《相似三角形》单元测试题

合集下载

(完整word版)相似三角形单元测试卷(含答案)

(完整word版)相似三角形单元测试卷(含答案)

相似三角形单元测试卷(共100分)一、填空题:(每题5分,共35分)1、已知a =4,b =9,c 是a b 、的比例中项,则c = .2、一本书的长与宽之比为黄金比,若它的长为20cm ,则它的宽 是 cm (保留根号).3、如图1,在ΔABC 中,DE ∥BC ,且AD ∶BD =1∶2,则S S ADE ∆=四边形DBCE : .图1 图2 图34、如图2,要使ΔABC ∽ΔACD ,需补充的条件是 .(只要写出一种)5、如图3,点P 是RtΔABC 斜边AB 上的任意一点(A 、B 两点除外)过点作一条直线,使截得的三角形与RtΔABC 相似,这样的直线可以作 条.图4 图5 图66、如图4,四边形BDEF 是RtΔABC 的内接正方形,若AB =6,BC =4,则DE = .7、如图5,ΔABC 与ΔDEF 是位似三角形,且AC =2DF ,则OE ∶OB = . 二、选择题: (每题5分,共35分)8、若k bac a c b c b a =+=+=+,则k 的值为( ) A 、2 B 、-1 C 、2或-1 D 、不存在9、如图6,F 是平行四边形ABCD 对角线BD 上的点,BF ∶FD=1∶3,则BE ∶EC=( )A 、21 B 、31 C 、32 D 、41 图7 图8 图910、如图7,△ABC 中,DE ∥FG ∥BC ,且DE 、FG 将△ABC 的面积三等分,若BC=12cm ,则FG 的长为( )A 、8cmB 、6cmC 、64cmD 、26cm 11、下列说法中不正确的是( )A .有一个角是30°的两个等腰三角形相似;B .有一个角是60°的两个等腰三角形相似;C .有一个角是90°的两个等腰三角形相似;D .有一个角是120°的两个等腰三角形相似.12、如图9, D 、E 是AB 的三等分点, DF∥EG∥BC , 图中三部分的面积分别为S 1,S 2,S 3, 则S 1:S 2:S 3( ) A.1:2:3 B.1:2:4 C.1:3:5 D.2:3:413、两个相似多边形的面积之比为1∶3,则它们周长之比为( )A .1∶3B .1∶9C .1D .2∶314、下列3个图形中是位似图形的有( )A 、0个B 、1个C 、2个D 、3个 三、解答题(15题8分,16题10分,17题12分,共30分) 15、如图,已知AD 、BE 是△ABC 的两条高,试说明AD ·BC=BE ·AC16、如图所示,小华在晚上由路灯A 走向路灯B,当他走到点P 时, 发现他身后影子的顶部刚好接触到路灯A 的底部,当他向前再步行12m 到达点Q 时, 发现他身前影子的顶部刚好接触到路灯B 的底部,已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB. (1)求两个路灯之间的距离;(2)当小华走到路灯B时,他在路灯A 下的影长是多少?17.如图,在矩形ABCD 中,AB=12cm ,BC=8cm .点E 、F 、G 分别从点A 、B 、C 三点同时出发,沿矩形的边按逆时针方向移动.点E 、G 的速度均为2cm/s ,点F 的速度为4cm/s ,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t 秒时,△EFG 的面积为S (cm 2) (1)当t=1秒时,S 的值是多少?(2)写出S 和t 之间的函数解析式,并指出自变量t 的取值范围;(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点E 、B 、F 为顶点的三角形与以点F 、C 、G 为顶点的三角形相似?请说明理由.AB C ED参考答案一、 填空题:(1)、1或4或16;(2)、±6;(3)、-94;(4)、1.6或2.5;(5)、)15(10 ; (6)、1:8;(7)、∠ACD=∠B 或∠ADC=∠ACB 或AD :AC=AC :AB ;(8)、31.5; (9)、0.2;(10)、3;(11)、2.4;(12)、1:2三、作图题: 23、(略) 四、解答题:24、证明:∵AD 、BE 是△ABC 的高 ∴∠ADC=∠BEC ∵∠C=∠C∴△ADC ∽△BEC ∴AD :BE=AC :BC ∴AD ×BC=BE ×AC25、解:由图得,AB=5,AC=25,BC=5,EF=2,ED=22,DF=10, ∴AB :EF=AC :ED=BC :DF=5:2∴△ABC ∽△DEF26、解:过点C 作C E ∥AD 交AB 于点E ,则CD=AE=2m ,△BCE ∽△B /BA / ∴A / B /:B /B=BE :BC 即,1.2:2= BE :4 ∴BE=2.4∴AB=2.4+2=4.4答:这棵树高4.4m 。

