如图,当AD 过O 时,AD 有最小值 •••/ BDC = 135 ° •••/ BO'C = 90 °• △ BO C 为等腰直角三角形:丄 ACO = 45 °+ 45 °= 90 °• AO = 5又 OB = O 'C = 4 •- AD = 5 — 4 = 1【例 2】如图,AC = 3,BC = 5,且/ BAC = 90° D BD 交圆于E 点,连CE ,贝U CE 的最小值为(A . 1B . 2解:•••/ CDP = Z ACB = 45 D . . 41 4.2B .13 2C . 5169•••/ AEB = Z AED = 90 °• E 点在以AB 为直径的圆上运动 当CE 过圆心O 时,CE 有最小值为-132解:连接AE•/ AD 为O O 的直径【练】(2015 •江汉中考模拟1)如图,在△ ABC 中,AC = 3,BC = 4: 2,/ ACB = 45° AM II BC ,):丄 BDC = 135 °如图,当AD 过圆心0时,AD 有最小值 •••/ BDC = 135° •••/ BO 'C = 90° 二 O 'B = O C = 4 又/ ACO = 90°• AO = 5• AD 的最小值为 5 — 4= 1【例3】(2016 •勤学早四调模拟 1)如图,O O 的半径为2,弦AB 的长为2... 3,点P 为优弧AB 上一动点,AC 丄AP 交直线PB 于点C ,则△ ABC 的面积的最大值是(.⑼M 鞋学早呵H 權®L TU 】如图,◎◎的平栓为b 范屈的凰育2再'点尸为优那M 上一玫钛 丄ULAP 交宜线刊干点:G 刖 用I 面理的舉丈值杲:划:占臼二.y*AGG = — E .宴匣乙肋i •川匚*扎怡离最九 叮抽=7N/U 片3W 代蛊(?在①財丄.且£月血二抄,当点<?划次胡眄中点时.自E 利肋餡夏咼烧大.此01卫肿(?两梅三肃希CW ・2希+玄皿尸据XQJJ+为・6+3的,【练】(2014 •洪山区中考模拟 1)如图,OO 的半径为1, 则△ ABC 的最大面积是(22■■;■ 34C . 12 3.3D . 6 4. 3A. I2+6J3C L2+3 7JD. 6+4^/3PB 于点C , AC 丄AP 交直线【例5】如图,A(1 , 0)、B(3, 0),以AB为直径作O M,射线OF交O M于E、F两点,C为弧AB的中点,D为EF的中点•当射线绕O点旋转时,CD的最小值为 _________________J4'01//解:连接DM••• D是弦EF的中点• DM 丄EF1•点D在以A为圆心的,OM为直径的圆上运动C当CD过圆心A时,CD有最小值连接CM x__ ••• C为弧AB的中点0'、A\阿• CM 丄AB\ V /『/••• CD的最小值为.2 1【练】如图,AB是O O的直径,AB = 2,/ ABC = 60° P是上一动点,CD,贝U CD的最小值为__________•/ D为弦AP的中点• OD 丄AP•••点D在以AO为直径的圆上运动当CD过圆心O时,CD有最小值过点C作CM丄AB于M •/ OB = OC,/ ABC = 60°• △ OBC为等边三角形1•OM = -,CM2•O,c= —74练习:如图,在动点C与定长线段AB组成的△ ABC中,AB= 6 ,D是AP的中点,连接• CD的最小值为■■ 7 1解:连接ODAD丄BC于点D , BE丄AC于点E , 连接DE •当点C在运动过程中,始终有匹至,则点C到AB的距离的最大值是________________________________________________________________________________AB 22.如图,已知以BC为直径的。

中考数学几何模型重点突破讲练专题28 圆中的定弦定角和最大张角模型(教师版)

中考数学几何模型重点突破讲练专题28 圆中的定弦定角和最大张角模型(教师版)
②如图②, BC BD
深入思考
(3)如图③,在 ABC 中,ห้องสมุดไป่ตู้ A 、 Ð B 、 C 均小于 120 ,用直尺和圆规作它的强等角点 Q .(不写作法,保
留作图痕迹)
(4)下列关于“等角点”、“强等角点”的说法:
①直角三角形的内心是它的等角点;
②等腰三角形的内心和外心都是它的等角点;
③正三角形的中心是它的强等角点;
故答案为:100、130 或 160.
(2)选择①:
连接 PB, PC
∵ DB DC
= DC