《-相似三角形》单元测试题(含答案)

《-相似三角形》单元测试题(含答案)

《相似三角形》单元测试题一、精心选一选(每小题4分,共32分)1、下列各组图形有可能不相似得就就是()、(A)各有一个角就就是50°得两个等腰三角形(B)各有一个角就就是100°得两个等腰三角形(C)各有一个角就就是50°得两个直角三角形(D)两个等腰直角三角形2、如图,D就就是⊿ABC得边AB上一点,在条件(1)△ACD=∠B,(2)AC2=AD·AB,(3)AB边上与点C距离相等得点D有两个,(4)∠B=△ACB中,一定使⊿ABC∽⊿ACD得个数就就是( )(A)1(B)2(C)3 (D)43、如图,∠ABD=∠ACD,图中相似三角形得对数就就是( )(A)2(B)3 (C)4 (D)54、如图,在矩形ABCD中,点E就就是AD上任意一点,则有( )(A)△ABE得周长+△CDE得周长=△BCE得周长(B)△ABE得面积+△CDE得面积=△BCE得面积(C)△ABE∽△DEC(D)△ABE∽△EBC5、如果两个相似多边形得面积比为9:4,那么这两个相似多边形得相似比为()A、9:4B、2:3C、3:2D、81:166、下列两个三角形不一定相似得就就是( )。

A、两个等边三角形B、两个全等三角形C、两个直角三角形D、两个等腰直角三角形7、若⊿ABC∽⊿,∠A=40°,∠B=110°,则∠=()A、40°B110°C70°D30°8、如图,在ΔABC中,AB=30,BC=24,CA=27, AE=EF=FB,EG∥FD∥BC,FM∥EN∥AC,则图中阴影部分得三个三角形得周长之与为( )A、70B、75C、81D、80二、细心填一填(每小题3分,共24分)9、如图,在△ABC中,△BAC=90°,D就就是BC中点,AE∥AD交CB延长线于点E,则⊿BAE相似于______、10、在一张比例尺为1:10000得地图上,我校得周长为18cm,则我校得实际周长为。

第4章 相似三角形 浙教版九年级数学上册单元测试卷(含解析)

第4章 相似三角形 浙教版九年级数学上册单元测试卷(含解析)

第4章相似三角形单元测试卷一.选择题(共10小题,满分30分)1.《九章算术》中记载了一种测量古井水面以上部分深度的办法,如图所示,在井口A处立一垂直于井口的木杆AB,从木杆的顶端B观测井水水岸D,视线BD与井口的直径CA 交于点E,若测得AB=1米,AC=1.6米,AE=0.4米,则水面以上深度CD为( )A.4米B.3米C.3.2米D.3.4米2.设=,则的值为( )A.B.C.D.3.已知△ABC∽△DEF,=,若BC=2,则EF=( )A.4B.6C.8D.164.两个相似多边形的周长之比为1:4,则它们的面积之比为( )A.1:2B.1:4C.1:8D.1:165.如图,AD∥BE∥CF,若AB=2,AC=5,EF=4,则DE的长度是( )A.6B.C.D.6.已知在△ABC中,∠A=78°,AB=4,AC=6,下列阴影部分的三角形与原△ABC不相似的是( )A.B.C.D.7.甲、乙两地相距60千米,在比例尺1:1000000的地图上,图上距离应是( )厘米.A.6000000B.600C.60D.68.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“美学”.如图,的值接近黄金比,则黄金比(参考数据:2.12=4.41,2.22=4.84,2.32=5.29,2.42=5.76)( )A.在0.1到0.3之间B.在0.3到0.5之间C.在0.5到0.7之间D.在0.7到0.9之间9.在△ABC中,∠BAC=90°,AD⊥BC,垂足为D,AD=3,BD=2,则CD的长为( )A.2B.3C.D.10.如图,在△ABC中,∠BAC=90°,AH⊥BC,M是AC中点,CN=2BN,BM交AN于O,BM交AH于I,若S△ABC=48,则下面结论正确的是( )①∠CAH=∠ABC;②S△ABO=12;③AO=3NO;④=2.A.①②③B.②③④C.①②④D.①②③④二.填空题(共10小题,满分30分)11.已知四边形ABCD∽四边形A′B′C′D′,BC=3,CD=2.4,B′C′=2,则C′D ′= .12.如图,△ADE∽△ACB,已知∠A=40°,∠ADE=∠B,则∠C= °.13.如图,在△ABC中,DE∥BC,G为BC上一点,连接AG交DE于点F,已知AF=2,AG=6,EC=5,则AC= .14.已知a=4,c=13,则a,c的比例中项是 .15.如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且=,则= .16.如图,在第一象限内作与x轴的正半轴成60°的射线OC,在射线OC上截取OA=2,过点A作AB⊥x轴于点B,在坐标轴上取一点P(不与点B重合),使得以P,O,A为顶点的三角形与△AOB相似,则所有符合条件的点P的坐标为 .17.如图,以点O为位似中心,把△ABC放大2倍得到△A'B'C'',①AB∥A'B';②△ABC∽△A'B'C';③AO:AA'=1:2;④点C、O、C'三点在同一直线上.则以上四种说法正确的是 .18.如图,△ABC的顶点在1×3的正方形网格的格点上,在图中画出一个与△ABC相似但不全等的△DEF(△DEF的顶点在格点上),则△DEF的三边长分别是 .19.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,BD=3,CD=12,则AD的长为 .20.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是,著名的“断臂维纳斯”便是如此,这个数我们把它叫做黄金分割数.若介于整数n 和n+1之间,则n的值是 .三.解答题(共7小题,满分90分)21.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3),双曲线y=﹣(x>0)的图象经过的中点D,且与AB交于点E,连接DE(1)求△BDE的面积(2)若点F是OC边上一点,且△FBC∽△DEB,求点F坐标.22.如图,四边形ABCD∽四边形EFGH,求角α、β的大小和EF的长度x.23.如图,C是线段AB上的一点,AC:CB=2:1.(1)图中以点A,B,C中任意两点为端点的线段共有 条.(2)若AC=4,求AB的长.24.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标.25.如图,AB∥EF∥CD,E为AD与BC的交点,F在BD上,求证:+=.26.小颍想利用标杆和皮尺测量自己小区大门口前遮雨玻璃水平宽度AB,他在楼门前水平地面上选择一条直线CH,AB∥CH,在CH上距离C点8米的D处竖立标杆DE,DE⊥CH,他沿着DH方向走了2米到点N处,发现他的视线从M处通过标杆的顶端E正好落在遮雨玻璃的B点处,继续沿原方向再走2米到点Q处,发现他的视线从P处通过标杆的顶端E正好落在遮雨玻璃的A点处,求遮雨玻璃的水平宽度AB.27.如图,AC、BD交于点E,BC=CD,且BD平分∠ABC.(1)求证:△AEB∽△CED;(2)若BC=9,EC=3,AE=2,求AB的长.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:由题意知:AB∥CD,∴△ABE∽△CDE,∴,∴,∴解得CD=3,∴水面以上深度CD为3米.故选:B.2.解:∵=,∴x=y,∴====.故选:C.3.解:∵△ABC∽△DEF,∴,∵=,BC=2,∴,∴EF=4,故选:A.4.解:相似多边形的周长的比是1:4,周长的比等于相似比,因而相似比是1:4,面积的比是相似比的平方,因而它们的面积比为1:16;故选:D.5.