∴ DB
∴ BPD CPD
∵ APB BPD 180 , APC CPD 180
∴ APB APC
∴ P 是 ABC 的等角点.
选择②
连接 PB, PC
根据垂直平分线的性质和作图方法可得:BD=CD=BC
最大。
当 AQB 的外接圆与边 PE 相切于点 Q 时, AQB 最大。
'
'
'
'
【证明】如图 28-6,作 AQB 的外接圆⊙O,设点 Q 为 PE 上不同与 Q 点的任意一点,连接 Q A 、Q B ,Q A
与⊙O 交于点 D,连接 BD,
ADB AQ ' B, AQB ADB
专题 28 圆中的定弦定角和最大张角模型
【模型 1】定弦定角模型
如图 28-1,在 ABC 中,BC 的长为定值 a , A 为定角度,
(1)确定点 A 的运动轨迹,有 3 种情况:
①如图 28-2,当 90 时,点 A 的运动轨迹为优弧���(不与 B、C 点重合);
②如图 28-3,当 90 时,点 A 的运动轨迹为⊙O(不与点 B、C 重合);

初中九年级数学教案-定弦定角模型的最值问题-优秀奖

初中九年级数学教案-定弦定角模型的最值问题-优秀奖

课题:定弦定角模型的最值问题


教学过程设计
(设计意图:这道题综合性很强,包含三大类型问题:定弦定角问题,双动点最值问题,点圆之间距离最值问题,通过这道题的分析让学生掌握定弦定角模型的最值问题)
教学反思
1、本节课是九年级总复习中的“定弦定角模型的最值问题”专题,综合性很强,通过这道题的分析,让学生了解定弦定角模型,并从中找到隐形圆,这是重点和难点,也是解决这类题的关键入口
2、学生对双动点问题不熟悉,学生可以从这道题当中体验转化的思想把不熟悉的双动点问题转化为我们熟悉的单动点问题最终转化点圆距离问题
3、定弦定角模型有关问题是一个难点,学生们要学会从题目中构造出模型,以后也还要多加练习。

定弦定角最值问题(教师版)

定弦定角最值问题(教师版)

定弦定角最值问题(答案版) 【例1】(2016·新观察四调模拟1)如图,△ABC 中,AC =3,BC =24,∠ACB =45°,D 为△ABC 内一动点,⊙O 为△ACD 的外接圆,直线BD 交⊙O 于P 点,交BC 于E 点,弧AE =CP ,则AD 的最小值为( )A .1B .2C .2D .2441-解:∵∠CDP =∠ACB =45°∴∠BDC =135°(定弦定角最值)如图,当AD 过O ′时,AD 有最小值∵∠BDC =135°∴∠BO ′C =90°∴△BO ′C 为等腰直角三角形∴∠ACO ′=45°+45°=90°∴AO ′=5又O ′B =O ′C =4∴AD =5-4=1【例2】如图,AC =3,BC =5,且∠BAC =90°,D 为AC 上一动点,以AD 为直径作圆,连接BD 交圆于E 点,连CE ,则CE 的最小值为( )A .213-B .213+C .5D .916解:连接AE∵AD 为⊙O 的直径∴∠AEB =∠AED =90°∴E 点在以AB 为直径的圆上运动当CE 过圆心O ′时,CE 有最小值为213-【练】(2015·江汉中考模拟1)如图,在△ABC 中,AC =3,BC =24,∠ACB =45°,AM ∥BC ,点P 在射线AM 上运动,连BP 交△APC 的外接圆于D ,则AD 的最小值为( )A .1B .2C .2D .324-解:连接CD∴∠P AC =∠PDC =∠ACB =45°∴∠BDC =135°如图,当AD 过圆心O ′时,AD 有最小值∵∠BDC =135°∴∠BO ′C =90°∴O ′B =O ′C =4又∠ACO ′=90°∴AO ′=5 ∴AD 的最小值为5-4=1【例3】(2016·勤学早四调模拟1)如图,⊙O 的半径为2,弦AB 的长为32,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的面积的最大值是( )A .3612+B .336+C .3312+D .346+【练】(2014·洪山区中考模拟1)如图,⊙O 的半径为1,弦AB =1,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的最大面积是( )A .21 B .22 C .23 D .43【例5】如图,A (1,0)、B (3,0),以AB 为直径作⊙M ,射线OF 交⊙M 于E 、F 两点,C 为弧AB 的中点,D 为EF 的中点.当射线绕O 点旋转时,CD 的最小值为__________解:连接DM∵D 是弦EF 的中点∴DM ⊥EF∴点D 在以A 为圆心的,OM 为直径的圆上运动当CD 过圆心A 时,CD 有最小值连接CM∵C 为弧AB 的中点∴CM ⊥AB∴CD 的最小值为12【练】如图,AB 是⊙O 的直径,AB =2,∠ABC =60°,P 是上一动点,D 是AP 的中点,连接CD ,则CD 的最小值为__________解:连接OD∵D 为弦AP 的中点∴OD ⊥AP∴点D 在以AO 为直径的圆上运动当CD 过圆心O ′时,CD 有最小值过点C 作CM ⊥AB 于M∵OB =OC ,∠ABC =60°∴△OBC 为等边三角形∴OM =21,CM =23∴O ′C =47 ∴CD 的最小值为2147-练习:如图,在动点C 与定长线段AB 组成的△ABC 中,AB =6,AD ⊥BC 于点D ,BE ⊥AC 于点E ,连接DE .当点C 在运动过程中,始终有22=AB DE ,则点C 到AB 的距离的最大值是_________。