解:∵AD∥BE∥CF,∴=,即=,解得:DE=,故选:D.6.解:A、由有两组角对应相等的两个三角形相似,可证阴影部分的三角形与原△ABC相似,故选项A不符合题意;B、不能证明阴影部分的三角形与原△ABC相似,故选项B符合题意;C、由有两组角对应相等的两个三角形相似,可证阴影部分的三角形与原△ABC相似,故选项C不符合题意;D、由两组对应边的比相等且夹角对应相等的两个三角形相似,故选项D不符合题意;故选:B.7.解:60千米=6000000厘米,6000000×=6(厘米).答:图上距离应是6厘米.故选:D.8.解:∵2.22=4.84,2.32=5.29,2.2<<2.3,∴1.2<﹣1<1.3,∴0.6<<0.65,故选:C.9.解:∠BAC=90°,∴∠BAD+∠CAD=90°,∵AD⊥BC,∴∠C+∠CAD=90°,∴∠C=∠BAD,∵∠BDA=∠ADC=90°,∴△BDA∽△ADC,∴,即,解得,DC=,故选:D.10.解:①∵∠BAC=90°,AH⊥BC,∴∠ABC+∠BAH=∠BAH+∠CAH=90°,∴∠CAH=∠ABC,故①正确;②过点M作ME∥BC,与AO交于点E,∵M是AC中点,∴ME是△ACN的中位线,∴ME=,AE=EN,∵CN=2BN,∴ME=BN,∵ME∥BC,∴∠OBN=∠OME,∵∠BON=∠MOE,∴△OBN≌△OME(AAS),∴ON=OE,∵AE=EN,∴AN=4ON,∴,∵CN=2BN,S△ABC=48,∴,∴,故②正确;③∵AE=EN,OE=ON,∴AO=3NO,故③正确;④过点C作CF⊥BC,与BM的延长线交于点F,∴∠AIM=∠F,∵M是AC的中点,∴AM=CM,∵∠AMI=∠CMF,∴△AMI≌△CMF(AAS),∴AI=CF,∵IH∥CF,当H不是BC的中点时,IH≠,∴IH≠,故④不正确;故选:A.二.填空题(共10小题,满分30分)11.解:∵四边形ABCD∽四边形A′B′C′D′,∴=,即=,∴C′D′=1.6.故答案为:1.6.12.解:∵△ADE∽△ACB,∴∠AED=∠B,∠ADE=∠C,∵∠ADE=∠B,∴∠C=∠B,∴∠B=4∠C,∵∠A=40°,∠A+∠B+∠C=180°,∴∠C=28°,故答案为:28.13.解:∵DE∥BC,∴,即,∴AE=,∴AC=AE+EC=+5=,故答案为:.14.解:设a,c的比例中项为b,根据题意得b2=ac,∵a=4,c=13,∴b=±=±2.故答案为:±2.15.解:∵=,∴=,∵四边形ABCD与四边形EFGH位似,∴EH∥AD,∴△OEH∽△OAD,∴==,故答案为:.16.解:∵∠AOB=60°,∠ABC=90°,∴当P点在x轴上,∠AOP=60°,∠OAP=90°时,△PAO∽△ABO,此时OP=2OA=4,则P(4,0);当P点在y轴上,若∠APO=60°,∠OAP=90°时,△PAO∽△OBA,此时AP=OA=,OP=2AP=,则P(0,);若∠PAO=60°,∠APO=90°时,△APO∽△OBA,此时AP=OA=1,OP=AP=,则P(0,);综上所述,P点坐标为:(4,0)或(0,)或(0,).故答案为:(4,0)或(0,)或(0,).17.解:∵以点O为位似中心,把△ABC放大2倍得到△A'B'C'',∴AB∥A'B,△ABC∽△A'B'C';AO:AA'=2:1;点C、O、C'三点在同一直线上,①①②④正确,故答案为:①②④.18.解:如图所示:△ABC∽△DEF,DE=,ED=2,EF=.故答案为:,2,.19.解:∵∠BAC=90°,AD⊥BC,∴AD2=CD•BD=36,∴AD=6,故答案为:6.20.解:∵2<<3,∴1<﹣1<2,∴<<1∵n<<n+1,n为整数,∴n=0.故答案为:0.三.解答题(共7小题,满分90分)21.解:(1)∵D点为BC的中点,B(2,3),∴D(1,3),把D(1,3)代入y=得k=1×3=3,∴反比例函数解析式为y=,∵AB⊥x,∴E点的横坐标为2,当x=2时,y==,即E(2,),∴△BDE的面积=×(2﹣1)×(3﹣)=;(2)∵△FBC∽△DEB,∴=,即=,解得CF=,∴OF=OC﹣CF=3﹣=,∴点F坐标为(0,).22.解:∵四边形ABCD∽四边形EFGH,∴α=∠C=83°,∠F=∠B=78°,EH:AD=EF:AB,∴x:21=24:18,解得x=28.在四边形EFGH中,β=360°﹣83°﹣78°﹣118°=81°.∴∠G=∠C=67°.故α=83°,β=81°,x=28.23.解:(1)线段有:AC,AB,CB,共3条,故答案为:3;(2)∵AC=4,AC:CB=2:1,∴CB=2,∴AB=AC+CB=4+2=6.24.解;(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,点C2点坐标为(﹣6,4).25.解:∵AB∥EF,∴=,∵EF∥CD,∴=,∴+=+=1,∴+=.26.解:连接AE,过E作EI⊥AC于点I,延长PM交AC于J,交ED于K,则IE=JK=CD =8,KM=DM=DN=NQ=2,∴JE∥PJ,∠AEJ=∠EPK,∵∠AJE=∠EKP=90°,∴△AEJ∽△EPK,∴,∵AB∥MP,∴,即,∴AB=4,答:遮雨玻璃的水平宽度AB为4m.27.(1)证明:∵BC=CD,∴∠CBD=∠CDB,∵BD平分∠ABC.∴∠CBD=∠ABD,∴∠CDB=∠ABD,又∵∠CED=∠AEB,∴△AEB∽△CED.(2)解:∵BC=CD,BC=9,∴CD=9,∵△AEB∽△CED,∴==,∴AB=DC=6.。