完整版定弦定角最值问题教师版

完整版定弦定角最值问题教师版

定弦定角最值问题(答案版)△45°=【例1】(2016·新观察四调模拟1)如图,△ABC中,AC3,BC为==,∠,ACBD24,CP于E点,弧AE=△ACD的外接圆,直线BD交⊙O于P点,交BCABC内一动点,⊙O为的最小值为()则AD.B.2CD.A.12241?4=45°:∵∠CDP=∠ACB解135°(定弦定角最值)∴∠BDC=AD有最小值过O′时,如图,当AD 135°∵∠BDC==BO90°′C∴∠BO′C∴△为等腰直角三角形∴∠ACO′=45°+45°=90°∴AO′=5又O′B=O′C=4∴AD=5-4=1【例2】如图,AC=3,BC=5,且∠BAC=90°,D为AC上一动点,以AD为直径作圆,连接BD交圆于E点,连CE,则CE的最小值为()162?21313?.D.B.5A.C 9解:连接AE∵AD为⊙O的直径∴∠AEB=∠AED=90°∴E点在以AB为直径的圆上运动13?2 CE有最小值为CE过圆心O′时,当42,∠ACB=45°,3,BC=AM∥BC,AC如图,在(2015【练】·江汉中考模拟1)△ABC中,=点P在射线AM上运动,连BP交△APC的外接圆于D,则AD的最小值为()A.1B.2242?3 .D .CCD解:连接=∠ACB=45°∴∠PAC=∠PDC135°BDC=∴∠AD有最小值如图,当AD过圆心O′时,135°∵∠BDC=90°∴∠BO′C=4 B′=O′C=∴O又∠=90°ACO′5′=∴AO1=5-4∴AD的最小值为32AB例【3】(2016·勤学早四调模拟1)如图,的长为P,点的半径为2,弦AB为优弧⊙O ABC的面积的最大值是()C上一动点,AC⊥AP交直线PB于点,则△3633?12312?66?334?..AC.B . D·洪山区中考模拟1)如图,⊙O的半径为1,弦AB=1,点P为优弧【练】(2014AB上一动点,AC⊥AP交直线PB于点C,则△ABC的最大面积是()12.A. B 2233..C D 24为弧于E、F两点,CAB(3,0),以为直径作⊙M,射线OF交⊙M,【例5】如图,A(10)、B__________的中点.当射线绕O点旋转时,CD的最小值为AB的中点,D为EF解:连接DM的中点D是弦EF∵EF∴DM⊥为直径的圆上运动为圆心的,OM∴点D在以A有最小值时,CD当CD过圆心A连接CM AB 的中点∵C为弧⊥AB∴CM CD的最小值为∴12?的中点,连接AP是60°,P是上一动点,D,∠AB【练】如图,是⊙O的直径,AB=2ABC=__________ 的最小值为CD,则CDOD解:连接D为弦AP的中点∵OD⊥AP∴在以AO为直径的圆上运动∴点D CD有最小值′当CD过圆心O时,过点C作CM⊥AB于M∵OB=OC,∠ABC=60°∴△OBC为等边三角形13,CM=∴OM=22.7=C∴O′417的最小值为CD∴?24练习:如图,在动点C与定长线段AB组成的△ABC中,AB=6,AD⊥BC于点D,BE⊥AC于点E,DE2 _________AB 的距离的最大值是到CDE连接.当点在运动过程中,始终有,则点C?AB2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定弦定角最值问题(教
师版)
work Information Technology Company.2020YEAR
定弦定角最值问题(答案版)
【例1】(2016·新观察四调模拟1)如图,△ABC 中,AC =3,BC =24,∠ACB =45°,D 为△ABC 内一动点,⊙O 为△ACD 的外接圆,直线BD 交⊙O 于P 点,交BC 于E 点,弧AE =CP ,则AD 的最小值为( )
A .1
B .2
C .2
D .2441-
解:∵∠CDP =∠ACB =45°
∴∠BDC =135°(定弦定角最值)
如图,当AD 过O ′时,AD 有最小值
∵∠BDC =135°
∴∠BO ′C =90°
∴△BO ′C 为等腰直角三角形
∴∠ACO ′=45°+45°=90°
∴AO ′=5
又O ′B =O ′C =4
∴AD =5-4=1
【例2】如图,AC =3,BC =5,且∠BAC =90°,D 为AC 上一动点,以AD 为直径作圆,连接BD 交圆于E 点,连CE ,则CE 的最小值为( )
A .213-
B .213+
C .5
D .9
16
解:连接AE
∵AD 为⊙O 的直径
∴∠AEB =∠AED =90°
∴E 点在以AB 为直径的圆上运动
当CE 过圆心O ′时,CE 有最小值为213-
【练】(2015·江汉中考模拟1)如图,在△ABC 中,AC =3,BC =24,∠ACB =45°,AM ∥BC ,点P 在射线AM 上运动,连BP 交△APC 的外接圆于D ,则AD 的最小值为( )
A .1
B .2
C .2
D .324-
解:连接CD ∴∠PAC =∠PDC =∠ACB =45°
∴∠BDC =135°
如图,当AD 过圆心O ′时,AD 有最小值
∵∠BDC =135°
∴∠BO ′C =90°
∴O ′B =O ′C =4
又∠ACO ′=90°
∴AO ′=5
∴AD 的最小值为5-4=1
【例3】(2016·勤学早四调模拟1)如图,⊙O 的半径为2,弦AB 的长为32,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的面积的最大值是( )
A .3612+
B .336+
C .3312+
D .346+
【练】(2014·洪山区中考模拟1)如图,⊙O 的半径为1,弦AB =1,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的最大面积是( )
A .21
B .22
C .
23 D .43
【例5】如图,A (1,0)、B (3,0),以AB 为直径作⊙M ,射线OF 交⊙M 于E 、F 两点,C 为弧AB 的中点,D 为EF 的中点.当射线绕O 点旋转时,CD 的最小值为__________
解:连接DM
∵D 是弦EF 的中点
∴DM ⊥EF
∴点D 在以A 为圆心的,OM 为直径的圆上运动
当CD 过圆心A 时,CD 有最小值
连接CM
∵C 为弧AB 的中点
∴CM ⊥AB
∴CD 的最小值为12
【练】如图,AB 是⊙O 的直径,AB =2,∠ABC =60°,P 是上一动点,D 是AP 的中点,连接CD ,则CD 的最小值为__________
解:连接OD
∵D 为弦AP 的中点
∴OD ⊥AP
∴点D 在以AO 为直径的圆上运动
当CD 过圆心O ′时,CD 有最小值
过点C 作CM ⊥AB 于M
∵OB =OC ,∠ABC =60°
∴△OBC 为等边三角形
∴OM =21,CM =23 ∴O ′C =4
7 ∴CD 的最小值为
2147-
练习:
如图,在动点C 与定长线段AB 组成的△ABC 中,AB =6,AD ⊥BC 于点D ,BE ⊥AC 于点E ,连接DE .当点C 在运动过程中,始终有2
2=AB DE ,则点C 到AB 的距离的最大值是_________。

相关文档
最新文档