相似三角形单元测试卷带答案

相似三角形单元测试卷带答案

相似三角形单元测试卷一.选择题1.在△ABC中,BC=6,AC=8,AB=10,另一个与它相似的三角形的最短边长是3,则其最长边一定是()A.12 B.5 C. 16 D.202.下列说法正确的是()A.所有的等腰三角形都相似B.所有的直角三角形都相似C.所有的等腰直角三角形都相似D.有一个角相等的两个等腰三角形都相似3.在相同时刻的物高与影长成正比.如果高为1.5m的竹竿的影长为2.5m,那么影长为30m 旗杆的高是A. 15mB. 16mC. 18mD. 20m4.如图,在△ABC中,点D、E分别是AB、AC的中点,则下列四个结论:①BO=2OE;②13DOEADESS∆∆=;③12ADEBCESS∆∆=;④△ADC∽△AEB.其中正确..的结论有()A.3个B.2个C.1个D.0个5.如图,△ABC中,三边互不相等,点P是AB上一点,有过点P的直线将△ABC切出一个小三角形与△ABC相似,这样的直线一共有()APCBA、5条B、4条C、3条D、2条【答案】B6.如图,∠ABD=∠ACD,图中相似三角形的对数是()(A)2 (B)3 (C)4 (D)5【答案】C7.(11·西宁)如图6,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADB +∠EDC=120°,BD=3,CE=2,则△ABC的边长为A.9 B.12 C.16 D.188.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB 等于()AB C D E FA. 4.5米B. 6米C. 7.2米D. 8米【答案】B9.在平面直角坐标系中,正方形ABCD 的位置如图6所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1,…按这样的规律进行下去,第2012个正方形的面积为 ( )201135()2⨯ B .201195()4⨯ C .201235()2⨯ D .201295()4⨯【答案】B10. 如图所示,小正方形的边长为1,则下列图形中的三角形(阴影部分)与ABC ∆相似的是( )【答案】A二.填空题11.已知32=b a ,则=+b b a ___________。

相似三角形单元测试卷(含答案)

相似三角形单元测试卷(含答案)

相似三角形单元测试卷(含答案)第四章相似三角形单元测试卷一、选择题: 1.下列各组数中,成比例的是A.-6,-8,3,4 B.-7,-5,14,5 C.3,5,9,12 D.2,3,6,12 2.如图,边长为4的等边△ABC中,DE为中位线,则四边形BCED的面积为A.23 B.33 C.43 D.63 3.如图,F是平行四边形ABCD对角线BD上的点,BF∶FD=1∶3,则BE∶EC= A. AFBECD1121 B. C. D. 2334 ADFBEGC 4.如图,△ABC中,DE ∥FG∥BC,且DE、FG将△ABC的面积三等分,若BC=12cm,则FG的长为A、8cm B、6cm C、46cm D、62cm 5.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于A. 2:5:25:25 D. 4:216.如图, 小正方形的边长均为1, 则下列图中的三角形(阴影部分)与△ABC相似的是()7.如图,在□ABCD 中,E、F分别是AD、CD 边上的点,连接BE、AF,他们相交于点G,延长BE交CD的延长线于点H,则图中的相似三角形共有A.2对B.3对C.4对D.5对AD45°B 1 PC8.如图,在直角三角形ABC中,放置边长分别3,4,x的三个正方形,则x 的值为() A. 5 B. 6 C. 7 D. 129. 如果三条线段的长a、b、c满足5?1bc==,那么(a,b,c)叫做“黄金线段组\.黄2ab金线段组中的三条线段().A.必构成锐角三角形B.必构成直角三角形C.必构成钝角三角形D.不能构成三角形10. 如图,等腰直角△ABC的直角边长为3,P为斜边BC上一点,且BP=1,D为AC上一点,若∠APD=45°,则CD的长为A. 5 3 ?1 3C.32?1 3D. 35 二、填空题: C11.已知a=4,b=9,c是a、b的比例中项,则c =.BOD12. 如图,△ABC中,已知AB=4,AC=3。

九年级数学相似三角形单元测试的题目及答案详解

九年级数学相似三角形单元测试的题目及答案详解

九年级数学相似单元测试一.选择题(每小题3分,共30分)1.在比例尺为1:5000的地图上,量得甲,乙两地的距离25cm,则甲,乙的实际距离是( ) A.1250km B.125km C. 12.5km D.1.25km 2.已知0432c b a ,则c b a的值为( )A.54B.45C.2D.213.已知⊿ABC 的三边长分别为2,6,2,⊿A ′B ′C ′的两边长分别是1和3,如果⊿ABC 与⊿A ′B ′C ′相似,那么⊿A ′B ′C ′的第三边长应该是( )A.2B.22C.26D.334.在相同时刻,物高与影长成正比。

如果高为 1.5米的标杆影长为 2.5米,那么影长为30米的旗杆的高为( ) A 20米 B 18米 C 16米 D 15米5.如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB=c,要使⊿ABC ∽⊿CAD, 只要CD 等于( ) A.cb2B.ab2C.cabD.ca26.一个钢筋三角架三长分别为20cm,50cm,60cm,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有( ) A.一种 B.两种 C.三种 D.四种7、用位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可以选在( ) A 原图形的外部 B 原图形的内部 C 原图形的边上 D 任意位置8、如图,□ABCD 中,EF ∥AB ,DE ∶EA = 2∶3,EF = 4,则CD 的长()A .163B .8C .10D .169.已知a 、b 、c 为非零实数,设k=c ba bca a cb ,则k 的值为()A .2B .-1C .2或-1D .110、某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△ABC的边BC 上,△ABC 中边BC=60m ,高AD=30m ,则水池的边长应为( ) A 10m B 20m C 30m D 40m二.填空题(每小题3分,共30分)11、已知43yx,则._____yy x12、.已知点C 是线段AB 的黄金分割点,且AC>BC,则AC ∶AB= . 13、.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为 .14、如图,⊿ABC中,D,E分别是AB,AC上的点(DE BC),当或或时,⊿ADE与⊿ABC相似.15、在△ABC中,∠B=25°,AD是BC边上的高,并且2·,则∠BCA的度数为____________。

相似三角形单元测试题

相似三角形单元测试题

相似三角形单元检测题一填空:(3分×14=42分) (90分钟完卷)1.如图1,∠ADC=∠ACB=900,∠1=∠B,AC=5,AB=6,那么AD=______.2。

如图2,AD∥EF∥BC,那么图的相似三角形共有_____对。

3。

如图3,正方形ABCD中,E是AD的中点,BM⊥CE,AB=6,那么BM=______.4。

ΔABC的三边长为,,2,ΔA'B’C'的两边为1和,假设ΔABC∽ΔA'B'C',那么ΔA'B’C’的笫三边长为________.5.两个相似三角形的面积之比为1∶5,小三角形的周长为4,那么另一个三角形的周长为_____.6。

如图4,RtΔABC中,∠C=900,D为AB的中点,DE⊥AB,AB=20,AC=12,那么四边形ADEC的面积为__________.7.如图5,RtΔABC中,∠ACB=900,CD⊥AB,AC=8,BC=6,那么AD=____,CD=_______。

8.如图6,矩形ABCD中,AB=8,AD=6,EF垂直平分BD,那么EF=_________.9。

如图7,ΔABC中,∠A=∠DBC,BC=,S ΔBCD∶SΔABC=2∶3,-那么CD=______。

10.如图8,梯形ABCD中,AD∥BC,两腰BA和CD的延长线相交于P,PF⊥BC,AD=3.6,BC=6,EF=3,那么PF=_____.11。

如图9,ΔABC中,DE∥BC,AD∶DB=2∶3,那么SΔADE∶SΔ=___________.ABE12.如图10,正方形ABCD内接于等腰ΔPQR,∠P=900,那么PA∶AQ=__________.13。

如图11,ΔABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,-那么S四边形DFGE∶S四边形FBCG=_________.14.如图12,ΔABC中,中线BD和CE相交于O点,SΔADE=1,那么S四=________。

初中数学相似三角形单元测试卷

初中数学相似三角形单元测试卷

相似三角形单元测试卷(满分120分,考试时间90分钟)一.选择题【本题共6题,每小题3分,共18分】1.在△ABC 中,点D 、E 分别在边AB 、AC 上,AD :BD =1:2,那么下列条件中能够判断DE//BC 的是……………………………………………………………………( ) (A) 21=BCDE ; (B) 31=BC DE ; (C) 21=AC AE ; (D) 31=AC AE2.如图,123//// ,下列比例式中正确的是…………………………………( ) (A )AD CE BC DF =; (B )AD DF BC CE =; (C )AB CD CD EF =; (D )AD BCBE AF =. 3.已知a ,b ,c 是非零向量,不能判定a ∥b的是……………………………( )(A )a ∥c ,b ∥c ;(B ) a =3b ;(C )a =b ;(D )a =12c ,b =-2c. 4.如图,△ABC 中,DE //BC 交AB 于点D ,交AC 于点E ,如果ADE BCED S S ∆=四边形,那么下列等式成立的是 ……………………………………………………………( ) (A ):1:2DE BC =;(B ):1:3DE BC =;(C ):1:4DE BC =;(D ):DE BC = 5.在Rt △ABC 和Rt △DEF 中,90C F ∠=∠=°,下列条件中不能判定这两个三角形相似的是…………………………………………………………………………………( )(A )55,35A D ∠=°∠=°; (B )9,12,6,8AC BC DF EF ====; (C )3,4,6,8AC BC DF DE ====;(D )10,8,15,9AB AC DE EF ====. 6.如图,在三角形纸片ABC 中,AB=AC ,∠A=36°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《相似三角形》单元测试题
一、选择题(30分)
1.如图1,已知AB CD EF
∥∥,那么下列结论正确的是()
A.
AD BC
DF CE
=B.
BC DF
CE AD
= C.
CD BC
EF BE
=D.
CD AD
EF AF
=
图4
图2 图3
图1
2.如图2所示,给出下列条件:①B ACD
∠=∠;②ADC ACB
∠=∠;③
AC AB
CD BC
=;④2
AC AD AB
=.其中单独能够判定ABC ACD
△∽△的个数为()
A.1 B.2 C.3 D.4
3.如图3,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:
(1)DE=1,(2)△CDE∽△CAB,(3)△CDE的面积与△CAB的面积之比为1:4.其中正确的有:()
A.0个B.1个C.2个D.3个
4. 若△ABC∽△DEF, △ABC与△DEF的相似比为1∶2,则△ABC与△DEF的周长比为()A.1∶4 B.1∶2 C.2∶1 D .1∶2
5. 如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值()
A.只有1个B.可以有2个C.有2个以上但有限D.有无数个
6.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图4,某女士身高165cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为()
A.4cm B.6cm C.8cm D.10cm
7. 如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC
△相似的是()
8. 在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图5所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为()
A.9.5 B.10.5 C.11 D.15.5
9. 如图6,在Rt ABC
△中,90
ACB
∠=°,3
BC=,4
AC=,AB的垂直平分线DE交BC的
A.
延长线于点E ,则CE 的长为( ) A .
32 B .76 C .256
D .2
图5 图6 图7 10. 如图7,
AB 是O ⊙的直径,AD 是O ⊙的切线,点C 在O ⊙上,BC OD ∥,
23AB OD ==,,则BC 的长为( )
A .
23
B .
32
C .
3
2
D .
22
二、填空题(18分)
11.如图8是一种贝壳的俯视图,点C 分线段AB 近似于黄金分割.已知AB =10cm ,则AC 的长约为 cm .(结果精确到0.1cm )
图8 图9 图10 12. 如图9,ABC △与AEF △中,AB AE BC EF B E AB =
=∠=∠,,,交EF 于D .给
出下列结论:①AFC C ∠=∠;②D F C F =;③A D E F D B △∽△;④B F D C A F ∠=∠.
其中正确的结论是 (填写所有正确结论的序号).
13. 如图10,Rt ABC △中,90ACB ∠=°,
直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F ,
若13AEG EBCG S S =△四边形,则CF
AD
= . 14. 如图11,锐角△ABC 中,BC =6,,12=∆ABC S 两动点M 、N 分别在边AB 、AC 上滑动,且MN ∥BC ,以MN 为边向下作正方形MPQN ,设其边长为x ,正方形MPQN 与△ABC 公共部分的面积为y (y >0),当x = ,公共部分面积y 最大,y 最大值
图11 图12 图13
15. 如图12,点M 是△ABC 内一点,过点M 分别作直线平行于△ABC 的各边,所形成的三个小
三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.则△ABC 的面积是 . 16.将三角形纸片(△ABC )按如图13所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是 .
三、解答题(72分)
17.(本题6分)如图14,在△ABC 中,DE ∥BC ,EF ∥AB , 求证:△ADE ∽△EFC .
图14
18.(本题8分)如图15,已知AB 是O ⊙的直径,过点O 作弦BC 的平行
线,交过点
A 的切线AP 于点P ,连结AC . (1)求证:ABC POA △∽△;
(2)若2OB =,7
2
OP =,求BC 的长.
图15
19. (本题8分)如图16,在矩形ABCD 中,点E F 、分别在边
AD DC 、上,ABE DEF △∽△,692AB AE DE ===,,,求EF 的长.
图16
20(本题8分)如图17,△ABC 内接于⊙O ,AD 是△ABC 的边BC 上的 高,AE 是⊙O 的直径,连接BE ,△ABE 与△ADC 相似吗?请证明你的结论.
图17
图18
O
F
D A
E
B
C

A
B
C
D
E
O
21(本题10分)如图18,⊙O 中,弦AB CD 、相交于AB 的中点E , 连接AD 并延长至点F ,使DF
AD =,连接BC 、BF .
(1)求证:CBE AFB △∽△; (2)当58BE FB =时,求
CB
AD
的值
22(本题10分)已知:如图19,在Rt △ABC 中,∠ABC =90°,以AB 上的 点O 为圆心,OB 的长为半径的圆与AB 交于点E ,与AC 切于点D . (1)求证:BC =CD ;
(2)求证:∠ADE =∠ABD ;
(3)设AD =2,AE =1,求⊙O 直径的长. 图19
23(本题10分)正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直, (1)证明:Rt Rt ABM MCN △∽△; (2)设B M
x =,
梯形ABCN 的面积为y ,求y 与x 之间的函数关系式; 当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积; (3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求x 的值.
24(本题12分)如图,在Rt ABC △中,906024BAC C BC ∠=∠==°,°,,点P 是BC 边上的动点(点P 与点B C 、不重合),过动点P 作PD BA ∥交AC 于点D .
(1)若ABC △与DAP △相似,则APD ∠是多少度?
(2)试问:当PC 等于多少时,APD △的面积最大? 最大面积是多少?
(3)若以线段AC 为直径的圆和以线段BP 为直径 的圆相外切,求线段BP 的长.。

相关文档
最新文档